
Int. J. Computer Applications in Technology, Vol. 62, No. 2, 2020 129

Copyright © 2020 Inderscience Enterprises Ltd.

Towards optimal thread pool configuration for
run-time systems of integration platforms

Daniela L. Freire, Rafael Z. Frantz*
and Fabricia Roos-Frantz
Department of Exact Sciences and Engineering,
Unijuí University,
3000 - Universitário, Ijuí, Brazil
Email: dsellaro@unijui.edu.br
Email: rzfrantz@unijui.edu.br
Email: frfrantz@unijui.edu.br
*Corresponding author

Abstract: Companies seek technological alternatives to increase competitiveness, an example,
are the integration platforms, that develop integration processes in order to connect
functionalities and data from applications that compose software ecosystems. Threads are
computational resources of the platforms, responsible for integration processes execution. Thus,
the configuration of threads has a direct influence on the performance of platforms. However, this
is a challenge faced by software engineers, who do this configuration empirically. Our scientific
and technical literature review did not identify a systematic approach to find the ideal
configuration, which depends on factors such as workload, hardware and integration process.
Thus, it is appropriate to seek alternatives for configuration that provide a positive impact on the
performance of the run-time system, increase productivity, and reduce costs. Inspired by the
Particle Swarm Optimisation meta-heuristic, this article proposes an algorithm that finds the ideal
configuration for local thread pool, minimising the total average processing time to improve the
execution of integration platforms. The algorithm was implemented and tested using a real-life
integration process and its performance measures show the feasibility and efficiency of our
proposal, supported by a rigorous statistical analysis of results.

Keywords: enterprise application integration; optimisation; PSO; particle swarm optimisation;
meta-heuristics; multi-thread; makespan; workflow; integration patterns.

Reference to this paper should be made as follows: Freire, D.L., Frantz, R.Z. and Roos-Frantz, F.
(2020) ‘Towards optimal thread pool configuration for run-time systems of integration platforms’,
Int. J. Computer Applications in Technology, Vol. 62, No. 2, pp.129–147.

Biographical notes: Daniela L. Freire researches on the field of enterprise application
integration, meta-heuristics, and runtime systems. She has got a master in software engineering at
Center for Studies and Advanced Systems of Recife, in 2013, in Recife (Brazil). She also has
experience in the area of interactive digital books, requirements engineering and domain analysis
for a family of software. She has more than 17 years of experience in systems development,
where she worked as a programmer, systems analyst and project manager.

Rafael Z. Frantz is an Associate Professor who is with the Department of Exact Sciences and
Engineering of the Unijui University, Brazil, and leads the Applied Computing Research Group
since 2013. He was awarded a PhD degree in Software Engineering by the University of Seville,
Spain. His current research interests focus on the integration of enterprise applications and
search-based software engineering.

Fabricia Roos-Frantz is an Associate Professor who is with the Department of Exact Sciences and
Engineering of the UNIJUÍ University, Brazil. She received her PhD in Software Engineering
from the University of Seville, Spain. Her current research interests include software product
lines and search-based software engineering.

1 Introduction

Business processes of enterprises are supported by a set
of applications that make up their software ecosystem.
Application development technologies have been transformed

over time and new software services available on the internet
have also been incorporated into software ecosystems, making
ecosystems more heterogeneous (Manikas, 2016). Such
applications need to work together to provide efficient
responses for business processes.

130 D.L. Freire, R.Z. Frantz and F. Roos-Frantz

Enterprise Application Integration (EAI) is the research
field that provides methodologies, techniques, and tools to
construct integration processes, enabling applications to share
data and functionality to meet requirements of business
processes. Integration platforms are specialised software tools
that allow software engineers to design, implement, run,
and monitor integration processes (Freire et al., 2019a).
An integration process implements a workflow composed
of distinct atomic tasks that process messages which flow into
the process. Hohpe and Woolf (2004) have documented a set
of concep l integration patterns that have inspired the
development of open-source integration platforms. Such open-
source integration platforms have also followed the Pipes-and-
Filters architecture (Alexander et al., 1977). In an integration
process, pipes represent message channels and filters represent
atomic tasks that implement a concrete integration pattern to
process data encapsulated within the messages. Amongst the
state-of-the-art open-source integration platforms, which adopt
the integration patterns and the Pipes-and-Filters architecture,
are: Fuse (Russell and Cohn, 2012a), ServiceMix (Konsek,
2013), Petals (Surhone et al., 2010), Jitterbit (Russell and
Cohn, 2012b), WSO2 ESB (Indrasiri, 2016), and Guarana
(Frantz et al., 2016). Typically, these platforms provide a
domain-specific language, a development toolkit, a run-time
system, and monitoring tools. The domain-specific language
enables the description of conceptual models for integration
processes. The development toolkit is a set of software tools
that allow the implementation of integration processes, i.e.,
transforms a conceptual model into executable code. The run-
time system is the component responsible for running the
integration processes (Freire et al., 2019b). Monitoring tools
are used to detect failures that may occur during the execution
of an integration process.

The tasks that compose an integration process are executed
by available threads in the run-time system. Threads are the
smallest sequence of programmed statements that can be
managed by the run-time system. Threads are grouped in
thread pools that are generally configured in two ways: Global
thread pool and Local thread pool. In the former, there is one
single thread pool to execute every task of the workflow. In the
latter model, there are multiple thread pools, each of them
executing one task of the task flow. The performance that the
execution of an integration process is able to achieve, in terms
of message processing per unit of time, is directly related to the
run-time system.

Typically, in order to achieve the desired performance,
software engineers increase the number of threads in the
run-time system. This strategy has generally an initial
positive impact on execution performance, but it can lead to
degradation, causing a lower message processing per unit of
time. This degradation is due to the time spent by the operating
system to manage the context change amongst threads and their
competition over the resources of the system (Suleman et al.,
2008; Lorenzon et al., 2016; Liu et al., 2018). Besides, this
increased performance is proportional to an increase in
financial costs required to purchase hardware or to hire cloud
services with greater processing power. In the case of cloud

service, the charging model is pay-as-you-go, in which
companies pay by the number of computing resources
consumed (Buyya et al., 2009). Linthicum (2017) claims that
the integration platforms need to be re-engineered to ensure
they are suitable for cloud deployment, to take advantage
of the scalability provided and to reduce costs by optimising
computational resource usage.

In order to provide adequate performance concomi-tantly
with the threads number constraint, it is necessary to find its
optimum distribution in local thread pools, using the least total
number of threads to perform tasks in an integration process.
This is a challenge for software engineers who indicate these
numbers of threads according to their practical knowledge.
If these numbers are high, shared resources, such as cache
capacity or memory bandwidth, can quickly saturate, thus
degrading performance; in contrast, if these numbers are low,
the integration processes execution becomes inefficient
(Lee et al., 2010).

Recent researches have tackled task scheduling in other
domains. In the distributed systems field, Ghosh and Das
(2018) proposed Particle Swarm Optimisation (PSO) meta-
heuristic-based algorithm and Touzene et al. (2019) proposed
mixed-Integer Linear Program-based algorithm. Zhang et al.
(2018) proposed an algorithm to deal with a class of job-shop
scheduling optimisation problems. In the cloud computing
field, Verma and Kaushal (2015) and Milani and Navin (2015)
proposed PSO-based algorithms. However, there is a lack of
research in EAI field. In this article, we propose an algorithm
based on the PSO, which provides the optimum or near optimal
configuration for the thread number in every local thread pool
of run-time systems. The proposed algorithm was validated in a
real-world integration process. The results show the efficiency
of our algorithm to find a configuration of local thread pool that
minimises the average total time of message processing,
obeying to the restriction of the total threads number. The
proposed algorithm contributes to increase the performance of
run-time systems, achieving a higher number of processed
messages.

The rest of this article is organised as follows: Section 2
discusses related work; Section 3 provides background
information on the run-time system and the local thread pool
execution model; Section 4 formulates the configuration of
local thread pools problem; Section 5 exposes the proposed
optimisation algorithm; Section 6 reports our proposal
validation; and, Section 7 presents our conclusions.

2 Related work

In this section, we gather works in different research fields,
regarding performance optimisation, which have adopted meta-
heuristics to deal with the configuration of computational
resources in order to increase the performance of applications
execution by minimising the makespan. Makespan is a
performance metric, defined as the total execution time of
an application or process for a given message (Canon and
Jeannot, 2007).

 Towards optimal thread pool configuration for run-time systems of integration platforms 131

Pandey et al. (2010) aimed to minimise the running cost of
a single workflow while balancing tasks on available resources
to cloud resources, considering computation cost and
data transmission cost. Their work focused on scheduling
applications to cloud computing resources, whereas this
proposal focuses on task execution balance of an integration
process on available threads of a run-time system. Wu et al.
(2010) performed an experiment with workflow applications,
by varying data communication costs and computation costs,
c.f. the cloud price model. They used PSO meta-heuristic to
minimise data communication and computation costs in cloud;
whereas this article used PSO to minimise total average
processing time in the integration processes execution. Byun et
al. (2011) estimated the necessary optimal number of resources
to be allocated in order to minimise the cost of running a
workflow. Their work presented an algorithm that estimates the
minimum computing resources to execute a workflow within a
predefined time span, for the automatic execution of
applications on dynamically and elastically provisioned
computing resources; whereas this article presents an algorithm
that finds the best configuration of threads in local thread pool
for a task workflow.

