
Proposing a Tool to Monitor Smart Contract Execution in
Integration Processes*

Mailson Teles-Borges1 , Rafael Z. Frantz1 , José Bocanegra2 ,
Sandro Sawicki1 , Fabricia Roos-Frantz1

1Unijuı́ University – Ijuı́, RS – Brazil

mailson.borges@sou.unijui.edu.br

{rzfrantz, sawicki, frfrantz}@unijui.edu.br
2Universidad Distrital Francisco José de Caldas – Bogotá – Colombia

jjbocanegrag@udistrital.edu.co

Abstract. Smart cities take advantage of digital services to enhance citizens’ ex-
periences. Integration processes facilitate interactions between these services,
providing or improving functionalities. The integration can operate under spe-
cific restrictions, which can be represented through smart contracts deployed in
a blockchain. Monitoring systems track interactions between integration pro-
cesses and digital services by recording events from communication ports. In
this paper, we argue that current monitoring tools lack the ability to observe
these ports or invoke smart contracts. We propose a monitoring system to track
integration processes, capture port-reported events, and invoke smart contracts
on a blockchain platform.

1. Introduction
According to recent research, it is estimated that by the year 2050, urban areas

will be home to over two-thirds of the global population [Fabolude et al. 2025]. Urban
migration, population growth, and the emergence of megacities (cities with over 10 mil-
lion inhabitants) have boosted investment, research, and development in smart cities. Al-
though there is no agreed definition [Serrano 2018], the concept of smart cities, which
integrates physical infrastructure with social, environmental, and economic factors, is be-
coming widely accepted [Zou et al. 2019, Addas 2023]. Information and Communication
Technology (ICT) plays a pivotal role in smart cities by providing software systems that
deliver digital services to their citizens; however, these systems require data and function-
ality spread across the city’s software ecosystem during their operation. The smart city
ecosystem includes a diverse range of software solutions operating in both private and
public sectors, developed with different technologies and data models.

Integration processes can be developed to enhance existing digital services by
combining data and functionality from different systems. For instance, a shop could
automatically pay a customer’s parking ticket if they spend over a certain amount on
their products. Alternatively, a municipality could book a taxi for an elderly person to
attend an appointment at the hospital for medical examinations. Integration processes

*This research is partially funded by the Co-ordination for the Brazilian Improvement of Higher Educa-
tion Personnel (CAPES) and the Brazilian National Council for Scientific and Technological Development
(CNPq) under the following project grants 311011/2022-5, 309425/2023-9, 402915/2023-2, and by the
Universidad Distrital Francisco José de Caldas under the grant PR2-2025.

https://orcid.org/0000-0001-7674-854X
https://orcid.org/0000-0003-3740-7560
https://orcid.org/0000-0002-8342-7346
https://orcid.org/0000-0002-7960-0775
https://orcid.org/0000-0001-9514-6560


are pieces of software that enable data and functionality sharing amongst digital ser-
vices. These processes are developed and executed using integration platforms, which
are specialised software tools designed to create, implement, test, and run integration pro-
cesses [Rosa-Sequeira et al. 2018]. In general terms, an integration process consists of
communication ports and an internal workflow of tasks. Ports are implementations of
communication protocols (e.g., HTTP, FTP, SSH, JDBC, etc.) that abstract the interac-
tion with digital services. Conversely, tasks execute atomic operations (e.g., filter, merge,
split, transform, copy, aggregate, route, etc.) on the data input encapsulated in messages
that flow through the integration process.

The interaction of communication ports with the integrated digital services must
comply with certain restrictions, such as the maximum number of requests allowed per
unit of time, the maximum permissible response time, or the maximum amount of data
transmitted per request. These restrictions can be expressed through contract clauses and
may be regulated by smart contracts [Dornelles et al. 2022]. Smart contracts are self-
executing software programs that enforce contractual terms without human intervention
and contain programmable logic that defines the rules and conditions of the agreement be-
tween the parties involved [Zou et al. 2019]. They are typically written in cross-domain
languages, such as Solidity, or even in general-purpose languages, such as Go, and exe-
cuted on a blockchain platform, where they are published and made immutable.

