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a  b  s  t  r  a  c  t

Enterprise  Application  Integration  (EAI)  solutions  comprise  a  set  of  specific-purpose  processes  that imple-
ment exogenous  message  workflows.  The  goal  is  to  keep  a number  of  applications’  data  in  synchrony  or
to develop  new  functionality  on  top  of  them.  Such  solutions  are  prone  to errors  because  they  are  highly
distributed  and  usually  involve  applications  that  were  not  designed  with  integration  concerns  in  mind.
This  has  motivated  many  authors  to work  on  provisioning  EAI  solutions  with  fault-tolerance  capabili-
ties.  In  this  article  we  analyse  EAI  solutions  from  two  orthogonal  perspectives:  viewpoint  (orchestration
versus  choreography)  and  execution  model  (process-  versus  task-based  model).  A  review of  the  literature
shows  that  current  proposals  are  bound  to a  specific  viewpoint  or execution  model  or  have  important
limitations.  To  address  the  problem,  we  have  devised  an  error  monitor  that can  be  used  to  provision  EAI
solutions  with  fault-tolerance  capabilities.  Our  theoretical  analysis  proves  that  the  algorithms  we use  are
computationally  tractable,  and  our experimental  results  prove  that  they are  efficient  enough  to  be  used
in  situations  in  which  the  workload  is  very  high.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The computer infrastructure of a typical today’s enterprise can
be seen as a software ecosystem that involves several comple-
mentary applications purchased from different providers or built
at home (Messerschmitt and Szyperski, 2003). A recurrent chal-
lenge is to make these applications inter-operate with each other
to keep their data synchronised or to create a new piece of function-
ality (Hohpe and Woolf, 2003). This problem is known as Enterprise
Application Integration (EAI).

A typical EAI solution consists of one or more processes that
interact with each other and with the existing applications by
means of ports that read/write messages from/to communication
channels. Roughly speaking, they implement an exogenous work-
flow in which messages are read from a subset of applications,
routed through the processes, which may  transform them and write
the results to another subset of applications. Ports abstract away
from the details of a specific communication mechanism, which
may  range from an RPC-based protocol over HTTP to a document-
based protocol implemented on a database management system.
Processes build on tasks to filter, enrich, split, aggregate, route or
transform messages, to name a few (Hohpe and Woolf, 2003). It is
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common that solutions share processes, which makes them over-
lap or even include others. Fig. 1 shows two  solutions that we shall
use throughout the article to illustrate our proposal. In this exam-
ple, there are two  overlapping solutions, namely: Solution1, which
integrates applications App1 and App2 by means of processes Prc1
and Prc2, and Solution2, which integrates applications App3, App4
and App2 by means of processes Prc3 and Prc2. Note that process
Prc2 is shared by both solutions.

EAI solutions can be characterised from several perspectives. In
this article, we focus on viewpoint and execution model.

By viewpoint, we  refer to whether a solution is specified as an
orchestration or as a choreography. It is an orchestration if there is a
single process that co-ordinates every exchange of messages (Peltz,
2003). This process plays the role of a centralised point of control
that can consequently have an accurate global view of the current
state of execution. This is a valuable piece of information that can
be used, for instance, to identify the applications and processes that
are involved in an error. Contrarily, an EAI solution is a choreogra-
phy if there is not a centralised point of control, i.e., applications
and processes interact in a peer-to-peer fashion; this consequently
implies that no process can have an accurate global view of the exe-
cution (Peltz, 2003). Currently, WS-BPEL (OASIS, 2007) and WS-CDL
(W3C, 2005) are the de facto standards to specify orchestrations and
choreographies, respectively.

Regarding the execution model, it is worth mentioning that EAI
solutions must be deployed to a run time system that provides
an execution engine. Depending on the granularity of execution,
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Fig. 1. Sample integration solutions.

we distinguish between the process- and the task-based execution
models. In the process-based model, the engine controls process
instances as a whole, i.e., there is no means that it can interact
with the internal tasks; contrarily, in the task-based model, the
engine may  control both process instances and their internal tasks.
The implication is that the process-based execution model requires
a queue to store messages, a mechanism to correlate them, and
decide when a new process instance can be started; furthermore,
each process instance requires a thread to be allocated exclusively,
which may  have a negative impact on performance in cases in
which a process instance sends a request and has to wait for a
long time before it gets the answer (for instance, think of a request
that requires the intervention of a person or a configuration that
assigns low priorities to request that come from integration solu-
tions, Hagen and Alonso, 2000). Since the task-based execution
model deals with the tasks inside a process instance, it can allo-
cate threads more efficiently; in other words, no thread shall be
idle as long as there is a task ready to be executed, independently
from the process to which this task belongs.

EAI solutions are inherently distributed; they are thus vul-
nerable to a variety of errors that can have an impact on their
normal behaviour. Errors are due to faults, which can be either
permanent, e.g., due a software defect, or transient, e.g., due to a
resource that is temporarily unavailable. Errors that are not dealt
with properly are perceived as failures by end users (Campbell
and Randell, 1986; Avizienis et al., 2004). Fault-tolerance propos-
als aim to help keep systems delivering their functionality in spite
of faults. Typically, they can be modelled as a pipeline that goes
through the following stages: event reporting, error monitoring,
error diagnosing, and error recovering. The event reporting stage
deals with reporting whether a port was able to handle a mes-
sage or not. In the error monitoring stage, events are stored and
analysed to find correlations that shall later be checked for valid-
ity. When an error is detected, a notification is created and sent
to the error diagnosing stage, whose aim is to identify the cause
of the error, the messages and the parties involved. The error
recovering stage attempts to execute recovery actions to help the
system compensate for the existence of faults and the occurrence of
errors.