Subashini and Bhuvaneswari (2012) proposed a PSO
adaptation to increase the task allocation performance of
parallel applications amongst the various processors on a
distributed system. Their algorithm obtained a set of optimal
allocations with an increased performance level. Their work
concerned the task allocation amongst the various processors,
whereas this article concerns the allocation of tasks of an
integration process amongst the various thread pools. An et al.
(2012) proposed a PSO-based algorithm to find a near optimal
operation sequence and schedule strategy for production
processes. Their algorithm sought the minimal total makespan
in its admissible sequence space. Their work applied PSO to
schedule tasks in a production process minimising the
makespan, whereas this article applies a PSO-based algorithm
to schedule task of an integration process amongst local thread
pools.

Yassa et al. (2013) proposed an approach for multi-
objective workflow scheduling in clouds, and presented the
hybrid algorithm, using a method called multi-objective
Discrete Particle Swarm Optimisation combined with
the Dynamic Voltage and Frequency Scaling technique
to optimise the scheduling performance and to minimise
energy consumption, while preserving the quality of service
preferences of the users. Their approach used PSO to optimise
energy consumption; whereas this article uses PSO to minimise
makespan in task execution of workflow applications. Sidhu
et al. (2013) proposed a load re-balance algorithm using PSO
together with the smallest position value technique for task
schedule problem. Their work measured the overall task
completion time and compared their results with another-based
PSO heuristic. Their work aimed to improve applications in
commercial computing environments like cloud; whereas, our
algorithm seeks to improve the run-time systems performance
of integration platforms and measures the total average
processing time of message and compares their results with
different configuration for thread pool.

Chitra et al. (2014) used PSO to locate a suitable
workflow schedule to optimise load balancing, speedup ratio,
and makespan in cloud computing environment and their
proposed algorithm was experimented and compared with
Genetic Algorithms and standard PSO methods; whereas,
this article seeks to minimise the makespan of integration
processes, our algorithm was experimented and compared
with different configuration for thread pool. Pragaladan and
Maheswari (2014) presented dynamic and static algorithms
for task scheduling and resource provisioning that rely on
workflow structure information, such as critical shortest paths
and workflow levels, beyond estimates of task run-times in
multiple cloud providers. Their experiments compared their
algorithms with others based in standard PSO, using four
workflows. This article seeks to evaluate the proposed
algorithm regarding its ability to find an optimal or near-
optimal configuration that results in a lower makespan in run-
time systems of integration platforms. Rodriguez and Buyya
(2014) presented a PSO-based algorithm, which aimed to
minimise the overall execution cost while meeting deadline
constraints for scheduling a scientific workflows application
in a cloud environment. Their focuses were features of the
Infrastructure as a Service, such as the dynamic provisioning
and heterogeneity of unlimited computational resources and
the performance variation of the virtual machines. Their
algorithm produced a schedule defining the mapping of the
tasks to the resources, the number and type of virtual
machines, the initial and final time of their leases; whereas,
our PSO-based algorithm indicates a configuration to thread
pool in run-time systems of integration platforms, which
objective function is to minimise the makespan. Jian et al.
(2014) proposed a PSO-based algorithm to schedule tasks to
cloud resource suppliers considering the reliability of these
resource providers and of the network data transmission
between suppliers. They defined a reliability measure by a
mathematical model, used to evaluate the task to run and the
reliability degree in data transmission. Their work used PSO
algorithm to address reliability to schedule tasks to cloud
computing; whereas, this article finds the best threads
distribution to the task execution of integration processes.
Ramezani et al. (2014) proposed a task-based system to load
balancing by migrating tasks from an overloaded virtual
machine to another homogeneous virtual machine, instead of
migrating the entire overloaded virtual machine. Their work
measured the task execution time and task transfer time and
compared their results with other traditional methods for load
balancing, aiming an energy consumption reduction. In this
article, the proposed algorithm balances the number of
threads into thread pool, aiming to minimise the makespan of
the task execution of integration process.

Verma and Kaushal (2015) extended the previous proposal,
called Bi-Criteria Priority-based PSO, which scheduled
workflow tasks over the available cloud resources, minimising
the execution cost, while considering the constraints of
deadline and budget. Their work simulated the proposed
algorithm and compared state-of-art algorithms. In a different
approach, this article proposes an algorithm that minimises

132 D.L. Freire, R.Z. Frantz and F. Roos-Frantz

the makespan in run-time system of integration platforms.
Milani and Navin (2015) proposed a PSO-based algorithm,
using a multi-objective function, to schedule the tasks in the
cloud. They measured the execution time, waiting time
and missed tasks and compared it to other task scheduling
policies, such as First Come First Served, Shortest Process
Next and Highest Response Ratio Next; whereas, this article
measures the execution time, total average processing time of
messages, time of processing gain, standard deviation and
compared using different configurations for thread pool. Aron
et al. (2015) proposed PSO-based hyper-heuristic method that
minimises the time and cost along with optimised utilisation
of the resources in the grid environment, without violating the
security norms. Their authors simulated the proposed
algorithm in order to evaluate its performance and compared
with other existing common heuristic-based scheduling
algorithms; whereas, this article presents the algorithm based
on PSO, which finds a configuration to thread pool and also
presents a makespan evaluation of the execution of a real-
world integration process.

Ghosh et al. (2017) proposed a Cuckoo Search adaptation
optimisation method for scheduling user-jobs to available
resources for grid computing, in order to optimise
performance metrics in terms of makespan and completion
time. They measured makespan, standard deviation and
completion times for the proposed algorithm and compared

with simulated annealing and cuckoo search algorithm.
Ghosh and Das (2018) proposed a hybrid algorithm,
combining Extreme Optimisation and PSO. Their algorithm
aimed, simultaneously, to minimise makespan, processing
cost and job failure rate, and maximise resource utilisation of
computational grid systems. Their works approach concerned
task schedule in grid computing; whereas our concern focus
on the task schedule in integration platforms runtime systems.
Zhang et al. (2018) proposed an algorithm to deal with a class
of job-shop scheduling optimisation problems. Based on the
job-shop process model, their algorithm proposed active
schedules encoding and decoding approaches for production
processes scheduling. Their works approach concerned job-
shop process schedule; whereas our concern is the integration
processes tasks schedule.

Touzene et al. (2019) proposed a service oriented
architecture for resource management optimisation based on a
mathematical model, on mixed-Integer Linear Program,
which selected the best resource allocation for all the smart
grid constituencies and generates only the amount of energy
needed by the consumers. Their works approach concerned
resource allocation in grid computing; whereas our concern
is resource allocation in EAI run-time systems. The related
works are summarised in Table 1, contemplating the research
field, the goal, and if the approach is PSO based or not.

Table 1 Related works summary

Work Research field Goal PSO

(Pandey et al., 2010) Cloud computing Minimise computation cost and data transmission cost.

(Wu et al., 2010) Cloud computing Minimise data communication and computation costs.

(Byun et al., 2011) Cloud computing Minimise computing resources use.

(Subashini and
Bhuvaneswari, 2012)

Distributed system Find optimal resource allocations.

(An et al., 2012) Production processes Find optimal operation sequence and schedule.

(Yassa et al., 2013) Cloud computing Minimise energy consumption.

(Sidhu et al., 2013) Cloud computing Minimise overall task completion time.

(Chitra et al., 2014) Cloud computing Optimise load balancing, speedup ratio, and makespan.

(Pragaladan and
Maheswari, 2014)

Cloud computing Minimise task run-times in multiple cloud providers.

(Rodriguez and
Buyya, 2014)

Cloud computing
Minimise the overall execution cost while meeting deadline
constraints.

(Jian et al., 2014) Cloud computing
Optimise reliability of resource provider tasks in network data
transmission.

(Ramezani et al., 2014) Distributed system Load balancing by migrating tasks amongst virtual.

(Verma and
Kaushal, 2015)

Cloud computing
Minimise execution cost, while considering constraints of
deadline and budget.

(Milani and Navin, 2015) Cloud computing Minimise the execution time, waiting time and missed.

(Aron et al., 2015) Distributed system
Minimise the time and cost along with optimised utilisation of
the resources, without violating the security norms.

(Ghosh et al., 2017) Distributed system Minimise makespan and completion time.

(Ghosh and Das, 2018) Distributed system
Minimise makespan, processing cost and job failure rate, and
maximise resource utilisation.

(Zhang et al., 2018) Production processes Find optimal operation sequence and schedule.

(Touzene et al., 2019) Distributed system Optimise the profits and resource utilisation over the smart grids.