The execution of a smart contract regulating interactions between an integration
process and a digital service requires data from each event reported by the port. Therefore,
a monitoring system must not only observe and capture these reported events from an in-
tegration process but also invoke the corresponding smart contract to check for contract
violations. Each event triggers the contract’s execution. Unfortunately, existing monitor-
ing tools found in the literature focus on monitoring the integration process internal tasks
execution or monitoring hardware resources (e.g., memory consumption, disk usage, net-
work consumption, etc.). The lack of tools capable of invoking smart contracts using
event data from ports represents a research and technological challenge since it requires
configuring many tools and manual coding.

This paper discusses our proposal for a monitoring system. This system observes
integration processes, captures events reported by communication ports, and invokes the
corresponding smart contract deployed on a blockchain. Currently, we are evaluating
smart contracts written for the Ethereum and Hyperledger Fabric platforms, but it is pos-
sible to extend support to others. The system is event-based, and its architecture consists
of internal components (i.e. queues and event handlers) that asynchronously process every
event received. Application Programming Interfaces (API) enable the monitoring system
to communicate and interact with the integrated digital services. This paper is organised
as follows: Section 2 presents tools for monitoring and discusses relevant works in the
field; Section 3 outlines the design and function of the monitoring system’s components;
Section 4 presents the current stage of the Monitoring System’s development; and Sec-
tion 5 concludes and outlines ongoing and future work related to our proposal.

2. Related Work
There are tools available for the integration context, but they lack support for

smart contract execution or require complex configuration. Open-source solutions, such
as those provided by Grafana Labs [Grafana 2025] or Elastic [Elastic 2025], either re-
quire instrumentation of the integrated digital services or the configuration of multiple
specialised tools to work together. For instance, if Grafana technologies are used, it is



necessary to configure Promtail, Loki, and Grafana Dashboard. Promtail is an agent for
collecting logs in software applications, Loki is a storage system, and Grafana Dash-
board is a user interface for visualising metrics. In contrast, cloud-based solutions (e.g.,
Datadog [Datadog 2025] or Dynatrace [Dynatrace 2025]) may significantly reduce the
configuration process. However, they incur high costs, as their business model is based
on a pay-as-you-go approach.

The works available in the current literature do not address monitoring in
the smart contract context. Usually, they propose solutions either for cloud-based
systems [Otero et al. 2024, Tundo et al. 2019], where monitoring involves tracking re-
source utilization, network traffic, application performance, or hardware monitor-
ing [Bautista et al. 2022, Sukhija and Bautista 2019]. Another approach is to implement
machine learning algorithms to enhance monitoring capabilities, such as predicting or
adding adaptive identification of critical failures [Klymash et al. 2024], or even filtering
alerts that pottencially may generate unecessary notifications [Taheri et al. 2024]. In con-
clusion, although there are some works addressing monitoring in the software develop-
ment field, none address monitoring in the smart contract context domain.

3. Envisioned Solution
Traditionally, smart contracts enforce business rules within a business process.

In our context, enforcement would turn the integration process port into a type of filter,
evaluating each received event immediately and preventing the operation from being ex-
ecuted if any clause is breached. Conversely, in the monitoring approach, the execution
of the smart contract and the integration process are independent. As a result, if any
clauses are breached, the integration process has already been executed, necessitating a
compensatory action. Although, at first glance, the enforcement approach may seem the
most suitable option, it introduces challenges such as processing overhead and increased
latency, as the operation must await its completion—an issue that does not arise in the
monitoring approach. Our approach is based on monitoring, as it aligns more naturally
with event-driven and asynchronous workflows, avoiding the strict synchronous depen-
dencies imposed by enforcement mechanisms.