In the literature there are several proposals that deal with fault
tolerance (Zeng et al., 2005; Liu et al., 2007, 2006, 2001; Erradi
et al., 2006; Chiu et al., 1999; Hagen and Alonso, 2000; Alonso
et al., 2000; Chen et al., 2004; Ermagan et al., 2008; Baresi et al.,
2008; Li et al., 2009, 2008; Borrego et al., 2010; Yan and Dague,
2007; Yan et al., 2005). We  have analysed them from the view-
point and execution model perspectives. Our  conclusion is that
most of them aim at the orchestration viewpoint and the process-
based execution model, since they focus on Web  Services, WS-BPEL,
and traditional workflow systems. There are a few exceptions that
take the choreography viewpoint and/or the task-based execution
model into account, but they have important limitations that make
them difficult to use in a general context. The main limitation of
Chen et al. (2004) is that processes can have only one input and
messages cannot be split or aggregated inside the workflow; these
are common tasks in EAI solutions. In proposals (Ermagan et al.,
2008; Baresi et al., 2008), although the authors suggest that it can
be applied to the choreography viewpoint, no implementation or
evaluation is provided, which makes them difficult to assess and
apply in practice. Finally, the limitation of proposal (Li et al., 2008)
is that it is theoretical and transforming it into a practical tool that
deals with distribution problems in a software ecosystem does not
seem straightforward.

In this article, we focus on the error monitoring stage. We  deal
with faults that can happen in the communication mechanism or
during the processing of messages, e.g., structural and deadline
errors. Our proposal is sketched in Fig. 2. It relies on a so-called
Meta-information database that stores meta-information about the
solutions being monitored, e.g., which processes and ports are
involved in a solution. Note that this database is external to the
monitor since it is intended to be shared with other stages of the
fault-tolerance pipeline. The monitor itself is composed of two sub-
systems and two databases, namely: Event Handler,  Error Detector,
Work Graph and Work Queue.  The Event Handler handles events that
inform about a port reading or writing a message, either success-
fully or unsuccessfully. It uses the events to build a graph structure
that is stored in the Work Graph database; this graph keeps track
of the messages processes exchange and their parent–child rela-
tionships. The Error Detector analyses this graph to find and verify
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Fig. 2. Abstract view of the monitor.

correlations. The Work Queue database is used as an intermediate
buffer that allows the Event Handler and the Error Detector to work in
total asynchrony. Every time the Event Handler processes an event,
it stores a piece of information in the Work Queue database; this
information instructs the Error Detector to analyse the Work Graph
database at a specific point in time in order to find the correla-
tion in which a specific message is involved. To verify correlations,
the Error Detector builds on both built-in and user-defined rules; the
former allows to detect communications or deadline errors; the lat-
ter allows to detect structural errors that depend on the semantics
of a given process or solution, i.e., correlations that lack messages
or have more messages than expected. The only assumption we
make is that the clock resolution of the monitor is enough to dis-
tinguish between every two messages that are read or written in a
row; in other words, we can distinguish between multiple events
that involve the same message at the same port. In practice, this is
not a shortcoming since current clock resolutions are in the order of
nanoseconds, whereas reading or writing to a port usually requires
more time.

Our main contribution is that our proposal is not bound to a par-
ticular viewpoint and/or execution model; neither imposes it any
practical limitations. We  have analysed our proposal from a theo-
retical point of view, and we have proved that the algorithms on
which it relies are computationally tractable; furthermore, we have
carried out a series of experiments that prove that it performs quite
well under heavy workloads. These results improve on a previous
proposal (Frantz et al., 2011) in which we devised another error
monitoring system whose error detection complexity depended on
the size of a history database, which increased monotonically; our
current solution does not depend at all on such a database, which
consequently makes it is more scalable.

The rest of the article is structured as follows: Section 2, dis-
cusses the related work; the Meta-information database shared by
all of the stages of the fault-tolerance pipeline is presented in Sec-
tion 3; Section 4, reports on the Event Handler;  Section 5, reports on
the Error Detector;  the time complexity analysis of our algorithms is
presented in Section 6; the experiments are introduced in Section 7;
and, finally, we draw our conclusions in Section 8.

2. Related work

The literature distinguishes between static and run-time fault
tolerance proposals. As discussed in Wu  et al. (2006),  static analysis
is concerned with the detection of logical errors in the specification
of a system; for instance, race condition errors that emerge from

overlooking data dependencies. In this proposal, the authors use
a directed acyclic graph to specify the synchronisation constraints
imposed on the execution of individual tasks of business processes;
they then convert the graph into a coloured Petri net and analyse it
to detect potential synchronisation errors. In contrast, we  assume
that the EAI solutions with which we  deal are logically consistent;
we then focus on errors that emerge during their execution due,
for instance, to delayed or missing messages. The work on static
analysis is orthogonal to ours; therefore, it falls out of the scope of
this article.

We  have realised that the distinction between the error detec-
tion and the error recovery stages is blurred in many proposals. This
is common in cases in which the complexity of the error detec-
tion algorithm is trivial or abstracted away from the user’s view
by means of another mechanism. In our proposal, we make a clear
distinction between error detection and error recovery.

In some cases, the presence of an error can be determined
from the analysis of a single event, e.g., the widely used try-catch
mechanism falls within this category (Goodenough, 1975). These
cases fall outside the scope of our research. We  are interested in
cases in which it is necessary to process traces of events that are
related to each other. Traces like these are prone to propagate
faulty data. Representative examples include discrete event-based
systems, e.g., workflow systems (Hagen and Alonso, 2000), auto-
matic controllers used in manufacturing processes (Li et al., 2008),
and computer-based controllers used to automatically operate air-
crafts, train traffic crossing and medical devices (Levenson, 1991).
Error detection is a challenging problem in this context, in partic-
ular, when the number of events notified to the monitor is large,
e.g., of the order of hundreds of events per second.

To place our proposal in context, it is worth clarifying that our
solution builds on a centralised error monitor that can receive
events from several EAI solutions concurrently. We  are aware that
some authors have pointed out that centralised error detectors
do not scale well (Sayed Mouchaweh, 2010). Alternatively, they
favour decentralised error detectors which are composed of two
or more local error detectors that gather and process their own
local information and collaborate to detect global errors. A similar
idea to handle scalability is also suggested in Laguna et al. (2009),
Khanna et al. (2007, 2009).  Our reservations about decentralised
error detectors is the complexity involved in the co-ordination and
synchronisation of their activities, and the difficulty to deal with
open systems in which processes and solutions are not pre-defined,
but may  be created and destroyed as time goes by; we  leave this
alternative out of our discussion on the basis that centralised error
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Table 1
Summary of the related work.