[Our proposal] EAI Minimise makespan while considering the constraints

 Towards optimal thread pool configuration for run-time systems of integration platforms 133

3 Background

In this section, we describe the main elements of a run-time
system of integration platforms and present the execution
model that uses multiple local thread pool. Figure 1 presents a
conceptual map introducing concepts discussed in this
section, starting from the concept of root that is the run-time
system.

The run-time system is the component that supplies
fundamental services to a language or a library and
applications implemented on top of them (Appel, 1990). It
implements an execution model that determines how an
integration process must be executed and provides resources
that support this execution. The execution model determines
the behaviour of the run-time system during the execution
of an integration process. The main elements of run-time
systems are: scheduler, task queue, thread pool, and
monitors. The scheduler is the central element because it
manages and orchestrates the activities of the task queue,
the threads, and the monitors. It usually has a configuration
file that contains information, such as the maximal number
of threads, names and paths of files for data generated by
monitors, monitors running frequency and logging system to
notify about warnings and errors. The task queue maintains
the tasks ready to be executed.

A task is considered ready to be executed when a message
arrives in its input. The execution of a task starts when the
execution time, for which it was scheduled, expires and there
are available threads to execute it. The thread pool owns
threads that, when available, recurrently poll the queue for
tasks and execute the tasks. The monitors provide data about
computational resources, such as the percentage of memory
usage, time consumed for execution, task queue size, and total
number of tasks processed. Monitors are executed by specific
threads, in which collect and store the information. A message
is a packed data that the messaging system can transmit
through a message channel. So, data must be converted into
one or more messages in order to flow in an integration
process. A task has one or more inputs, and one or more
outputs, depending on the implemented integration pattern.
Every integration pattern represents an atomic operation to
construct, route, transform or to manage messages. The
messages must be processed by every task, following the order
of dependence, that is, a message only can be processing in a
task, when this message was already processed in every task
that precedes the current task. Additionally, every task instance,
i.e., every task that processes a message, needs an available
thread to execute it and the execution of a task instance cannot
be divided, given that every task is atomic. The execution
model is presented in Figure 2.

Figure 1 Conceptual map of a run-time system

134 D.L. Freire, R.Z. Frantz and F. Roos-Frantz

Figure 2 State diagram of the run-time system execution

In local thread pool execution model, there is a thread pool
and a queue of tasks ready for every task of the integration
process. A thread pool configuration determines the number
of threads that every local thread pool must have. When a
message arrives in the input of a task, then, it is maintained
in its specific task queue while waiting for an available
thread of its specific thread pool. If many messages arrive at
the task input, then many instances of this task can be
simultaneously executed if there are available threads in the
thread pool dedicated to this task; and the available threads
of a local thread pool recurrently check the task queue
dedicated to the task, obeying the First-In-First-Out (FIFO)
policy.

4 Problem formulation

In this section, we formulate the research problem. Firstly,
we describe the software ecosystem and an integration
process of a real-world problem. Then, we introduce the
problem definition and objective function. The former is the
modelling and codification of the problem and the latter
measures the adequacy of a thread pool configuration in
order to minimise the makespan.

4.1 The software ecosystem

In order to demonstrate the feasibility of our proposal, we
introduce a real-world software ecosystem that approaches a
real estate tax management system used in Ijui City, Brazil.
This ecosystem supports a business process that calculates the
annual tax of registered real estates, generates the respective
billing documents, and sends them to the real estate taxpayers.
In 2017, Ijui had an estimated population of 83,173 inhabitants,
38,723 registered real estates and the referred tax raised
15,701,504 Brazilian Real (R$) collected by the city, according
to Brazilian Institute of Geography and Statistic (Instituto
Brasileiro de Geografia e Es- tatistica – IBGE) (IBGE, 2017).

Seven applications from the software ecosystem of the
city hall, are involved in the integration process, namely:
Service Desk, Citizen Website, Tax Generator, Real Estate
Registration, Tax Calculator, Email Server and, Print Server.
When these applications were designed, their integration, in
order to work together and collaborate with each other, was not
the main focus of project.

Service Desk standalone renders the first citizen service,
providing information regarding their taxes. Citizen Website
is a web application that allows the issuance of new tax
payment documents with the updated payment amount. Tax
Generator requests the generation of the tax payment
document to the registered real estates, which is done by an
operator at the end of the year, issuing all the documents of
the subsequent year. Real Estate Registration is a database
containing taxpayer and real estate data used to calculate the
tax. Tax Calculator calculates the amount of tax and
generates the payment document. Email Server manages the
requisitions to taxpayers and sends the payment document
to their electronic address. Finally, the Print Server prints
the tax payment documents that will be later sent to the
physical address of the taxpayers.

4.2 The integration process

The integration process conceptual model integrates the
applications involved in the software ecosystem, as Figure 3
shows. Splitter T1, Normaliser T2, Content En-richer T3,
Content Filter T4, Content Enricher T5, Recipient List T6,
Message Filter T7, Message Translator T8 and, Message
Translator T9 are the internal tasks and are inside the
rectangle. Service Desk, Citizen Website, Tax Generator are
applications that provide inputs to the integration process;
Real Estate Registration, Tax Calculator are applications
that provide information, which is used to compute the tax
and the payment documents; Email Server, Print Server are
applications that receive the outputs to the integration
process. The applications are outside the rectangle.

 Towards optimal thread pool configuration for run-time systems of integration platforms 135

Figure 3 Conceptual model of the real estate tax management system

The process starts when any of the Service Desk, Citizen
Website or Tax Generator application generates requests to the
integration process. Service Desk and Citizen Website generate
requests regarding a single real estate, while Tax Generator
generates a list of requests regarding every registered real estate
in the city. Splitter T1 breaks requests from Tax Generator into
several output messages, each one of them corresponds to a
single real estate register. Different formats of requests
generated by the applications are sent to the Normaliser T2; T2
normalises them, producing an output message in a canonical
format. Content Enricher T3 enriches the information of the
real estates with taxpayer and real estate data obtained from the
Real Estate Registration database. Content Filter T4 filters the
messages, eliminating the unnecessary ones, such as phone
number or personal document numbers. Content Enricher T5
enriches the information of the real estate’s payment document
with the tax amount, calculated by Tax Calculator. Recipient
List T6 makes a copy of the message that contains the payment
document and forwards it to the Message Filter T7 and to the
Message Translator T9. Message Filter T7 filters the messages
eliminating those that do not have a registered electronic
address and forwards those that have email to Message
Translator T8; T8 translates the message to an e-mail
server compatible format and forwards the transformed
message to Email Server, so that the payment document is sent
by email to the taxpayer. Similarly, Message Translator T9
translates the message to a print server compatible format
and forwards the transformed message to Print Server so that

the payment document is printed and sent to the physical
address of the taxpayer.

4.3 Problem definition

An integration process can be represented by a workflow
composed by many paths of interdependent tasks linked by
communication channels that desynchronise one task from
another. A path is a set of sequentially arranged tasks in a flow,
where every task has to be executed in a predefined order.
Figure 4 shows an Integration Pattern Typed Graph (IPTG)
(Ritter et al., 2018) that represents the integration process of
Figure 3, in which each node represents a task and each edge
represents a communication channel. Every edge has a weight,
which represents the waiting time of the task in the queue. The
set of tasks is composed by the 18 nodes, T = { t1, t2, t3, tc1, t4,
t5, tc2, t6, t7, t8, t9, tA1, tA2, tA3, tA4, tA5, tA6, tA7} and the set of
directed edges is composed by the 17 edges E = {a1, a2, a3, a4,
a5, ae, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17}. An edge ak of

the form ,i jt t exists, if there is dependence between ti and tj,

in which tj is the tj predecessor task and tj is the ti successor
task. Therefore, a successor task cannot be performed until all
of its predecessor tasks are completed. IPTG can be separated
into several paths formed by tasks that must be executed
sequentially in a predefined order. The critical path is where a
message spends longer time to be processed (James and Kelley,
1961). In IPTG of Figure 4, the critical path is highlighted with
darker nodes, considering the execution time of the internal
tasks of this path and their waiting time.

Figure 4 Integration pattern typed graph example

136 D.L. Freire, R.Z. Frantz and F. Roos-Frantz

Ritter et al. (2018) define IPTG as a direct graph with set of
nodes T and a set of edge E T T add to the function

type: T F, where F = {start, end, message processor,
fork, structural join, condition, merge, external call}. For a

node t T, |t t T t t E for the set of direct

predecessors of t, and |t t T t t E for the set

of direct successors of t. An IPTG (T, E, type) is correct if
the following condition apply:

 1 2,t t T with type (ti) = start and type (t2) = end;

 if type (t) [fork, condition} then | t| = 1 and |t | = n;

 if type (t) [join} then | t | = n and |t

 if type (t) [message processor, merge} then |t| = 1
and |t| = 1;

 if type (t) G [external call} then |-t| = 1 and |t| = 2;

 The graph (T, E) is connected and acyclic.