The monitoring system is accessed through APIs that facilitate the configuration
of the system and enable external applications to access information regarding ongoing
monitoring activities. The design of the proposed system is illustrated in Figure 1. Inter-
nally, the system consists of six primary components: the Inbound Events Queue, Event
Handler, Smart Contract Execution Queue, Contract Invoker, Smart Contract Outbound
Queue, and Event Updater. These components store, validate, and manipulate events
received from the integration processes. The adopted design is event-based, meaning
that component processing is triggered whenever events are present in the queues. This
approach ensures that the events stored in the queues are processed according to the avail-
ability of computing resources. In our proposal, the system also includes four repositories:
three for internal configurations and another for storing and querying received events.

3.1. API
The blockchain platforms (e.g., Ethereum, Hyperledger Fabric) can be configured

using API 1, which the monitor will use to execute smart contracts registered on these
platforms. Smart contracts associated with each integration platform and their metadata
can be registered via API 2, enabling their subsequent activation on the corresponding
blockchain platform. Activating a contract requires metadata, such as the contract’s name,



clauses, clauses arguments, and the blockchain on which the contract will be executed.
The interface defined by API 3 enables the recording of events reported by the integration
processes. These events must contain: a header with data that allows for the authentica-
tion and authorisation of their processing; a body with a payload containing a dictionary
that informs the id of the contract, the clauses registered in APIs 1 and 2, and the ar-
guments for these clauses, as shown in Listing 1. The interface defined by API 4 allows
for the configuration of parameters necessary for the correct functioning of the monitor.
Parameters include both base registration data (e.g., users, user groups) and operating pa-
rameters (e.g., permission and access levels, event retry policy). The interface defined by
API 5 will serve as the monitoring system’s output port, allowing queries regarding the
status and result of smart contract executions.

push

pollpush

poll

Smart Contract 

Configuration
Event 

Updater

Inbound Events Queue

Event 

Handler

Smart Contract

Execution Queue

Contract 

Invoker

Smart Contract 

Outbound Queue

Blockchain 

Configuration

poll

storeload

Monitoring

System
Smart 

Contract

 Execution

Execution 

Response

Blockchain

Platform A

Smart

Contracts

Smart

Contracts

Blockchain

Platform B

load

update

API 5

Retry Policy

load

API 4

API 2

API 1

API 3

B

notify A

API 3

A
A B B

B
B

Integration Platform A

Integration

Process

Figure 1. Monitoring System Architecture.

1 { "contract id": { "clause id [1]": { "arg1": "value 1", "arg2": "value 2" }}

Listing 1. Inbound Event Model.

3.2. Event Handler

The Event Handler executes polling operations on the Inbound Events Queue,
asynchronously reading each received event. Upon initiating event processing, this com-
ponent consults the information configured through APIs 1 and 2. Initially, validation is
performed to check whether the data reported in the event payload aligns with the config-
urations of the corresponding smart contract. If an irregularity is detected, an exception is
generated and associated with the event ID. Exceptions are categorised into two types: the
Structure Integrity Category and the Execution Category (see Table 1). The Event Handler
only handles Structure Integrity exceptions, which relate to differences between the event
payload and the data structure expected by the Monitoring System. The Contract Invoker
handles Execution-type exceptions, which relate to issues encountered during smart con-
tract execution. Following this, the event can proceed through two different channels. If



an exception occurs, its processing is terminated, and it is directed to the event reposito-
ries. If no inconsistency is found, the event, along with the smart contract and blockchain
configuration data, is redirected to the Smart Contract Execution Queue.

Category Exception Description

Structure Integrity

ContractNotFoundException Contract ID not found.
ClauseNotFoundException Clause ID not found.
InvalidClauseException Clause belongs to another contract.
InvalidArgumentClauseTypeException Invalid argument type.
MissingArgumentException Required argument missing.

Execution
BlockchainConnectionException Blockchain connection issue.
ContractClauseViolatedException Clause breach detected.

