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Abstract: Companies seek technological alternatives to increase competitiveness, an example, 
are the integration platforms, that develop integration processes in order to connect 
functionalities and data from applications that compose software ecosystems. Threads are 
computational resources of the platforms, responsible for integration processes execution. Thus, 
the configuration of threads has a direct influence on the performance of platforms. However, this 
is a challenge faced by software engineers, who do this configuration empirically. Our scientific 
and technical literature review did not identify a systematic approach to find the ideal 
configuration, which depends on factors such as workload, hardware and integration process. 
Thus, it is appropriate to seek alternatives for configuration that provide a positive impact on the 
performance of the run-time system, increase productivity, and reduce costs. Inspired by the 
Particle Swarm Optimisation meta-heuristic, this article proposes an algorithm that finds the ideal 
configuration for local thread pool, minimising the total average processing time to improve the 
execution of integration platforms. The algorithm was implemented and tested using a real-life 
integration process and its performance measures show the feasibility and efficiency of our 
proposal, supported by a rigorous statistical analysis of results. 
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1 Introduction 

Business processes of enterprises are supported by a set  
of applications that make up their software ecosystem. 
Application development technologies have been transformed 

over time and new software services available on the internet  
have also been incorporated into software ecosystems, making 
ecosystems more heterogeneous (Manikas, 2016). Such 
applications need to work together to provide efficient 
responses for business processes. 
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Enterprise Application Integration (EAI) is the research 
field that provides methodologies, techniques, and tools to  
construct integration processes, enabling applications to share 
data and functionality to meet requirements of business 
processes. Integration platforms are specialised software tools 
that allow software engineers to design, implement, run,  
and monitor integration processes (Freire et al., 2019a).  
An integration process implements a workflow composed  
of distinct atomic tasks that process messages which flow into 
the process. Hohpe and Woolf (2004) have documented a set  
of concep l integration patterns that have inspired the 
development of open-source integration platforms. Such open-
source integration platforms have also followed the Pipes-and- 
Filters architecture (Alexander et al., 1977). In an integration 
process, pipes represent message channels and filters represent 
atomic tasks that implement a concrete integration pattern to 
process data encapsulated within the messages. Amongst the 
state-of-the-art open-source integration platforms, which adopt 
the integration patterns and the Pipes-and-Filters architecture, 
are: Fuse (Russell and Cohn, 2012a), ServiceMix (Konsek, 
2013), Petals (Surhone et al., 2010), Jitterbit (Russell and 
Cohn, 2012b), WSO2 ESB (Indrasiri, 2016), and Guarana 
(Frantz et al., 2016). Typically, these platforms provide a 
domain-specific language, a development toolkit, a run-time 
system, and monitoring tools. The domain-specific language 
enables the description of conceptual models for integration 
processes. The development toolkit is a set of software tools 
that allow the implementation of integration processes, i.e., 
transforms a conceptual model into executable code. The run-
time system is the component responsible for running the 
integration processes (Freire et al., 2019b). Monitoring tools 
are used to detect failures that may occur during the execution 
of an integration process. 

The tasks that compose an integration process are executed 
by available threads in the run-time system. Threads are the 
smallest sequence of programmed statements that can be 
managed by the run-time system. Threads are grouped in 
thread pools that are generally configured in two ways: Global 
thread pool and Local thread pool. In the former, there is one 
single thread pool to execute every task of the workflow. In the 
latter model, there are multiple thread pools, each of them 
executing one task of the task flow. The performance that the 
execution of an integration process is able to achieve, in terms 
of message processing per unit of time, is directly related to the 
run-time system. 