The function type records what type of task each node
represents. The first correctness condition claims that an
integration pattern has at least one input and one output; the
second indicates the cardinality of the involved tasks, i.e.,
the in-degrees and out-degrees of a node. The last condition
states, «the graph (T, E) is connected and acyclic», indicates
that a graph represents only a task and its relation with its
predecessor and successor tasks and that messages do not
loop back to previous tasks.

Table 2 classifies the tasks that compose IPTG of Figure 4,
by their types, c.f. Ritter et al. (2018), where the tasks represented
by tAi correspond to applications; the tasks represented by tci
connect with applications; and, the tasks represented by ti carry
out internal operations into an integration process.

Table 2 Classification of the tasks of the IPTG

Type Tasks

Stark
1 2 3, ,A A At t t

Fork t7

Join t2

Message processor
1 3 4 5 6 8 9, , , , , ,t t t t t t t

External call
1 2,c ct t

End
6 7,A At t

In the integration process of Figure 3, tasks T3 and T5 execute
two operations: message enrichment and communication with
external resources. In the IPTG of Figure 4, the task T3 is
represented by t3 and tc1 and the task T5 by t5 and tc2. The task
types t3 and t5 is message processor and their operation
implements a message enrichment; and the task types tc1
and tc2 is external call and their operation implements a
communication with external resources.

4.4 Objective function

In the approached execution model, there is a local thread
pool to execute every internal tasks into the path of an

IPTG. An internal task carries out internal operations into an
integration process or makes connections with applications.
In our mathematical model, we considered that:

 there is a constraint for run-time systems that limits the
total number of threads to be distributed amongst local
thread pools;

 the execution time of an internal task is estimated by
the average number of instructions executed for each
clock cycle of a processor (Abraham et al., 2016);

 the processing time of an internal task is the total time
that a message spends to be processed into a task, i.e.,
the sum of the execution time and the waiting time in
the task queue;

 a local thread pool must have an appropriate number of
threads to execute instances of tasks in order to process
messages at the shortest possible time.

Some researchers presented mathematical modelling for
time metrics of applications. Rodriguez and Buyya (2014)
presented equation (1) for total processing time of a task
in a virtual machine (VM) in the scientific workflows

scheduling in a cloud environment. j

i

VM

tTE is the task

execution time ti in a VM of type VMj ;
ijeTT is the time it

takes to transfer data between a task ti and its successor tj; k
is the number of edges in which ti is the predecessor task
and sk is 0 whenever ti and tj run on the same VM or 1
otherwise.

1

*j j

i i ij

k
VM VM

t t e kTP TE TT s

 (1)

According to Chirkin et al. (2017), the processing time in a
workflow can be represented by equation (2), where TE is
the task execution time, TR is the resource preparation time,
TQ is the queuing time, TD is the data transfer time, TO is the
system overhead time, such as time spent in analysing the
task structure, selecting the resource, amongst others.

 R Q D OTP TE T T T T (2)

For Shishido et al. (2018), the total processing time of a task
ti in a VM of type k

svm is the sum of the task execution time

 , ,k
i sTE t vm transfer time TT(ti), and security services

overhead of the SC (ti) as defined in equation (3).

 ,k k
i s i s i iTP t vm TE t vm TT t SC t (3)

Many researchers use the makespan arithmetic average as a
performance metric for scheduling algorithms (Abdulhamid
et al., 2014; Chhabra and Oshin, 2018; Lin and Ying, 2019).
According to Canon and Jeannot (2007), makespan is computed
by instantiating every computation and communication
duration according to random variables, i.e. it is the end-time
of the processing last task. For Abdulhamid et al. (2014),
the lower the makespan, the better the processing
efficiency, meaning less processing time. They defined

 Towards optimal thread pool configuration for run-time systems of integration platforms 137

equation (3) where makespan is the maximum time needed
to complete processing max .iC

 1 2max max , , ,i nMakespan C C C C (4)

We define an internal task total processing time in a thread
pool as computed by equation (5), where

it
TP is the total

processing time;
it

TP is a task execution time in a thread

into its respective thread pool;
ijtTQ is the task waiting time

in its task queue; and, k is the number of edges to which the
current task is its successor.

1
i i ij

k

t t tTP TE TQ (5)

The total task processing time that connects an application
is estimated by the throughput time, which considers the
time of sending and receiving of a message from a task to
the external application. Equation (6) calculates the total
processing time, where

citTP is the total processing time;

citTSend is the sending time of a message from a task to an

application; and,
citT Receive is the receiving time of a

message task from an application to a task.

ci ci cit t tTP TSend T Receive (6)

In integration processes, we define makespan as the
message processing total time in a workflow and it is
calculated by the task processing times of the critical path of
the IPTG. Equation (7) calculates the makespan, where n is
the total number of tasks that carry out internal operations;
and m is the total number of tasks that connect applications.

1 1
i ci

n m

t tMakespan TP TP (7)

We defined that the Total Average Processing Time (TAPT) of
a given number of messages is calculated by the division of the
makespan by the total number of messages. Equation (8)
calculates the TATP, where TM is the total number of
messages.

Makespan
TAPT

TM
 (8)

Time optimisation becomes fundamental in situations where
the process execution duration must meet certain constraints
or deadlines, because, their violations increase the business

processes costs (Pereira and Varajão, 2019). Thus, the
problem can be formulated as:

find the optimal or near optimal number of
threads for every local thread pool, in order to
process a given number of messages through
the critical path of an integration process,
spending the lowest total average processing
time and subjected to a constraint of the total
number of threads that can be distributed.

This formulation is represented by the objective function of
equation (9), in which TR is the total number of threads and
r is a constraint of number of threads that can be
distributed.

 Minimise TAPT (9)

subject to rTR

5 Our proposal

In this section, we model the previously formulated problem
as a PSO problem and propose an algorithm to resolve it.
The algorithm provides an optimum or near optimal
configuration for the local thread pool that executes tasks of
a given path of the integration process workflow. The thread
pool configuration produced by the algorithm is a vector
composed of n elements, where n is the number of tasks of
the path. The element order on this vector corresponds to
the task order in the path and the value of each element is
the number of threads in the local thread pool for each task.

Three algorithms were implemented: «Population
Generation», «TAPT Calculation», and «Best Configuration».
«Population Generation» generates a population composed of
possible configurations of the thread pool for the critical path of
an integration process, i.e., a population of possible solutions.
«TAPT Calculation» calculates the total average processing
time of a given number of messages into tasks of a workflow
path. «Best Configuration» combines the previous two
algorithms to find the configuration that minimises the total
average processing time amongst the possible solutions.
The «Best Configuration» generates the several thread
pool configurations by «Population Generation»; for every
configuration, it calculates the TAPT by «TAPT Calculation» ;
and updates the minimum TAPT, if the TAPT calculated is
lower than the current minimum TAPT, c.f. flowchart shown in
Figure 5.

Figure 5 Best configuration flowchart

138 D.L. Freire, R.Z. Frantz and F. Roos-Frantz

5.1 Population generation

The population of thread pool configurations is obtained by
the Algorithm 1. It receives as input: the constraint of the
number of possible solutions, the constraint of the total
thread number, and the number of local thread pools.

The algorithm starts with a set of initial configurations for
thread pool, and three auxiliary variables, a vector with the
number of threads available, the available thread pool
number, and a vector for the sum of used threads. From lines
5 to 9, the algorithm initialises the number of threads with a
random number for every local thread pool of the initial
configurations set. Then, it updates the vector for the sum of
the threads and the vector for the number of available threads.
From lines 10 to 18, the algorithm generates the remaining
elements for the initial configurations set, which corresponds
to the number of threads from the second thread pool to the
last pool thread. Then, the algorithm updates the used threads
sum vector; the available thread number vector; and, the used
threads sum and the available thread pool number. At line 19,
the algorithm returns the initial configuration set for thread
pools.

5.2 TAPT calculation

Algorithm 2 calculates the value of the total average
processing time, which is used to test the objective function.
It receives as input the following parameters: processing
time vector, pool configuration vector, and the total message

number. The parameter «processing time vector» represents
a path, in which each element represents the value of a task
processing time. The parameter «pool configuration vector»
is a local thread pool configuration. The parameter «total
message number» represents the total message number to
process, i.e., a workload in a given moment.

 Towards optimal thread pool configuration for run-time systems of integration platforms 139

The algorithm initialises the number of thread pool, a matrix
to keep the final processing time of each message, a vector
to keep the total processing time of each message; a variable
to keep the accumulated value of the processing time for all
the messages, and an auxiliary vector to keep the number of
threads of each thread pool.

The algorithm calculates from lines 7 to 16, for each
message, the first task final processing time for the first
thread pool. The number of messages simultaneously
processed is equal to the number of threads in the pool. The
final processing time of the messages in the first task is
equal to the number of threads in first local thread pool
times the processing time of the first task. From lines 18 to
23, the algorithm calculates the final processing time of the
second until the last task, for the first message until the n-th
message, where the n-th message corresponds to the number
of threads of the pool dedicated to the task that is being
processed. Since a task has to wait for messages from its
predecessor to process, the final processing time of these
messages is equal to the sum of two processing times: the
final processing time of the message in the predecessor task
and the processing time of the current task.