Proposal Orchestration Choreography Process-based Task-based

Zeng et al. (2005) + − + −
Liu  et al. (2007) + − + −
Erradi et al. (2006) + − + −
Liu  et al. (2006) + − + −
Chiu  et al. (1999) + − + −
Hagen  and Alonso (2000) + − + −
Liu  et al. (2001) + − + −
Alonso et al. (2000) + − + −
Chen  et al. (2004) + +a + +a

Ermagan et al. (2008) + +a + −
Baresi  et al. (2008) + +a + −
Li  et al. (2009) + − + −
Borrego et al. (2010) + − + −
Li  et al. (2008) − +a − +a

Yan and Dague (2007) + − + −
Yan  et al. (2005) + − + −
a With important limitations that are discusses in the text.

detectors seem to satisfy our requirements well even in situations
with high workloads, cf. Section 7.

A distinctive feature of our research is that we do not only sug-
gest an error detector, but we also provide a rule-based language
to express the expected behaviours of processes and solutions. The
rules provide flexibility to our error detection mechanism. Finally,
it is worth clarifying that the proposals that provide a rule-based
language consider that the messages or events in the log are already
correlated, presumably because they aim only at orchestrated EAI
solutions. Since our proposal aims to be independent from the
viewpoint and the execution model, our monitor accounts for the
arrival of uncorrelated messages and then finds their correlations. A
salient feature of our proposal is that it emphasises the relevance of
evaluating the error detection algorithm, from several dimensions.
This is an issue frequently overlooked in the current literature.

There are several proposals in the literature on fault-tolerance
aiming to help keep systems delivering their functionality in spite
of errors. Our conclusion is that most of them aim at the orches-
tration viewpoint and the process-based execution model, since
they focus on Web  Services, WS-BPEL, and traditional workflow
systems. The few proposals that cover choreography and the task-
based execution model have important limitations, which prevent
them from being used in a general context. For example, in Chen
et al. (2004) processes can have only one input and messages can-
not be split or aggregated inside the workflow; in Ermagan et al.
(2008), Baresi et al. (2008),  no implementation or evaluation is
provided, which makes it difficult to assess and apply in prac-
tice; Li et al. (2008) addresses only a single class of errors. Our
proposal tackles the problem of endowing EAI solutions with a
fault-tolerance mechanism that is independent from the viewpoint
and the execution model; furthermore, it does not impose any prac-
tical limitations. Our failure semantics includes communication,
structural and deadline errors.

In the following, we report on more details about the proposals
we have summarised in Table 1.

Fault tolerance in business processes and web service compo-
sition has been addressed by several authors, but mainly with a
focus on error recovery. For instance, in Zeng et al. (2005) the
authors realise that service compositions are vulnerable to failures
and produce different exceptions; they then show how Event-
Condition-Action rules can be used to handle them at run time. The
focus of this proposal is on error recovery. Error detection is men-
tioned in passing only, presumably, because their context does not
require sophisticated error detection algorithms. A similar discus-
sion on exception handling for WS-BPEL can be found in Liu et al.
(2007), which is complementary to Zeng et al. (2005).  In Erradi

et al. (2006),  the authors propose a policy-driven middleware solu-
tion to handle exceptions in web  service compositions. With this
article, we share the view that communication operations are the
most error-prone. Relevant to us is also the failure semantics, which
covers the communication failure types addressed in our proposal.
An algorithm for the execution of WS-BPEL processes with relaxed
transactions is presented in Liu et al. (2006).  In Liu et al. (2007),
the authors enhance their approach with a rule-based language for
defining error recovery rules. It is worth emphasising that papers
(Zeng et al., 2005; Erradi et al., 2006; Liu et al., 2006, 2007) focus
on orchestrated applications.

The research conducted by the workflow community on fault-
tolerance is also related to our proposal. An abstract model for
workflows with fault-tolerance features is discussed in Chiu et al.
(1999); this article also provides a good survey on fault-tolerance
approaches. An algorithm for handling faults automatically in
applications integrated by means of workflow management sys-
tems, which is amenable to compensation actions or to the
two-phase commit protocol, is suggested in Hagen and Alonso
(2000). Our reservation about this idea is that it does not isolate
fault-tolerance mechanisms from business logic. In addition, it is
suitable only for orchestrated applications that are based on the
process-based execution model. Error recovery in workflow appli-
cations in which compensation actions are difficult or infeasible to
implement is discussed in Liu et al. (2001).  The authors assume that
there is a centralised workflow engine, which suggests that they
focus on orchestrated solutions. In Alonso et al. (2000),  the authors
discuss error recovery in orchestrated workflow applications that
build on the process-based execution model. An architecture to
implement fault-tolerance based on ad hoc workflows is discussed
in Chen et al. (2004); runtime error detection is central in this pro-
posal. The architecture relies on a web  server, an application server,
a database server, and a logging system. Like in our proposal, error
detection is achieved by means of the analysis of message traces.
The reservation we have about this approach is that processes can
have only one input and messages cannot be split or aggregated
inside the workflow; however, at least in theory, it is suitable for
both orchestrated and choreographed processes; it supports both
the process- and the task-based execution model.

An architecture for fault-tolerant workflows, based on finite
state machines that recognise valid sequence of messages, is dis-
cussed in Ermagan et al. (2008).  Error recovery actions are triggered
when a message is found to be invalid, or the execution time of the
state machine goes beyond a pre-defined deadline. This proposal is
suitable for both orchestrated and choreographed processes; how-
ever it aims at process-based executions. In Baresi et al. (2008),
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Fig. 3. Model of the Meta-information database.

Fig. 4. Textual syntax for rules.

the authors discuss some preliminary ideas for building an error
monitor that can be used for both orchestrated and choreographed
processes. No implementation or evaluation is provided, which
makes it difficult to assess and apply in practice.

An approach for runtime detection of errors that emerge from
potential corrupted data and faulty web services in WS-BPEL
orchestrated processes is discussed in Li et al. (2009).  The central
idea is to regard WS-BPEL processes as discrete event systems and
map  them onto coloured Petri nets. The Petri net model is then
integrated into additional WS-BPEL processes that are triggered
when exceptions are thrown. Although the authors believe that
this approach can be extended to handle choreographed processes,
they do not discuss how this can be done. In Borrego et al. (2010),
the authors study runtime error detection in business processes
specified in BPMN and discuss a framework that includes a diag-
nosis layer that runs in parallel and independently from the main
BPMN process. The authors consider that a BPMN process is com-
posed of several activities that might deliver incorrect output, for
instance, due to incorrect inputs provided by humans. The correct
functionality of each activity is specified by means of compliance
rules that are later mapped onto constraint satisfaction problems;
errors are detected by means of a constraint solver. The diagnosis
layer is conceptually similar to the monitor in our proposal. This
proposal seems to focus on functional errors (also called business
errors); in contrast, we focus on non-functional errors related to
the computer infrastructure. A limitation of this proposal is that,
in its current state, it can handle only a single instance of a BPMN
process.