Table 1. Exception Categories

3.3. Contract Invoker
The Contract Invoker retrieves stored events from the Smart Contract Execution

Queue and executes the corresponding smart contract on the corresponding blockchain.
The communication between the Contract Invoker and the blockchain platform is syn-
chronous. If the blockchain connection fails, the event will be returned to the Smart
Contract Execution Queue for reprocessing. This reprocessing will occur n times, where
n is a general system parameter registered through API 4. If the error persists after n
attempts, an exception of type BlockchainConnectionException will be generated.
If the execution proceeds as usual but there is a violation of one or more contract clauses,
an exception of type ContractClauseViolatedException will be generated. Finally, the
Contract Invoker will release an event to the Smart Contract Outbound Queue.

3.4. Event Updater
The Event Updater is the final component of the monitor’s internal workflow. It

updates the state of event execution by associating the result, generated by the Contract
Invoker and made available in the Smart Contract Outbound Queue, with the initial event
registered by the Event Handler. This information is utilised to construct the monitor
output event for API 5. Listing 2 illustrates such an event. Exceptions are categorised
into a list, where the exceptions in line 3 belong to the Structure Integrity Category, and
those present within the clauses (lines 4 and 7) belong to the Execution Category. The
isValid attribute represents the state of the object (whether it is valid or not). A contract
will be deemed invalid if any exception is raised during event processing.

1 {"event id": { "contract id": {
2 "isValid": false,
3 "exceptions": [{"type": "type", "description": "description"}],
4 "clauses": { "clause id [1]": { "isValid": true, "exceptions": [] },
5 "clause id [n]": {
6 "isValid": false,
7 "exceptions": [{"type": "type", "description": "description"}] }}}}}

Listing 2. Outbound Event Model.

4. Ongoing work and preliminary results
The source code of the Monitoring System is available on GitHub1. It is already

possible to register the smart contract and its clauses with their respective arguments.
1https://github.com/gca-research-group/smart-contract-execution-monitoring-system

https://github.com/gca-research-group/smart-contract-execution-monitoring-system


However, this task may seem redundant, as the user must also register the smart contract
code. The process of registering clauses could be improved if the Monitoring System
were able to analyse the smart contract and infer the clause metadata automatically. The
management of blockchain connections requires connection keys. If the blockchain is
accessed through a cloud-based service, an access key is required, for instance. For secu-
rity reasons, storing keys in the Monitoring System database or file system may be risky.
Services such as Bitwarden, Azure Key Vault, and AWS Key Management Service offer
secure storage solutions and have been evaluated as potential options to address this issue.

Although we have outlined the model presented for the events reported by the
processes, we cannot assume that integration platforms will adopt this model. In such
a scenario, three solutions are being evaluated: updating the implementation of commu-
nication ports on integration platforms, updating the software application’s source code,
or adding a new layer within the monitor. Modifying ports requires significant effort,
as it involves accessing, understanding, and updating the integration platform’s source
code implementation. This approach is also limited to open-source platforms. Our rec-
ommended solution is to update the software application’s source code by adding a layer
between it and the communication port. We have conducted a proof of concept using
the Decorator design pattern, which allows us to dynamically add behaviour to objects
without modifying the original code. This approach enables communication between the
software application and the monitoring system without interfering with the business pro-
cess. The initial results are promising. Finally, the last option would involve adding a
layer in front of the Inbound Events Queue, capable of converting the received event into
the required format adopted by the monitoring system. The weakness of this option is
that the layer would need to be specifically implemented for a particular need, whereas
the monitor should remain software-agnostic.