From lines 24 to 37, the algorithm calculates the final
processing time from the second task until the last task in
every thread pool, for the n-th message until the last
message. There are two conditions to start the message
processing in a task. First, the current message processing
in the predecessor task has to be finished. Second, the
predecessor message processing in a current task has to be
finished. The processing time that finishes later between
these two will be considered in the computation of the final
processing time, called delay. Then, the final processing
time of the messages is equal to the sum of two processing
times: the delay and the processing time of the current task.
From lines 38 to 41, the algorithm updates the final
processing time of each message and the sum of these final
processing times. At line 42, the algorithm calculates the
total average processing time by the division of the sum of
the final processing times by the total message number, and
at line 43 it returns the total average processing time.

5.3 Best configuration

Algorithm 3 aggregates algorithms for «Population
Generation» and for calculation of the total average
processing time, based on the original PSO implementation.
It provides the configuration for the local thread pool that
results in the lowest total average processing time. The
«Best Configuration» algorithm receives as inputs: the
constraint of possible configurations, the constraint for the
total number of threads, the total message number, and the
processing time vector. Algorithm 1 is invoiced at line 5 to
generate the initial population of configurations to thread
pool. At line 10, the algorithm tests the stop condition,
which is the constraint for the number of possible solutions.
At line 12, the algorithm calculates the objective function by
the invocation of Algorithm 2. At line 13, the algorithm
compares the TAPT of the current configuration with the

lower TAPT found until that moment. At line 18, the
algorithm returns the minimal TAPT and the best configuration
for the thread pool amongst the solutions of the generated
population.

6 Validation

In this section, we describe the experiment that performed
using the real-world integration process, introduced in
Section 4. The applied protocol was based on the works of
Jedlitschka and Pfahl (2005), Wohlin et al. (2012) and
Basili et al. (2007) which provide procedures for controlled
experiments in the engineering studies field. Then, we
collected performance metrics from algorithm executions
and used ANOVA and Scott & Knott statistical techniques
to evaluate the results. In the following sections, we detailed
the steps of the experiment and its validation.

6.1 Research questions and hypothesis

To validate the proposed algorithm in this article, our
experiment answers the following research questions:

RQ1: Is it possible to obtain the optimal or near optimal
local thread pool configurations for run-time systems of
integration platforms, which minimises the total average
processing time?

140 D.L. Freire, R.Z. Frantz and F. Roos-Frantz

RQ2: Is it possible to obtain a mathematical model for the
total average processing time as a function of the total
thread number used in local thread pools?

For each research question, we provide a hypothesis that has
to be confirmed or refuted by the experiment, respectively:

H1: An optimal or near optimal thread pool configuration
for run-time systems of integration platforms can be found
by an algorithm based on optimisation techniques, in which
objective function is to minimise the average total time of
message processing in integration processes.

H2: A mathematical model for the total average processing
time as a function of the thread number can be found by
statistical techniques.

6.2 Environment and support tools

The experiments were carried out on a machine equipped
with 2 processors Intel Core i5-5200U, 2.20 GHz, 4GB of
RAM, and the operating system Microsoft Windows 10
Education 64-bits. The Matlab (Leonard and Levine, 1995)
software, version R2013, was used to create and execute the
algorithms. The Genes (Cruz, 2006) software, version
2015.5.0, was used to statistically analyse measured data in
this experiment. The source code developed and used in this
experiment is publicly available for download.1

6.3 Variables

Independent variables are:

 Solutions number: The initial population of thread pool
configurations tested by the optimisation algorithm. The
tested value for this variable was 10 solutions.

 Threads number: The number of threads that can be
distributed amongst the thread pools. The tested values
for this variable were: 10, 20, 30, 40, 50, 60, 70, 80, 90
and 100 threads.

 Messages number: The messages number that is
processed, i.e., the integration process workload. The
tested value for this variable was 38,723 messages. This
value is the number of registered real estates in Ijuí
town, in Brazil, where the integration process is used.

Dependent variables are:

 Total average processing time: The meantime a message
takes to be processed by all tasks that compose the critical
path of the integration process.

 Execution time: The time that the algorithm spends to
conclude an execution.

6.4 Execution and data collection

The execution of the algorithm was conducted using the
critical path of the integration process highlighted in the
integration pattern type graph shown in Figure 4. Table 3
shows the times, in milliseconds (ms), for every internal

task of the critical path, obtained from the execution of the
actual implementation of the integration process.

Table 3 Processing times of tasks

Task
Execution

time
Waiting

time
Sending

time
Receiving

time
Processing

time

t1 0.531 2 – – 2.531

t2 0.303 1 – – 1.303

t3 0.005 – 2 2 4.005

tc1 0.005 1 – – 1.005

t4 0.003 1 – – 1.003

t5 0.005 – 2 2 4.005

tc2 0.005 1 – – 1.005

1 t6 0.531 1 – – 1.531

t7 0.003 1 – – 1.003

t8 0.001 1 – – 1.001

Total 1.392 9 4 4 18.392

The experiment is classified in the literature as a termination
simulation, in which the experiment output is express as a
function of the initial conditions. In these cases, the results
are usually analysed statistically by the method of the
repetitions, where a repetitions number between 20 and 30
is sufficient to obtain a population mean, in distributions
with more extreme values that a normal distribution
(Sargent, 2013). We experimented 200 different scenarios,
which are synthesised follows:

Solutions
number:

10

Threads
number:

10, 20,…, 100

Messages
number:
38,723

 Executions: =
Total of

scenarios

1 10 1 20 = 200

We executed the algorithm by setting the number solutions, the
messages number, and the integration process. The latter is
represented by a vector, in which every element represents the
processing time of one of the tasks of the critical path of the
integration process. Besides this, we varied the threads number.
The execution of the algorithm was repeated 20 times for
every thread number. In every execution, we collected the
minimal total average processing time, the best thread
pool configuration, and the execution time of the «Best
Configuration» algorithm. The standard deviation and the gain
were calculated by the average total times of processing
measured in the experiment.

Statistical theory is indicated for the analysis of data
from experiments on performance (Georges et al., 2007),
since statistical reasoning is an appropriate resource to
deal with the non-determinism in computational systems,
such as run-time systems (Frantz et al., 2011). We used
the ANOVA variance analysis statistical technique to
differentiate amongst the variations found in a set of results,
which are derived from random factors called error and are
influenced by the total number of threads. Because there

 Towards optimal thread pool configuration for run-time systems of integration platforms 141

was a statistical difference in the results of the variance
analysis, we used the Scott & Knott technique to find out
how much the number of threads impacted differently the
total average processing time. The Scott & Knott technique
is considered a more rigorous test because it only considers
relevant differences between the alternatives and is adopted
in the literature in experiments with performance due to its
simplicity.

6.5 Results

In this section, we present the results. Line charts present the
optimal configurations of the thread pools and the total average
processing time for every one of constraints of total number of
threads. A table summarises standard deviations, execution
time averages of the algorithm, and the gains in total average
processing time. A scatter chart compares the results of
minimum average total times processing for every one of
constraints. Lastly, tables present the statistical analysis carried
out with ANOVA and Scott & Knott techniques.

The results of average total times processing for the
configurations of the local thread pool to the tasks of the
integration process of Figure 3 are presented in Figure 7.
In this last figure, the x-axis represents the order of the
execution. The y-axis represents the total average processing
time, in seconds.

A thread pool configuration is represented by a vector,
whose elements are the number of threads in each thread pool
and the index of the vector corresponds to the order of local
thread pool for tasks of a path of the integration process. The
black square on the curves shows minimum total average
processing time and the thread pool configuration that
provides this TAPT.

The standard deviation of the total average processing time,
the execution time of the algorithm, and the gain in total
average processing time are presented in Table 4. The standard
deviation is a measure that expresses the degree of dispersion
of a data set, i.e., it indicates how uniform a set of data is. Thus,
the more homogeneous a data set is, the closer the value of the
standard deviation is to zero. The execution time of
the algorithm is extracted by the execution tool itself,
which calculates the spent time executing in seconds
the algorithm by calculating the processing times of each
message in the threads, checking for the best thread
configuration for the thread pool, and calculating the total
average processing time. This metric does not include the time
of random generation of the initial population of solutions since
it is done only once and is fixed for every variation of the total
number of threads and for the variation of the number of
messages. The gain in total average processing time, defined
like the absolute value of the highest difference between the
TAPT and the minimum TAPT obtained with the optimal
configuration of thread pool, measured in seconds.

A scatter chart presents the lowest total average
processing time of all the executions for every value of the
total thread number constraint, cf. Figure 6. The x-axis
represents the total thread number constraint and the y-axis
represents the values of the total average processing time.