Error detection has also been intensively studied by designers
of controllers that automate the operation of manufacturing plants,
which can also be viewed as discrete event systems. These con-
trollers need to process events that arrive from different sensors.
Consequently, to determine whether the plant is operating cor-
rectly, the controller needs to perform intensive event correlation.
In Li et al. (2008),  the authors explain how one can detect errors in
manufacturing plants that can be specified and controlled by means
of Petri nets. They focus on place faults (for instance, tokens that

are not removed after firing a transition) caused by sensor failures
and bit flips. To provide the controller with error detection capabil-
ities they embed it into a larger controller that provides additional
redundant places, tokens and transitions that are used to specify
correctness invariants. Errors are detected by linear parity checks
at run time. The similarity between this proposal and ours lies in the
use of event correlation for error detection. This proposal aims at
choreographed applications. Our criticism is that it addresses only
a single class of errors, namely, place errors. Neither is it clear how
these ideas can be ported to business processes that are not mod-
elled as Petri nets and involve a large amount of events and process
instances executing simultaneously.

A core feature of our proposal is that we assume that all of the
events produced by an EAI solution are notified (in other words,
observable to the error detector). Several authors have studied error
detection in discrete event systems that are considered to be in
failure when they do not produce one or more expected events
(Sampath et al., 1996). The challenge here is to analyse the observ-
able events to infer what unobservable event or events drove the
system into an abnormal state. This kind of systems is outside the
scope of our current work. In Yan and Dague (2007), Yan et al.
(2005), the authors suggest to re-use the body of knowledge about
error detection in industrial discrete event systems. They discuss
runtime error detection of orchestrated web services. A salient fea-
ture of this proposal is that, similarly to Sampath et al. (1996),  the
authors assume that failure events are not observable. The gran-
ularity of execution in this approach is at the process level. Our

Fig. 5. Syntactic sugar for rules.

Rafael Z. Frantz
Marcador de texto
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criticism against this proposal is that it focuses only on orchestrated
web services and the process-based execution model.

In Frantz et al. (2011),  we presented a preliminary proposal to
detect errors in the context of EAI solutions. Its complexity to detect
errors was O(b + c h), where b and c denote variables to which there
is an upper bound as long as the structure of the solutions being
monitored do not change, and h denotes the average size of a his-
tory database that keeps record of the messages that are exchanged
in these solutions. Note that h increases monotonically with respect
to time, which implies that after a point in time, the complexity of
the algorithm is dominated by h, i.e., the algorithm behaves linearly
with respect to the size of the history database. The practical impli-
cation was that we needed to put an upper bound on h, i.e., we  only
considered events within a time window. Our current solution does
not depend at all on any history databases, which implies that it is
far more scalable.

3. The Meta-information database

In this section, we report on the meta-data we use to repre-
sent the information our proposal requires about the artefacts it
monitors, i.e., solutions and processes. This meta-data are stored
in the Meta-information database. We  do not provide details on how
this database is managed since this is a typical information system
with an interface that can be used by administrators to register,
unregister, or list information about the solutions being monitored.
Instead, we focus on the meta-data it stores, whose model is pre-
sented in Fig. 3, and provide a few hints on our implementation.

A solution must be composed of at least one process, and every
process must have at least two ports with different directions
(Direction::ENTRY or Direction::EXIT). Every artefact, port, or rule has
a name that identifies it uniquely. In addition, artefacts have a time
out, which denotes the maximum time they can consume to pro-
cess a set of correlated messages, and a set of rules that helps verify
the correlations in which they are involved.

Rules are central to our proposal. Fig. 4 presents the syntax we
use to write them textually. They are composed of two groups of
atoms that are separated by an arrow. Atoms at the left hand side
declare the input of the rule, whereas atoms at the right hand side
declare the output of the rule, i.e., if the number of messages at
the left hand side atoms occurs, then it is expected the specified
number of messages in the atoms at the right hand side. Each atom
is of the following form: P[min..max], where P refers to a port name,
and min and max are natural numbers that represent the minimum
and the maximum number of messages that are allowed at port P
in a given correlation (min ≤ max). For the sake of brevity, we use
the common syntactic sugar depicted in Fig. 5.

Fig. 6 presents a few rules for the artefacts in the sample solu-
tions we introduced in Fig. 1. For instance, Rule R1 is associated to
process Prc1 and involves entry port P1 and exit port P2; it states
that a given correlation is valid if there is one message at port P1
and zero or one correlated message at port P2. Similarly, Rule R6 is
associated to Solution2; it states that a given correlation is valid if
there is one message at port P5, one correlated message at port P6,
and one or more correlated messages at port P4.

4. The Event Handler

Fig. 7 depicts the model we have devised for the Event Handler.
Roughly speaking, it handles events that inform about a port read-
ing or writing a message, either successfully or unsuccessfully. The
events are used to build a graph that is maintained incrementally in
the Work Graph database. This graph records information about the
messages being exchanged in an EAI solution and their parent–child
relationships, i.e., which messages originate from which ones, for

example, after executing split and merge operations. In addition,
the Event Handler updates the Work Queue database in order to
schedule the activation of Error Detector.

Events can be of type Reception, which are notified from ports
that read data from an application (either successfully or unsuc-
cessfully) and ports that fail to read data from communication
channels, Shipment, which are notified from ports that write infor-
mation (either successfully or unsuccessfully), and Transfer, which
are notified from ports that succeed to read data. Every event has
a target binding and zero, one, or more source bindings. We use
this term to refer to the data contained in an event, namely: the
instant when the event happened, the name of the port, the iden-
tifier of the message read or written, and a status, which can be
either Status::OK to mean that no problem was  detected, Status::RE
to mean that there was  a read error, or Status::WE to mean that
there was  a write error. Recall that the only assumption we  make
is that the clock resolution of the monitor is enough to distinguish
between every two  messages that are read or written consecutively.
Thus, we assume that no confusion regarding the same message
being read from or written to the same port may  happen.