Typically, in order to achieve the desired performance, 
software engineers increase the number of threads in the  
run-time system. This strategy has generally an initial  
positive impact on execution performance, but it can lead to 
degradation, causing a lower message processing per unit of 
time. This degradation is due to the time spent by the operating 
system to manage the context change amongst threads and their 
competition over the resources of the system (Suleman et al., 
2008; Lorenzon et al., 2016; Liu et al., 2018). Besides, this 
increased performance is proportional to an increase in 
financial costs required to purchase hardware or to hire cloud 
services with greater processing power. In the case of cloud  
 

service, the charging model is pay-as-you-go, in which 
companies pay by the number of computing resources  
consumed (Buyya et al., 2009). Linthicum (2017) claims that 
the integration platforms need to be re-engineered to ensure 
they are suitable for cloud deployment, to take advantage  
of the scalability provided and to reduce costs by optimising 
computational resource usage. 

In order to provide adequate performance concomi-tantly 
with the threads number constraint, it is necessary to find its 
optimum distribution in local thread pools, using the least total 
number of threads to perform tasks in an integration process. 
This is a challenge for software engineers who indicate these 
numbers of threads according to their practical knowledge.  
If these numbers are high, shared resources, such as cache 
capacity or memory bandwidth, can quickly saturate, thus 
degrading performance; in contrast, if these numbers are low, 
the integration processes execution becomes inefficient  
(Lee et al., 2010). 

Recent researches have tackled task scheduling in other 
domains. In the distributed systems field, Ghosh and Das 
(2018) proposed Particle Swarm Optimisation (PSO) meta-
heuristic-based algorithm and Touzene et al. (2019) proposed 
mixed-Integer Linear Program-based algorithm. Zhang et al. 
(2018) proposed an algorithm to deal with a class of job-shop 
scheduling optimisation problems. In the cloud computing 
field, Verma and Kaushal (2015) and Milani and Navin (2015) 
proposed PSO-based algorithms. However, there is a lack of 
research in EAI field. In this article, we propose an algorithm 
based on the PSO, which provides the optimum or near optimal 
configuration for the thread number in every local thread pool 
of run-time systems. The proposed algorithm was validated in a 
real-world integration process. The results show the efficiency 
of our algorithm to find a configuration of local thread pool that 
minimises the average total time of message processing, 
obeying to the restriction of the total threads number. The 
proposed algorithm contributes to increase the performance of 
run-time systems, achieving a higher number of processed 
messages. 

The rest of this article is organised as follows: Section 2 
discusses related work; Section 3 provides background 
information on the run-time system and the local thread pool 
execution model; Section 4 formulates the configuration of 
local thread pools problem; Section 5 exposes the proposed 
optimisation algorithm; Section 6 reports our proposal 
validation; and, Section 7 presents our conclusions. 

2 Related work 

In this section, we gather works in different research fields, 
regarding performance optimisation, which have adopted meta-
heuristics to deal with the configuration of computational 
resources in order to increase the performance of applications 
execution by minimising the makespan. Makespan is a 
performance metric, defined as the total execution time of  
an application or process for a given message (Canon and 
Jeannot, 2007). 
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Pandey et al. (2010) aimed to minimise the running cost of 
a single workflow while balancing tasks on available resources 
to cloud resources, considering computation cost and  
data transmission cost. Their work focused on scheduling 
applications to cloud computing resources, whereas this 
proposal focuses on task execution balance of an integration 
process on available threads of a run-time system. Wu et al. 
(2010) performed an experiment with workflow applications, 
by varying data communication costs and computation costs, 
c.f. the cloud price model. They used PSO meta-heuristic to 
minimise data communication and computation costs in cloud; 
whereas this article used PSO to minimise total average 
processing time in the integration processes execution. Byun et 
al. (2011) estimated the necessary optimal number of resources 
to be allocated in order to minimise the cost of running a 
workflow. Their work presented an algorithm that estimates the 
minimum computing resources to execute a workflow within a 
predefined time span, for the automatic execution of 
applications on dynamically and elastically provisioned 
computing resources; whereas this article presents an algorithm 
that finds the best configuration of threads in local thread pool 
for a task workflow. 