Table 4 Summary of the calculated results

Total number
of threads

Standard
deviation of the

TAPT

Execution time
average of the

algorithm

Gain of
the TAPT

10 0 102.18 0

20 19.26 108.32 47.89

30 15.93 147.84 47.89

40 18.75 183.26 51.69

50 15.35 227.79 58.08

60 12.22 282.87 58.12

70 12.42 347.45 58.12

80 16.80 404.76 58.16

90 12.84 505.10 58.16

100 6.78 577.32 19.39

Figure 6 Minimal total average processing time

Regression analysis is a method to estimate the relation
amongst the dependent variable, TAPT, and the independent
variables, threads number, NT. Let NT = (NT1, NT2,..., NTp)
be a vector of the independent variables and TAPT a
dependent variable, the mathematics function, which relates
TAPT and NT, can be expressed by the regression model,
c.f. In equation (10), where β is a vector of unknown
parameters, and ε is a disturbance term (Yao and Liu, 2018).

(|)TAPT f NT (10)

In regression analysis, the square of Pearson product-moment
correlation coefficient is an important parameter to determine
the degree of linear correlation of variables. This coefficient is
known as the correlation coefficient or, simply, R2. R2 is
defined by equation (11), where SSE is the sum of squared
error and SST is the sum of squared total (Kaytez et al., 2015).
Thus, R2 tends to 1 when SSE SST, i.e., the sum of squared

error is too small compared to the sum of the squared total.

2 1
SSE

R
SST

 (11)

TAPT is represented by a statistical trend line in Figure 6.
The trend line is a polynomial equation that describes the
behaviour of the total average processing time as a function
of the total threads number. The value of R2 was equal to
0.9947. Analytically, TAPT is represented by equation (12),

142 D.L. Freire, R.Z. Frantz and F. Roos-Frantz

where NT represents the number of threads and TAPT is the
value of the minimum total average processing time.

6 5

4 3

2

0.014 0.5003

7.053 49.946

186.03 346.3 280.99

TAPT NT NT

NT NT

NT NT

 (12)

We used statistical techniques to verify the influence of the
total number of threads used in the total average processing
time. Table 5 presents the analysis of variance of the
dependent variable, TAPT. The total of results is calculated
upon the multiplication of the number of executions by the
number of possible values for the total number of threads.
The total freedom degree is calculated by the total of
results –1.

Table 5 Variance analysis of TAPT by ANOVA technique

Sources of variation
Degree of
freedom Average square

Total numbers of
threads

9 4412.04†

Error 190 200.83

Total 199

 Overall average 39.99

Coefficient of
variation (%)

35.43

Note: †significant statistical by Fisher-Snedecor’s
Probability and error level of 5%.

Table 6 Average of TAPT by Scott & Knott technique

Total number of threads Average of the TAPT Group

10 77.55 a

20 49.55 b

30 41.85 b

40 42.31 b

50 34.70 c

60 32.26 c

70 30.25 c

80 34.04 c

90 29.42 c

100 27.94 c

Note: Error level of 5% by Scott & Knott model.

The degree of freedom of the total number of threads is
calculated by the amount of possible values of the total
number of threads subtracting 1. The degree of freedom for
error, calculated by the difference between the degree of
freedom of the total of results and the degree of freedom of
the factors. The analysis of variance of TAPT shows the
average square of 4412.04 for the total number of threads and
200.83 for error. Overall average was equal to 39.99 seconds
and the coefficient of variation was 35.43 %.

The average comparison test by Scott & Knott technique
of the dependent variable is presented in Table 6. The

constraints on the number of threads are in first column,
average of the minimum TAPT in the 20 executions is in
second column, and the group of Scott & Knott technique is
in second column. This technique groups number of threads
that are not the statistically different between themselves.
There were three groups: a, b and c. In «a» group are the
constraints on the number of threads 10. In «b» group are
the constraints on the number of threads 20, 30, and 40. In
«c» group are the constraints on the number of threads 50,
60, 70, 80, 90 and 100.

6.6 Discussion and comparison

The algorithm was able to find the minimum total average total
processing time, c.f. Figure 7. The total average total
processing time reduces with the increase of the thread number,
c.f. Figure 8. However, it is possible to infer that this reduction
has a limit, after which it, the TAPT stabilise and do not
decrease. The minimal number of threads to distribute amongst
the 10 thread pools equals 10, one thread for every pool. In this
case, the algorithm only can provide one configuration for
thread pools and the minimum total average processing time
was 77.55 seconds. When the number of threads to distribute
is greater than 10, the algorithm can provide different
configurations for thread pools, resulting in different values for
minimum average total time. When the constraint equals 20
and 30 threads, the minimum TAPT was 29.66 seconds, so
there was a 47.89 seconds reduction regarding the constraint
equal 10 threads. When the constraint equals 40 threads, the
minimum TAPT was 25.86 seconds, so there was a 3.80
seconds reduction regarding the constraint equals 20 or 30
threads. When the constraint equals 50 threads, the minimum
TAPT was 19.47 seconds, so there was a 6.39 seconds
reduction regarding the constraint 40 threads. When the
constraint equals 60, 70, or 80, the minimum TAPT was the
same: 19.43 seconds, so there was only 0.04 seconds reduction
regarding the constraint equals 50 threads. When the constraint
equal 90 threads and 100 threads, the minimum TAPT was the
same: 19.39 seconds, so there was only 0.04 seconds reduction
regarding the constraint equals 60, 70 and 80 threads.

The values of the standard deviation show that the set of
configurations for thread pool was quite heterogeneous. The
execution time values of the proposed algorithm increase
proportionally to the number of threads, cf. 4. We can infer that
it is possible to improve the implementation performance of the
algorithm changing the stop criterion, such as establishing a
previous value for TAPT and stopping the algorithm execution
when a thread configuration reaches a TAPT value lower than
this. We also identified that a variation of the total of threads
distributed results in a variation of until 50 seconds in the total
average processing time. Trend line in Figure 6 shows that the
minimum total average processing time decreases with the
increase of the number of threads, suggesting that the total
average processing time decreases with the addition of threads
up to a limit. The trend line allows to predict the TAPT value
for a given number of threads in local thread pools. In this
figure, the coefficient of determination value equal to 1
indicates that the model is able to explain the observed TAPT
in the experiments conditions.

 Towards optimal thread pool configuration for run-time systems of integration platforms 143

Figure 7 Minimum TAPT in every execution of algorithm

Figure 8 TAPT reduction

144 D.L. Freire, R.Z. Frantz and F. Roos-Frantz

We observed that the variation of the total number of threads
generates a significant difference on total average processing
time, cf. Table 5. The coefficient of variation was reduced,
indicating that the experiment is adequate and reliable. In The
Scott & Knott averages comparison test, the lowest TAPT
was using 100 threads, the lowest TAPT average was
27.94 seconds, cf. Table 6. The largest difference between
TAPT averages was between 10 and 100 threads was 49.61
seconds, whereas the difference between 30 and 40 threads
was only 0.46 seconds. In the TAPT analysis, same letter
groups do not differ statistically amongst themselves. The
TAPT averages with 20,30 and 40 threads do not differ
statistically, which belong «b» group; from 50 threads there is
no statistically significant difference, which belong «c»
group; whereas, the use of 10 threads presents a statistically
significant difference of the others.

6.7 Summary of results

In this section, we sum up the main conclusions from the
results found in our experiment, answered our research
questions and validate our hypothesis. Regarding the
conclusions:

 In terms of processing time savings, the gain achieved
by the thread pool configuration found by the algorithm
attests the advantage of using this algorithm rather than
empirically choose a configuration.

 The polynomial equation found to represent TAPT as a
function of the total number of threads shows that TAPT
tends to a constant, that is, from a certain point, TAPT
does not change when the thread number increase. Thus,
the model finds the least number of threads for a given
TAPT value that one wishes to obtain.

 The ANOVA technique proved that our experiment is
valid, since there was a significant difference in TAPT
with different numbers of threads.

 The Scott & Knott technique showed that thread
numbers can be grouped and within each group, these
numbers bring similar results from TAPT. Therefore,
one can choose the least number of threads in the group
that results in the desired TAPT, in order to save
computational resources and, consequently, costs for
the companies.

Regarding the research questions and hypothesis:

 RQ1: Our algorithm obtained a near optimal local
thread pool configurations of run-time systems that
minimised the total average processing time. Gain
about 75% was obtained between TAPT found 19.39
seconds and the worst case with TAPT equals 77.55
seconds, using 90 threads.

 RQ2: A trend line found by regression analysis and
shown in equation (12), represents the total average
processing time as a function of the total number of
threads used in the local thread pool execution model.

By the experiment, we confirm our hypothesis for each of
the research questions, respectively:

 H1: An optimal or near optimal configuration for the
thread pools of run-time systems was found by a PSO-
based algorithm, which objective function was to
minimise the total average processing time messages in
an integration process.

 H2: A mathematical model for the TAPT as a function
of the number of threads was obtained by linear
regression after validation of the results by ANOVA
and Scott & Knott statistical techniques.