The Event Handler is implemented as a single method that han-
dles all types of events. The algorithm for this method is presented
in Fig. 8. It gets an event e as input and proceeds as follows: it first
finds the process to which the event refers and the solutions to
which this process belongs. Then, it computes the earliest time at
which the Error Detector should analyse the target binding, which
is the instant when the message in the target binding was read or
written plus the maximum time out involved; this is a safe dead-
line that guarantees that every artefact should have enough time to
process the corresponding correlation. Note that the time we calcu-
late (notBefore) is just a hint to be interpreted as “the Error Detector
should not analyse that binding before this time”; obviously, the
sooner the binding is analysed after this time has passed, the bet-
ter, but it is not a real-time requirement. The algorithm then fetches
both the Work Graph and the Work Queue instances and adds the tar-
get binding to them both; then, it iterates over the source bindings,
if any, and adds then to the Work Graph together with an edge to
link them to the target binding.

Fig. 9 illustrates a graph that results from executing the previ-
ous algorithm on a series of bindings regarding the sample system
in Fig. 1. Ellipses denote bindings and arrows denote edges that
connect parent bindings to their corresponding child bindings. For
instance, n1 is the parent binding of n4, and the latter is the parent
of n6, which is in turn the parent of n8. Inside each binding we rep-
resent the instant, the port name, the message id, and the status,
respectively. A snapshot of the Work Queue is also presented in this
figure.

5. The Error Detector

The model of the Error Detector is presented in Fig. 10,  and the
algorithm to detect errors is presented in Fig. 11.

The Error Detector executes a never-ending loop in which it
fetches entries from the Work Queue,  finds the correlations in which
the corresponding bindings are involved, and then verifies them to
find possible errors. Recall that each binding in the Work Queue is
scheduled to be processed not before a given time; this implies
that this algorithm may  need to block for some time when the ear-
liest binding is scheduled to be analysed after the current moment.
After a correlation is verified, its bindings are removed from the
Work Queue,  since analysing them again would not result in new
correlations.

In the following subsections, we discuss the sub-algorithms on
which the Error Detector relies. In Section 5.1,  we present our algo-
rithm to find the correlation in which a binding is involved; we
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Fig. 6. Sample rules.
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Fig. 7. Model of the Event Handler.

Fig. 8. Algorithm to handle events.
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Fig. 9. Sample work graph.

verifyCorrelation( in   c : Correlation)  : void
findFailingRules( in  c : Correlation,  in  a : Artefact) : Set<Name>
findSubCorrelation( in   c : Correlation,  in  a : Artefact)  : Correlation
findArtefactsInvolved( in  c : Correlation) : Set<Artefact>
findCorrelation( in  b : Binding) : Correlation
detectErrors() : void

<<utility>>
ErrorDetector

Graph

<<utility>>
Meta-Information

Correlation
artefactName  : Name

Notification

update s

reads

creates

{disjoint, complete }

<<singleton>>
WorkGraph

remove(b : Binding) : void
findMin() : Binding

<<singleton> >
WorkQueu e

read s

takes

correlation
1

Fig. 10. Model of Error Detector.

Fig. 11. Algorithm to detect errors.

then report on a number of ancillary sub-algorithms, namely: an
algorithm to find the artefacts that are involved in a given corre-
lation, cf. Section 5.2,  an algorithm to find the sub-correlation that
corresponds to a given artefact, cf. Section 5.3;  and an algorithm

to  find the subset of sub-rules according to which a correlation is
invalid, cf. Section 5.4; the previous algorithms are used to imple-
ment the algorithm to verify a correlation, which we  present in
Section 5.5.

5.1. Finding correlations

A correlation is represented as a graph that has a single con-
nected component that represents a subset of messages that
are correlated to each other (Hopcroft and Tarjan, 1973), cf.
Fig. 10.

The Error Detector provides a method called findCorrelation whose
algorithm is presented in Fig. 12.  It gets a binding as input and calcu-
lates the correlation in which it is involved. The main loop navigates
from the binding that is passed as a parameter to all of the bind-
ings that are reachable from it, either directly or transitively, and
to all of the bindings from which it can be reached, either directly
or transitively. In other words, it implements a breadth-first search
to calculate the expansion of a node in a graph (Gross and Yellen,
2003).
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Fig. 12. Algorithm to find correlations.

Fig. 13. Sample correlation.

For instance, if algorithm findCorrelation is invoked on bindings
n1, n4, n6, or n8 in Fig. 9, it then would return the correlation in
Fig. 13.

5.2. Finding the artefacts involved in a correlation

A correlation may  involve several artefacts. This situation is very
common since typical EAI solutions involve several processes, some
of which may  be shared. This implies that an event that is reported
from a port may  result in a binding that actually involves several
artefacts.

The Error Detector provides a method called findArtefactsInvolved
whose algorithm is presented in Fig. 14.  It gets a correlation as input
and returns a set of artefacts. The main loop of this method iter-
ates over the set of bindings in the correlation that is passed as a

parameter. In each iteration, it firsts finds the processes that own
the ports from which the corresponding events were reported, and
the solutions in which they are involved. The loop simply adds all of
these artefacts to the result, and then returns the whole collection.

For instance, if we invoke method findArtefactsInvolved on the
correlation in Fig. 13,  the following artefacts involved would be
returned: Solution1, Solution2, Prc1, and Prc2, cf. Fig. 16.

5.3. Finding sub-correlations

By sub-correlation, we  refer to a subset of a correlation in
which the ports involved belong to a given artefact. Note that there
is not any structural differences between correlations and sub-
correlations: they both are represented as graphs. In the sequel, we
write (sub)correlation wherever we  wish to emphasise that there
is a single artefact from which all of the events represented in a
correlation were reported.

The Error Detector provides a method called findSubCorrelation
whose algorithm is presented in Fig. 15.  It gets a correlation and an
artefact as input and returns a (sub)correlation. The algorithm first
finds which ports belong to the artefact, and then finds all of the
bindings in the correlation whose ports are in the previous set; to
create the resulting sub-correlation we just need to find the whole
collection of edges that connect the previous bindings.