Subashini and Bhuvaneswari (2012) proposed a PSO 
adaptation to increase the task allocation performance of 
parallel applications amongst the various processors on a 
distributed system. Their algorithm obtained a set of optimal 
allocations with an increased performance level. Their work 
concerned the task allocation amongst the various processors, 
whereas this article concerns the allocation of tasks of an 
integration process amongst the various thread pools. An et al. 
(2012) proposed a PSO-based algorithm to find a near optimal 
operation sequence and schedule strategy for production 
processes. Their algorithm sought the minimal total makespan 
in its admissible sequence space. Their work applied PSO to 
schedule tasks in a production process minimising the 
makespan, whereas this article applies a PSO-based algorithm 
to schedule task of an integration process amongst local thread 
pools. 

Yassa et al. (2013) proposed an approach for multi- 
objective workflow scheduling in clouds, and presented the 
hybrid algorithm, using a method called multi-objective 
Discrete Particle Swarm Optimisation combined with  
the Dynamic Voltage and Frequency Scaling technique  
to optimise the scheduling performance and to minimise  
energy consumption, while preserving the quality of service 
preferences of the users. Their approach used PSO to optimise 
energy consumption; whereas this article uses PSO to minimise 
makespan in task execution of workflow applications. Sidhu  
et al. (2013) proposed a load re-balance algorithm using PSO 
together with the smallest position value technique for task 
schedule problem. Their work measured the overall task 
completion time and compared their results with another-based 
PSO heuristic. Their work aimed to improve applications in 
commercial computing environments like cloud; whereas, our 
algorithm seeks to improve the run-time systems performance 
of integration platforms and measures the total average 
processing time of message and compares their results with 
different configuration for thread pool. 

 

Chitra et al. (2014) used PSO to locate a suitable 
workflow schedule to optimise load balancing, speedup ratio, 
and makespan in cloud computing environment and their 
proposed algorithm was experimented and compared with 
Genetic Algorithms and standard PSO methods; whereas,  
this article seeks to minimise the makespan of integration 
processes, our algorithm was experimented and compared 
with different configuration for thread pool. Pragaladan and 
Maheswari (2014) presented dynamic and static algorithms 
for task scheduling and resource provisioning that rely on 
workflow structure information, such as critical shortest paths 
and workflow levels, beyond estimates of task run-times in 
multiple cloud providers. Their experiments compared their 
algorithms with others based in standard PSO, using four 
workflows. This article seeks to evaluate the proposed 
algorithm regarding its ability to find an optimal or near- 
optimal configuration that results in a lower makespan in run-
time systems of integration platforms. Rodriguez and Buyya 
(2014) presented a PSO-based algorithm, which aimed to 
minimise the overall execution cost while meeting deadline 
constraints for scheduling a scientific workflows application 
in a cloud environment. Their focuses were features of the 
Infrastructure as a Service, such as the dynamic provisioning 
and heterogeneity of unlimited computational resources and 
the performance variation of the virtual machines. Their 
algorithm produced a schedule defining the mapping of the 
tasks to the resources, the number and type of virtual 
machines, the initial and final time of their leases; whereas, 
our PSO-based algorithm indicates a configuration to thread 
pool in run-time systems of integration platforms, which 
objective function is to minimise the makespan. Jian et al. 
(2014) proposed a PSO-based algorithm to schedule tasks to 
cloud resource suppliers considering the reliability of these 
resource providers and of the network data transmission 
between suppliers. They defined a reliability measure by a 
mathematical model, used to evaluate the task to run and the 
reliability degree in data transmission. Their work used PSO 
algorithm to address reliability to schedule tasks to cloud 
computing; whereas, this article finds the best threads 
distribution to the task execution of integration processes. 
Ramezani et al. (2014) proposed a task-based system to load 
balancing by migrating tasks from an overloaded virtual 
machine to another homogeneous virtual machine, instead of 
migrating the entire overloaded virtual machine. Their work 
measured the task execution time and task transfer time and 
compared their results with other traditional methods for load 
balancing, aiming an energy consumption reduction. In this 
article, the proposed algorithm balances the number of 
threads into thread pool, aiming to minimise the makespan of 
the task execution of integration process. 