6.8 Threats to validity

As researchers, our goal is to mitigate all possible validity
threats, since they are present in any empirical research
(Cruzes and Ben Othman, 2017). We evaluated the factors
that could influence results of the experiment and tried to
mitigate these threats. In the following, we discuss its
constructor, conclusion, internal, and external validity.

First, we substantiate our research by previous studies
and mathematical base. After, we planned the experiment
according to procedures from empirical software engineering
presented by Jedlitschka and Pfahl (2005), Wohlin et al. (2012)
and Basili et al. (2007). In this planning, we provide
information about the execution environment, supporting tools,
variables, execution and data collection. Then, we simulate a
real-world integration process in two hundred different
scenarios and used ANOVA and Scott & Knott statistical
techniques to evaluate the results.

Conclusion validity concerns with to ensure that the
treatment used in the experiment is really related to the
actual outcome observed (Feldt and Magazinius, 2010). We
used statistical techniques to assure that the actual outcome
observed in our experiment is related to the used threads
configurations, and not to factors that we do not control or
have not measured, and we verified that there was a
significant difference in the outcome.

Internal validity aims to ensure that the treatment
actually caused the outcome, mitigating effects of other
uncertain factors or not measured (Feldt and Magazinius,
2010). In order to minimise interference in the execution
time of the algorithm, the experiment was performed in the
same machine, that was set on security mode, using minimal
features and the machine was disconnected from the internet
during the executions.

External validity focuses on the generalisation the
results outside the scope of our study (Feldt and
Magazinius, 2010). The steps of the experiment are valid to
compare other scenarios with other integration processes,
other numbers of messages and other numbers of possible
solutions generated by the population algorithm. Thus, as
future work, we intend to perform the experiment with a
large data set in order to evaluate the generalisation of the
results.

 Towards optimal thread pool configuration for run-time systems of integration platforms 145

7 Conclusions

Integration platforms are tools used by companies to
exchange data and share functionality amongst different
applications that compose their software ecosystems. These
platforms implement and execute integration processes,
which can be seen as workflow composed of atomic tasks.
The run-time system is the component of the platform
responsible for the execution of integration processes.
Therefore, it is the most important element when the goal of
a companies is performance. The runtime system efficiency
is directly related to configuration of computational
resources that perform the tasks, the threads. However, this
configuration is based only in the experience of software
engineers because there is no automatic way to do this.
Threads are grouped in local thread pools and every one of
them must contain the proper number to achieve the shortest
processing time.

This article proposed an algorithm that obtains an
optimum or near optimal configuration for local thread
pools, which provides a lower average processing time of
messages. This approach improves the performance of run-
time systems and, consequently, increases productivity and
reduces costs for enterprises. The algorithm, which is based
on PSO meta-heuristic, was implemented in a programming
language and experimented in the execution of a real-world
integration process, where the scenarios varied the total
number of threads distributed in local thread pools. We also
applied statistical techniques to analyse the results and find
a mathematical model to describe the behaviour of the total
average processing time as a function of the total number of
threads. We can point out our main contributions:

 Optimal thread pool configuration found by algorithm
obtains the lowest message processing time.

 The ANOVA technique showed a significant difference
in relation to the use of different thread numbers to
local thread pools, thus it makes sense to find the
optimum thread number.

 The Scott & Knott technique found groups of thread
numbers, where every group results in the same gain, in
statistical terms. Thus, it is possible to select the lowest
thread number in every group and so to save costs to
obtain the same TAPT.

 A polynomial equation that describes the TAPT can
help to estimate it varying the thread numbers or to
estimate the thread number to obtain a determined
TAPT.

 The experiment can be adopted for other scenarios,
varying message numbers, integration processes, thread
numbers, and tested configuration numbers.

We answered the research questions and confirm the initial
hypotheses:

RQ1: Our algorithm allowed to obtain near-optimal local
thread pool configurations of run-time systems of integration
platforms that minimised the TAPT. Thus, the algorithm is a
helpful tool for software engineers to obtain thread pool
configurations.

RQ2: We obtained a mathematical model for the TAPT,
where it is possible to estimate the TAPT to a given number
of threads or to choose the number of threads that results in
the desired TAPT.

H1: Our PSO-based algorithm found a near-optimal
configuration for the thread pools of run-time systems of
integration platforms, which resulted in the lowest TAPT of
the set of configurations tested.

H2: From linear regression statistical technique, obtained a
mathematical model for the TAPT as a function of the
number of threads.

Following, we list the points that intent to carry out in the
experiment, as future work, in order to extend the results of
this research.

 Variation in messages number, aiming to analyse the
algorithm behaviour in big data scenarios.

 Variation in message arrival rates, aiming to analyse the
algorithm behaviour in stream processing systems.

 Variation in the total thread number, aiming to analyse
the algorithm behaviour in thrashing scenarios.

 Simulation of the other integration processes, aiming to
analyse the algorithm behaviour in different integration
logic.

 Increase in tested solution number in the initial population
of Algorithm 1, aiming to analyse the algorithm general
behaviour.

Acknowledgement

This work was supported by CAPES and FAPERGS under
grant 17/2551-0001206-2.

References

Abdulhamid, S., Shafie, A.L. and Idris, I. (2014) ‘Tasks scheduling
technique using league championship algorithm for makespan
minimization in IaaS cloud’, Journal of Engineering and
Applied Sciences, Vol. 9, pp.2528–2533.

Abraham, A.A., King, G.M., Rosa, D.V. and Schmidt, D.W. (2016)
Runtime capacity planning in a simultaneous multithreading
(SMT) environment.

Alexander, C., Ishikawa, S. and Silvertein, M (1977) A Pattern
Language: Towns, Buildings, Construction, Oxford University
Press.

An, J., Kang, Q., Wang, L. and Wu, Q. (2012) ‘Population- based
dynamic scheduling optimisation for complex production
process’, International Journal of Computer Applications in
Technology Vol. 43, No. 4, pp.304–310.

146 D.L. Freire, R.Z. Frantz and F. Roos-Frantz

Appel, A.W. (1990) ‘A runtime system’, LISP and Symbolic
Computation, Vol. 3, No. 4, pp.343–380.

Aron, R., Chana, I. and Abraham, A (2015) ‘A hyper-heuristic
approach for resource provisioning-based scheduling in
grid environment’, The Journal of Supercomputing, Vol. 71,
No. 4, pp.1427–1450.

Basili, V.R., Rombach, D., Kitchenham, K.S.B., Selby, D., Pfahl,
R.W. (2007) Empirical Software Engineering Issues, Springer
Berlin/Heidelberg.

Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J. and Brandic, I.
(2009) ‘Cloud computing and emerging it platforms: vision,
hype, and reality for delivering computing as the 5th utility’,
Future Generation computer systems, Vol. 25, No. 6,
pp.599–616.

Byun, E.K., Kee, Y.S., Kim, J.S. and Maeng, S. (2011) ‘Cost
optimized provisioning of elastic resources for application
workflows’, Future Generation Computer Systems, Vol. 27,
No. 8, pp.1011–1026.

Canon, L.C. and Jeannot, E. (2007) ‘A comparison of
robustness metrics for scheduling DAGs on heterogeneous
systems’, Proceedings of the International Conference on
Cluster Computing (IEEE Cluster), pp.558–567.

Chhabra A., and Oshin (2018) ‘Hybrid psacga algorithm
for job scheduling to minimize makespan in heterogeneous
grids’, Proceedings of the Industry Interactive Innovations
in Science, Engineering and Technology (I3SET),
pp.107–120.

Chirkin, A.M., Belloum, A.S., Kovalchuk, S.V., Makkes, M.X.,
Melnik, M.A., Visheratin, A.A. and Nasonov, D.A. (2017)
‘Execution time estimation for workflow scheduling’, Future
Generation Computer Systems, Vol. 75, pp.376–387.

Chitra, S., Madhusudhanan, B., Sakthidharan, G.R. and Saravanan, P.
(2014) ‘Local minima jump PSO for workflow scheduling
in cloud computing environments’, Proceedings of the
Advances in Computer Science and its Applications (CSA),
pp.1225–1234.

Cruz, C.D. (2006) Programa Genes: Eestatistica Experimental e
Matrizes, Editora Universidade Federal de Viœsa.

Cruzes, D.S. and Ben Othman, L. (2017) ‘Threats to validity in
empirical software security research’, Proceedings of the
Empirical Research for Software Security, pp.295–320.

Feldt, R. and Magazinius, A. (2010) ‘Validity threats in empirical
software engineering research-an initial survey’, Proceedings
of the International Conference on Software Engineering and
Knowledge Engineering (SEKE), pp.374–379.

Frantz, R.Z., Corchuelo, R. and Arjona, J.L. (2011) ‘An efficient
orchestration engine for the cloud’, Proceedings of the
International Conference on Cloud Computing Technology and
Science (Cloud-Com), pp711–716.

Frantz, R.Z., Corchuelo, R. and Roos-Frantz, F. (2016) ‘On the
design of a maintainable software development kit to
implement integration solutions’, Journal of Systems and
Software, Vol. 111, pp.89–104.