For instance, Fig. 16 shows all of the sub-correlations we can find
in the correlation in Fig. 13.  The dotted boxes indicate the boundary
of each sub-correlation.

5.4. Finding failing rules

The Error Detector provides a method called findFailingRules that
takes a (sub)correlation and an artefact as input and returns a set of
names that denote the rules associated with the artefact that need
to be satisfied to declare the correlation valid.

The algorithm to the findFailingRules method is presented in
Fig. 17.  It iterates through the collection of rules that are asso-
ciated with a given artefact, and then through their atoms. The
algorithm basically counts the number of bindings in the given
(sub)correlation that correspond to events that were reported from
the ports to which each atom refers; if this count is not within the
limits that the atom specifies, then the corresponding rule does not
validate the correlation and can thus be added to the result of the
algorithm.

Figs. 18 and 19 illustrate the two situations in which a corre-
lation is considered invalid due to a failing rule. The left side of
the figures represents the (sub)correlation being analysed, whereas
the right side represents the times at which events were reported;
now represents the instant at which the analysis is performed, and
deadline the latest time at which a correlation is expected to be
produced (see more on this below); not before represents the time
not before which the initial binding in a correlation can be ana-
lysed. Consider, for instance, rule R1 for artefact Solution1, which
was  introduced in Fig. 6; it states that zero or one correlated bind-
ings are expected at port P2 for each binding at port P1. Note that
in the (sub)correlation in Fig. 18 there are two correlated bind-
ings at port P2, namely n4 and n20, which causes rule R1 to fail
due to excess of bindings. Contrarily, in Fig. 19 the (sub)correlation
contains less bindings than expected.

5.5. Verifying correlations

Verifying (sub)correlations is one of the central tasks of the
Error Detector.  A (sub)correlation can be either valid or invalid. It
is valid if all of its bindings have status Status::OK, at least one
rule does not fail to validate it, and all of the messages to which
it refers where read or written within a given deadline; otherwise,
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Fig. 14. Algorithm to find the artefacts involved in a correlation.

Fig. 15. Algorithm to find sub-correlations.

Fig. 16. Artefacts involved in a correlation.

it is invalid. The deadline refers to the time when the first message
in a correlation was read or written plus the time out of the corre-
sponding artefact. Recall that each artefact is associated with a time
out that represents the maximum time it is expected to produce a
correlation, cf. Fig. 3.

The Error Detector provides a method called verifyCorrelation to
perform this task. The algorithm to this method is presented in
Fig. 20.  It takes a correlation as input and if the current corre-
lation is invalid, then it produces a notification. The algorithm
first calculates the artefacts involved in the correlation and iter-
ates through them to find their corresponding (sub)correlations;

each (sub)correlation is checked for validity according to the
definition in the previous paragraph. (Sub)correlations that are
found invalid are transformed into notifications that are sent
to the following fault-tolerance stage so that they can be
diagnosed.

6. Complexity analysis

In this section, we analyse our proposal and characterise its
complexity. It can deal with an arbitrary number of processes and
solutions, but we assume that there is a sensible upper bound; this
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Fig. 17. Algorithm to find failing rules.

Fig. 18. A correlation that does not satisfy a rule due to excess of bindings.

Fig. 19. Sub-correlation which causes a rule to fail due to lack of bindings.

does not amount to loss of generality since the number of artefacts
of which a company’s software ecosystem is composed must be
necessarily finite.

Table 2 summarises the notation we use in this section. Our
analysis proves that our proposal is computationally tractable
since handling events runs in O(1) time and detecting errors runs
in O(log n) time for a given ecosystem. This makes the proposal
appealing from a theoretical point of view since it is logarithmic
on the size of the Work Queue database, which is expected not
to be monotonically increasing or decreasing, but to grow and
shrink as time progresses. Our experiments support this conjecture,
cf. Section 7.

Table 2
Notation used in our complexity analysis.

Notation Meaning

s Maximum number of solutions to which a process can belong
u  Maximum number of source bindings in an event
b  Maximum number of bindings in a correlation
c  Maximum number of child bindings of a given binding
p Maximum number of parent bindings of a given binding
r  Maximum number of rules associated with an artefact
t  Maximum number of atoms in a rule
a Maximum number of artefacts involved in a correlation
n  Number of entries in the Work Queue
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Fig. 20. Algorithm to verify correlations.

6.1. On the implementation

The Meta-information database is a simple set of data. None of
our queries involve joining information from other databases. In
our prototype we use a hash function to index the entries of the
Meta-information database, and we have implemented maps from
port names onto processes, processes onto solutions, and so on.
The space required by this design is proportional to the number of
artefacts, ports, and rules. As a conclusion, it is possible to retrieve
information from the Meta-information database in O(1) time.

The Work Queue database relies on a Brodal’s priority queue
(Brodal, 1996), which allows to insert entries or retrieve the next to
be analysed in O(1) time, whereas removing an entry takes O(log n)
time, where n denotes the size of the queue.

6.2. Handling events

We  first report on the complexity of the algorithm to handle
events, and prove that it is computationally tractable because it
runs in constant time for a given ecosystem.

Theorem 1. Algorithm handle in Fig. 8 terminates in O(s + u) time.

Proof. Handling an event involves finding a process using a port
name is and the solutions to which this process belongs. Finding this
information can be accomplished in O(1) time in our implementa-
tion (lines 2 and 4). The computation of the maximum time out can
be accomplished in O(s) time (line 6). Getting the Work Graph and
the Work Queue instances can be accomplished in O(1) time (lines 7
and 8). Lines 9 and 10 add the target binding to the Work Graph
and to the Work Queue databases, respectively, which can also be
accomplished in O(1) time. The loop in lines 11–14 iterates u times
at most. Lines 12 and 13 can be implemented in O(1) time since
they just create an object and add it to a set. As a conclusion, the
algorithm handle terminates in O(s + u) time. �

Corollary 1. In a given ecosystem, there must be an upper bound
to s + u because the number of solutions in a company’s ecosystem is
finite, which in turn implies that there is an upper bound to the num-
ber of source bindings in an event. As a conclusion algorithm handle
terminates in O(1) time in a given ecosystem.