5. Conclusions and future work
This paper proposes and details an event-based architecture for a system that mon-

itors integration processes and invokes smart contracts on blockchain platforms. The sys-
tem comprises a set of APIs, which facilitate both system configuration and the retrieval
of information regarding monitoring activities. It also consists of internal components:
Inbound Events Queue, Event Handler, Smart Contract Execution Queue, Contract In-
voker, Smart Contract Outbound Queue, and Event Updater. The Inbound Events Queue
receives events for processing. The Event Handler polls these events and prepares them as
required for the Contract Invoker. The Smart Contract Execution Queue receives events
from the Event Handler. The Contract Invoker polls events from the Smart Contract Ex-
ecution Queue and executes the smart contract on the blockchain platform. The Smart
Contract Outbound Queue receives the execution results. Finally, the Event Updater up-
dates the necessary information and makes the event available for queries. Even though
we are addressing the enterprise integration domain, the monitoring system is blockchain
and domain agnostic, as its operation depends primarily on configuring the blockchain
connection, registering the smart contract, and sending standardised events containing the
data required by the smart contract. We plan to evaluate the system overhead of using the
monitoring system in an integration process; additionally, we need to evaluate the system
under high-demand usage, pushing it to its limits, as even though the event-based archi-
tecture can support the demand, external agents such as the blockchain and the integrated
application may not. Furthermore, Artificial Intelligence can pottencially enhance some
functionalities. For instance, it could be employed to identify parameter misconfigura-
tions or predict potential errors.



References
Addas, A. (2023). The concept of smart cities: a sustainability aspect for future urban

development based on different cities. Frontiers in Environmental Science, pages 1–2.

Bautista, E., Sukhija, N., and Deng, S. (2022). Shasta log aggregation, monitoring and
alerting in hpc environments with grafana loki and servicenow. In Int. Conf. on Cluster
Computing, pages 602–610.

Datadog (2025). https://www.datadoghq.com/. Accessed: January 2025.

Dornelles, E., Parahyba, F., Frantz, R. Z., Roos-Frantz, F., Reina-Quintero, A., Molina-
Jiménez, C., Bocanegra, J., and Sawicki, S. (2022). Advances in a DSL to specify
smart contracts for application integration processes. In Ibero-American Conference
on Software Engineering, pages 46–60.

Dynatrace (2025). https://www.dynatrace.com/. Accessed: January 2025.

Elastic (2025). https://www.elastic.co/. Accessed: January 2025.

Fabolude, G., Knoble, C., Vu, A., and Yu, D. (2025). Smart cities, smart systems: A
comprehensive review of system dynamics model applications in urban studies in the
big data era. Geography and Sustainability, pages 1–12.

Grafana (2025). https://grafana.com/. Accessed: January 2025.

Klymash, M., Zablotskyi, S., and Pohranychnyi, V. (2024). Improving alerting in the mon-
itoring system using machine learning algorithms. In Int. Conf. on Advanced Trends in
Radioelectronics, Telecommunications and Computer Engineering, pages 150–153.

Otero, M., Garcia, J. M., and Fernandez, P. (2024). Towards a lightweight distributed
telemetry for microservices. In Int. Conf. on Distributed Computing Systems Work-
shops, pages 75–82.

Rosa-Sequeira, F., Basto-Fernandes, V., and Frantz, R. Z. (2018). Enterprise application
integration: Approaches and platforms to design and implement solutions in the cloud.
Advances in Engineering Research, pages 277–303.

Serrano, W. (2018). Digital systems in smart city and infrastructure: Digital as a service.
Smart cities, pages 134–154.

Sukhija, N. and Bautista, E. (2019). Towards a framework for monitoring and analyz-
ing high performance computing environments using kubernetes and prometheus. In
SmartWord, pages 257–262.

Taheri, J., Gördén, A., and Al-Dulaimy, A. (2024). Using machine learning to predict
the exact resource usage of microservice chains. In Int. Conf. on Utility and Cloud
Computing, pages 25–34.

Tundo, A., Mobilio, M., Orrù, M., Riganelli, O., Guzmàn, M., and Mariani, L. (2019).
Varys: An agnostic model-driven monitoring-as-a-service framework for the cloud.
In European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, pages 1085–1089.

Zou, W., Lo, D., Kochhar, P. S., Le, X.-B. D., Xia, X., Feng, Y., Chen, Z., and Xu, B.
(2019). Smart contract development: Challenges and opportunities. IEEE Transactions
on Software Engineering, pages 2084–2106.

https://www.datadoghq.com/
https://www.dynatrace.com/
https://www.elastic.co/
https://grafana.com/

	Introduction
	Related Work
	Envisioned Solution
	API
	Event Handler
	Contract Invoker
	Event Updater

	Ongoing work and preliminary results
	Conclusions and future work