Freire, D.L., Frantz, R.Z. and Roos-Frantz, F. (2019a) ‘Ranking
enterprise application integration platforms from a
performance perspective: an experience report’, Software:
Practice and Experience, Vol. 49, No. 5, pp.921–941.

Freire, D.L., Frantz, R.Z., Roos-Frantz, F. and Sawicki, S. (2019b)
‘Survey on the run-time systems of enterprise application
integration platforms focusing on performance’, Software:
Practice and Experience, Vol. 49, No. 3, pp.341–360.

Georges, A., Buytaert, D. and Eeckhout, L. (2007) ‘Statistically
rigorous java performance evaluation’, ACM SIGPLAN
Notices, Vol. 42, No. 10, pp.57–76.

Ghosh, T.K. and Das, S. (2018) ‘Job scheduling in computational
grid using a hybrid algorithm based on particle swarm
optimization and extremal optimization’, Journal of
Information Technology Research, Vol. 11, No. 4, pp.72–86.

Ghosh, T.K., Das, S., Barman, S. and Goswami, R. (2017) ‘Job
scheduling in computational grid based on an improved
cuckoo search method’, International Journal of Computer
Applications in Technology, Vol. 55, No. 2, pp.138–146.

Hohpe, G. and Woolf, B. (2004) Enterprise integration Patterns:
Designing, Building, and Deploying Messaging Solutions.
Addison-Wesley Professional

IBGE (2017) Brazilian institute of georgraphy and statistics.
Available online at: www.ibge.gov.br

Indrasiri, K. (2016) Introduction to WSO2 ESB, Springer

James, E. and Kelley, J. (1961) ‘Critical-path planning and
scheduling: Mathematical basis’, Operations Research, Vol.
9, No. 3, pp.296–320.

Jedlitschka, A. and Pfahl, D. (2005) ‘Reporting guidelines for
controlled experiments in software engineering’, Proceedings of
the International Symposium on Empirical Soft. Engineering
(ESEM), pp.95–104.

Jian, C., Tao, M. and Wang Y (2014) ‘A particle swarm optimisation
algorithm for cloud-oriented workflow scheduling based on
reliability’, International Journal of Computer Applications in
Technology, Vol. 50, Nos. 3/4, pp.220–225.

Kaytez, F., Taplamacioglu, M.C., Cam, E. and Hardalac, F. (2015)
‘Forecasting electricity consumption: a comparison of
regression analysis, neural networks and least squares support
vector machines’, International Journal of Electrical Power
and Energy Systems, Vol. 67, pp.431–438.

Konsek, H (2013) Instant Apache ServiceMix How-to, Packt
Publishing.

Lee, J., Wu, H., Ravichandran, M. and Clark, N. (2010) ‘Thread
tailor: dynamically weaving threads together for efficient,
adaptive parallel applications’, Proceedings of the International
Symposium on Computer Architecture (ISCA),, Vol. 38,
pp.270–279.

Leonard, N.E. and Levine, W.S. (1995) Using MATLAB to Analyze
and Design Control Systems, Benjamin-Cummings Publishing
Company

Lin, S.W. and Ying, K.C. (2019) ‘Makespan optimization in a no-wait
flowline manufacturing cell with sequence- dependent family
setup times’, Computers and Industrial Engineering, Vol. 128,
pp.1–7.

Linthicum, D.S. (2017) ‘Cloud computing changes data integration
forever: what’s needed right now’, IEEE Cloud Computing,
Vol. 4, No. 3, pp.50–53.

Liu, L., Fan, Q. and Fu, D. (2018) ‘A survey of resource allocation
in the mobile cloud computing environment’, International
Journal of Computer Applications in Technology, Vol. 57,
No. 4, pp.281–290.

Lorenzon, A.F., Cera, M.C. and Beck, A.C.S. (2016) ‘Investigating
different general-purpose and embedded multicores to achieve
optimal trade-offs between performance and energy’, Journal
of Parallel and Distributed Computing, Vol. 95, pp.107–123.

Manikas, K. (2016) ‘Revisiting software ecosystems research:
A longitudinal literature study’, Journal of Systems and
Software, Vol. 117, pp.84–103.

 Towards optimal thread pool configuration for run-time systems of integration platforms 147

Milani, F.S. and Navin, A.H. (2015) ‘Multi-objective task
scheduling in the cloud computing based on the particle
swarm optimization’, International Journal of Information
Technology and Computer Science, Vol. 7, No. 5, pp.61–66.

Pandey, S., Wu, L., Guru, S.M. and Buyya, R. (2010) ‘A particle
swarm optimization-based heuristic for scheduling workflow
applications in cloud computing environments’, Proceedings
of the International Conference on Advanced inform.
networking and applications (AINA), pp.400–407.

Pereira, J.L. and Varajão, J. (2019) ‘The temporal dimension of
business processes: requirements and challenges’, International
Journal of Computer Applications in Technology, Vol. 59, No. 1,
pp.74–81.

Pragaladan, R. and Maheswari, R. (2014) ‘Improve workflow
scheduling technique for novel particle swarm optimization in
cloud environment’, International Journal of Engineering
Research and General Science, Vol. 2, No. 5, pp.675–680.

Ramezani, F., Lu, J. and Hussain, F.K. (2014) ‘Task-based system
load balancing in cloud computing using particle swarm
optimization’, International Journal of Parallel Programming,
Vol. 42, No. 5, pp.739–754.

Ritter, D., Forsberg, F.N., Rinderle-Ma, S. (2018) ‘Optimization
strategies for integration pattern compositions’, Proceedings
of the International Conference of Distributed Event-based
Systems (DEBS), ACM, New York.

Rodriguez, M.A. and Buyya, R. (2014) ‘Deadline based resource
provisioning and scheduling algorithm for scientific workflows
on clouds’, Transactions on Cloud Computing, Vol. 2, No. 2,
pp.222–235.

Russell, J. and Cohn, R. (2012b) Jitterbit Integration Server, Book
on Demand

Russell, J. and Cohn, R. (2012a) Fuse ESB, Book on Demand.

Sargent, R.G. (2013) ‘Verification and validation of simulation
models’, Journal of simulation, Vol. 7, No. 1, pp.12–24.

Shishido, H.Y., Estrella, J.C., Toledo, C.F.M. and Arantes, M.S.
(2018) ‘Genetic-based algorithms applied to a workflow
scheduling algorithm with security and deadline constraints
in clouds’, Computers and Electrical Engineering, Vol. 69,
pp.378–394.

Sidhu, M.S., Thulasiraman, P. and Thulasiram, R.K. (2013) ‘A load-
rebalance PSO heuristic for task matching in heterogeneous
computing systems’, Proceedings of the Symposium on Swarm
Intelligence (SIS), pp.180–187.

Subashini, G. and Bhuvaneswari, M (2012) ‘Task allocation in
distributed computing systems using adaptive particle swarm
optimisation’, International Journal of Computer Applications in
Technology, Vol. 44, No. 4, pp.293–302.

Suleman, M.A., Qureshi, M.K. and Patt, Y.N. (2008) ‘Feedback-
driven threading: power-efficient and high performance
execution of multi-threaded workloads on CMPS’, ACM
Sigplan Notices, Vol. 43, No. 3, pp.277–286.

Surhone, L.M., Timpledon, M.T. and Marseken, S.F. (2010) Petals
ESB, Betascript Publishing.

Touzene, A., Yahyai, S.A. and Oukil, A. (2019) ‘Smart grid resources
optimisation using service oriented middleware’, International
Journal of Computer Applications in Technology, Vol. 59, No. 1,
pp.53–63.

Verma, A. and Kaushal, S. (2015) ‘Cost minimized PSO based
workflow scheduling plan for cloud computing’, International
Journal of Information Technology and Computer Science,
Vol. 7, No. 8, pp.37–43.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B. and
Wesslen, A. (2012) Experimentation in Software Engineering,
Springer Science & Business Media.

Wu, Z., Ni, Z., Gu, L. and Liu, X (2010) ‘A revised discrete particle
swarm optimization for cloud workflow scheduling’, Proceedings
of the International Conference on Computational Intelligence
and Security (CIS), pp.184–188.

Yao, K. and Liu, B. (2018) ‘Uncertain regression analysis: an
approach for imprecise observations’, Soft Computing-A Fusion
of Foundations, Methodologies and Applications Vol. 22, No. 17,
pp.5579–5582.

Yassa, S., Chelouah, R., Kadimaand, H. and Granado, B (2013)
‘Multi-objective approach for energy-aware workflow scheduling
in cloud computing environments’, The Scientific World Journal,
pp.1–14.

Zhang, J., Chen, J. and Zhang, H. (2018) ‘Job-shop schedule
modelling and parents-crossover evolutionary optimisation for
integrated production schedules’, International Journal of
Computer Applications in Technology, Vol. 58, No. 4, pp.288–295.

Note

1 http://www.gca.unijui.edu.br/publication/data/ijcat-pso-
sources.zip