6.3. Detecting errors

We  now analyse the complexity of the algorithm to detect
errors. Note that this algorithm does not terminate, since it is a
never ending loop. In this case, the complexity refers to the com-
plexity of an iteration of this loop.

Theorem 2. Every iteration of Algorithm detectErrors in Fig. 11 ter-
minates in O(b (1 + c + p + a + log n) + a r t) time.

Proof. In each iteration, the algorithm first fetches an entry
from the Work Queue database, which is accomplished in O(1)
time in our implementation, cf. Section 3 (line 4). According
to Theorems 3 and 4 below, lines 5 and 6 run in O(b (c + p)) and
O(b + a (b + r t)) time, respectively. The loop in lines 7–9 iterates b
times at most; in each iteration, line 8 removes a binding from the
Work Queue database, which is accomplished in O(log n) time. As a
conclusion, each iteration of Algorithm detectErrors terminates in
O(1 + b (c + p) + b + a (b + r t) + b log n) = O(b (1 + c + p + a + log n) + a r t))
time. �

Corollary 2. In a given ecosystem, b, c, p, a, r, and t are constants
because there is an upper limit to the number of artefacts a com-
pany runs. As a conclusion, each iteration of Algorithm detectErrors
terminates in O(log n) time in a given ecosystem.

Next, we  analyse the complexity of Algorithm findCorrelation.

Theorem 3. Algorithm findCorrelation in Fig. 12 terminates in
O(b (c + p)) time.

Proof. The loop in lines 6–21 iterates b times at most. In each itera-
tion, the algorithm executes two inner loops. The first one, iterates
c times at most and the operations inside terminate in O(1) time
since they just involve creating objects and adding them to a set.
Similarly, the second one iterates p times at most and the opera-
tions inside also terminate in O(1) time. As a conclusion, Algorithm
findCorrelation terminates in O(b (c + p)) time. �

Now, we analyse the complexity of Algorithm verifyCorrelation.

Theorem 4. Algorithm verifyCorrelation in Fig. 20 terminates in
O(b + a (b + r t)) time.
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Proof. The algorithm first calculates the number of artefacts
involved in a given correlation, which terminates in O(b) time
according to Theorem 5 below (line 2). It then executes a loop
that iterates a maximum of a times (lines 3–16). In each itera-
tion, it first needs to find a number of sub-correlations, which
terminates in O(b) time according to Theorem 6 (line 4); then, it cal-
culates the status, the earliest instant, and the latest instant, which
requires iterating a maximum of b times (lines 5–7); calculating
the deadline can be accomplished in O(1) time (line 8), but deter-
mining if a sub-correlation is valid involves executing algorithm
findFailingRules, which runs in O(r t) time according to Theorem 7
below. Lines 12–15 run in O(1) time since they just require cre-
ating an object and sending it to another stage. As a conclusion,
Algorithm verifyCorrelation terminates in O(b + a (b + r t)) time. �

We  analyse the complexity of the three sub-algorithms on which
verifyCorrelation relies in the following theorems.

Theorem 5. Algorithm findArtefactsInvolved in Fig. 14 terminates in
O(b) time.

Proof. The loop at lines 3–9 iterates b times at most. Lines 4–8 can
be implemented in O(1) time, cf. Section 3. As a conclusion, finding
the artefacts involved in a given correlation terminates in O(b) time.
�

Theorem 6. Algorithm findSubCorrelation in Fig. 15 terminates in
O(b) time.

Proof. The algorithm first finds the ports that belong to a given
artefact, which can be accomplished in O(1) time (line 2). It then
finds the bindings in a correlation whose port belongs to the pre-
vious set, which requires iterating through the bindings in the
correlation (line 3); this requires O(b) time in the worst case. Finally,
the algorithm finds the edges that connect the previous bindings,
which also requires O(b) time (line 5), and creates an object in O(1)
time (line 6). As a conclusion, Algorithm findSubCorrelation termi-
nates in O(1 + 2 b) = O(b) time. �

Theorem 7. Algorithm findFailingRules in Fig. 17 terminates in O(r t)
time.

Proof. The loop at lines 3–10 iterates a maximum of r times, and
the inner loop at lines 4–9 iterates t times at most. As a conclusion,
Algorithm findFailingRules runs in O(r t) time. �

7. Experiments

We have conducted a series of experiments to evaluate our pro-
posal in the laboratory. We  implemented them on top of a discrete
event simulation layer that allowed us to run the experiments in
simulated time. We  ran the experiments on a machine equipped
with a four-core Intel Xeon processor running at 3.00 GHz, 16 GB of
RAM, Windows Server 2008 64-bit, and the 1.6.0 version of the Java
runtime Environment. In the following sections, we first provide
additional details on the patterns with which we  have experi-
mented, and then on the experimentation parameters; later, we
draw our conclusions about the experimental results.

7.1. Experimentation patterns

We  set up six well-known patterns that lay at the core of most
real-world EAI solutions, namely: pipeline, dispatcher, merger,
request-reply, splitter, and aggregator (Hohpe and Woolf, 2003).
In the sequel, we use term producer to refer to the process or
application that produces the messages that are fed into a pat-
tern; similarly, we use term consumer to refer to the process or
application that consumes the messages that the pattern produces.

Furthermore, we use variable n to denote the total number of pro-
cesses involved in each pattern.

In the pipeline pattern, messages flow from a producer to a con-
sumer in sequence: the messages a process produces are consumed
by the next process in the pipeline, cf. Fig. 21.  There is a single pro-
ducer and a single consumer, i.e., changes to n have an impact on the
number of intermediate processes only. In other words, 2n events
are reported to the monitor per message the producer feeds into
the pattern. The number of events depends on the number of ports
a message goes through in the pattern, each port notifies an event.

In the dispatcher pattern, there is a process that routes the mes-
sages it produces to only a specific consumer, cf. Fig. 22. Note that
changes to n have an effect on the number of consumers, not on the
number of producers, which is one. That is, 4 events are reported
to the monitor per message the producer feeds into the pattern.

The goal of the merger pattern is to gather messages from several
producers and route them to a unique consumer, cf. Fig. 23.  Changes
to n have an impact on the number of producers, not on the number
of consumers, which is one. Note that 4 events are reported to the
monitor per message a producer feeds into the pattern.

In the request-reply pattern, there are a number of processes
that require a service from another process, cf. Fig. 24.  Changes to n
have an effect on the number of client processes that send requests
to the single server process. Every message fed into the pattern
results in 6 events that are reported to the monitor.

The splitter pattern has a process that splits the messages it
receives from a producer into two  or more messages, each of which
carries a piece of the original message to a different consumer,
cf. Fig. 25.  Note that changes to n have an effect on the number
of consumers, not on the number of producers, which is one. That
is, 2(n  − 1) + n events are reported to the monitor per message the
producer feeds into the pattern.

In the aggregator pattern, there is a process that aggregates mes-
sages from different producers into a single message, which is made
available to a unique consumer, cf. Fig. 26.  Changes to n have an
impact on the number of producers, not on the number of con-
sumers, which is one. Note that 2(n  − 1) + n events are reported to
the monitor per message delivered by the pattern.

7.2. Experimentation parameters and variables

Each experiment consisted of running an instance of a pattern
with a fixed number of processes (n) and a fixed mean message
production rate (t); we  varied n in the range 3–15 processes, and t
in the range 100–1000 ms,  with increments of 100 ms. In total, we
ran 130 experiments for each pattern to draw our conclusions.

We sampled the production rate from a negative exponential
with parameter t. Similarly, we  sampled both the time to transmit
messages and the time each process took to produce a correlation
from a negative exponential with parameter 250 ms;  the time out
of every artefact was set to 5 min. We  carried out additional exper-
iments with other values for these parameters and found that they
did not have an impact on the conclusions. Each experiment was
run for a duration of 24 h.

In each experiment, we measured the following variables: the
time to handle an event (THE), the size of the Work Queue (QS), the
time each binding spent in the Work Queue after it was  scheduled
to be analysed (TSQ), and the time the detectError algorithm took
to perform each iteration of its main loop (TDE). (In the sequel, we
report on the averaged values of these variables after discarding less
than 0.5% outliers using the well-known Chevischev inequality.)

7.3. Experimentation results

Figs. 27–32 present the results we have gathered regarding vari-
ables THE, QS,  TSQ, and TDE for each pattern.
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Fig. 21. Pipeline pattern.

Fig. 22. Dispatcher pattern.

Fig. 23. Merger pattern.

Fig. 24. Request-reply pattern.

Fig. 25. Splitter pattern.
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Fig. 26. Aggregator pattern.

Fig. 27. Results of the experiments for the pipeline pattern.

Fig. 28. Results of the experiments for the dispatcher pattern.
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Fig. 29. Results of the experiments for the merger pattern.

The time to handle events (THE) remains low in all of the exper-
iments, and the changes to n or t do not seem to have an impact on
it. According to Theorem 1, the time to handle an event depends on
the maximum number of solutions to which a process can belong
and on the maximum number of source bindings in an event, which
are fixed constants for a given ecosystem. In Corollary 1, we  argued
that there is an upper bound to these figures, and we concluded
that the time to handle events might be considered O(1) in prac-
tice. The experiments corroborate this idea, since THE seems to be
totally independent from n or t in practice.

The size of the Work Queue (QS) is important because it has an
impact on the memory footprint (the larger the queue, the more
memory is consumed) and on the time required to complete an iter-
ation of Algorithm detectErrors (recall that this algorithm removes
all of the bindings that are correlated with the binding being

analysed from the Work Queue,  which requires O(|QS|) time). It
depends on the number of events reported in each experiment. In
most cases, it behaves linearly with respect to the number of pro-
cesses with a slope that depends on the mean message production
rate (it decreases as this parameter increases). The only exception
is the dispatcher pattern, in which QS seems to be a constant that
depends on the mean message production rate only. The reason
for this behaviour is that changes to n do not have an impact on
the number of events that are reported. Note that every new pro-
cess in the pipeline pattern contributes with 2 additional events,
new processes in the merger pattern contribute with 4 additional
events, and new processes in the request-reply pattern contribute
with 6 additional events. Contrarily, adding a new process to the
dispatcher pattern does not contribute with new events. The reason
is that adding a new consumer implies that there is a new process

Fig. 30. Results of the experiments for the request-reply pattern.
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Fig. 31. Results of the experiments for the splitter pattern.

Fig. 32. Results of the experiments for the aggregator pattern.

that competes for the messages the producer feeds into the pattern;
in other words, the events are reported from different sources, but
the total number of events remains constant.

Variable TSQ is the most relevant to draw our conclusions.
Recall that this variable measures the time a binding spends in the
Work Queue after it is scheduled to be analysed by the Error Detector.
The length of the time spent in the queue does not affect the cor-
rect functionality of the monitor. However, generally speaking, the
less time, the better since this implies that errors shall be detected,
diagnosed, and recovered sooner. Our experiments prove that TSQ
seems to behave logarithmically in the number of processes in all
cases, except for the dispatcher pattern, in which it behaves con-
stantly. This implies that a change in the number of processes does
not usually have a significant impact on the time bindings spend
in the Work Queue.  Neither does the mean message production rate
seem to have a negative impact on this variable.

Regarding the time to detect errors (TDE), we proved
that it behaves logarithmically in the size of the Work Queue,
cf. Theorem 2. This theoretical result is promising as long as the size
of the Work Queue does not increase monotonically, as we conjec-
tured in Section 6. Our results support this conjecture since variable
TDE ranges in the order of seconds in all of our experiments, even
in loaded scenarios with 15 processes and a message production
rate of 100 ms.

8. Conclusions

In this article, we  have addressed the problem of detecting errors
in EAI solutions. We  have reported on a monitor that receives mon-
itoring events with information about the messages that are read
or written at each port. These events are used to build a graph that
keeps record of the messages exchanged within the EAI solutions
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being monitored. We  have designed and implemented the algo-
rithms to analyse this graph and detect potential errors introduced
when messages are read and written by ports. Our failure semantics
includes communication, structural and deadline errors.

In our analysis of the related work we have found out that the
majority of the proposals in the literature focus on EAI solutions
that are specified as orchestrations and build on the process-based
execution model. There are a few exceptions that take choreogra-
phies or the task-based execution model into account, but they have
important limitations that hinder their applicability in practice.

We have analysed our proposal from a theoretical point of view
and our conclusion is that it is computationally tractable. We  have
also carried out a series of experiments that proof our proposal can
be used in settings in which the workload is high.
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