Verma and Kaushal (2015) extended the previous proposal, 
called Bi-Criteria Priority-based PSO, which scheduled 
workflow tasks over the available cloud resources, minimising 
the execution cost, while considering the constraints of 
deadline and budget. Their work simulated the proposed 
algorithm and compared state-of-art algorithms. In a different 
approach, this article proposes an algorithm that minimises  
 
 



132 D.L. Freire, R.Z. Frantz and F. Roos-Frantz  

the makespan in run-time system of integration platforms. 
Milani and Navin (2015) proposed a PSO-based algorithm, 
using a multi-objective function, to schedule the tasks in the 
cloud. They measured the execution time, waiting time  
and missed tasks and compared it to other task scheduling 
policies, such as First Come First Served, Shortest Process 
Next and Highest Response Ratio Next; whereas, this article 
measures the execution time, total average processing time of 
messages, time of processing gain, standard deviation and 
compared using different configurations for thread pool. Aron 
et al. (2015) proposed PSO-based hyper-heuristic method that 
minimises the time and cost along with optimised utilisation 
of the resources in the grid environment, without violating the 
security norms. Their authors simulated the proposed 
algorithm in order to evaluate its performance and compared 
with other existing common heuristic-based scheduling 
algorithms; whereas, this article presents the algorithm based 
on PSO, which finds a configuration to thread pool and also 
presents a makespan evaluation of the execution of a real-
world integration process. 

Ghosh et al. (2017) proposed a Cuckoo Search adaptation 
optimisation method for scheduling user-jobs to available 
resources for grid computing, in order to optimise 
performance metrics in terms of makespan and completion 
time. They measured makespan, standard deviation and 
completion times for the proposed algorithm and compared 

with simulated annealing and cuckoo search algorithm. 
Ghosh and Das (2018) proposed a hybrid algorithm,  
combining Extreme Optimisation and PSO. Their algorithm 
aimed, simultaneously, to minimise makespan, processing  
cost and job failure rate, and maximise resource utilisation of 
computational grid systems. Their works approach concerned 
task schedule in grid computing; whereas our concern focus 
on the task schedule in integration platforms runtime systems. 
Zhang et al. (2018) proposed an algorithm to deal with a class 
of job-shop scheduling optimisation problems. Based on the 
job-shop process model, their algorithm proposed active 
schedules encoding and decoding approaches for production 
processes scheduling. Their works approach concerned job-
shop process schedule; whereas our concern is the integration 
processes tasks schedule. 

Touzene et al. (2019) proposed a service oriented 
architecture for resource management optimisation based on a 
mathematical model, on mixed-Integer Linear Program, 
which selected the best resource allocation for all the smart 
grid constituencies and generates only the amount of energy 
needed by the consumers. Their works approach concerned 
resource allocation in grid computing; whereas our concern  
is resource allocation in EAI run-time systems. The  related 
works are summarised in Table 1, contemplating the research 
field, the goal, and if the approach is PSO based or not. 

Table 1 Related works summary 

Work Research field Goal PSO 

(Pandey et al., 2010) Cloud computing Minimise computation cost and data transmission cost.  

(Wu et al., 2010) Cloud computing Minimise data communication and computation costs.  

(Byun et al., 2011) Cloud computing Minimise computing resources use.  

(Subashini and  
Bhuvaneswari, 2012) 

Distributed system Find optimal resource allocations.  

(An et al., 2012) Production processes Find optimal operation sequence and schedule.  

(Yassa et al., 2013) Cloud computing Minimise energy consumption.  

(Sidhu et al., 2013) Cloud computing Minimise overall task completion time.  

(Chitra et al., 2014) Cloud computing Optimise load balancing, speedup ratio, and makespan.  

(Pragaladan and  
Maheswari, 2014) 

Cloud computing Minimise task run-times in multiple cloud providers.  

(Rodriguez and  
Buyya, 2014) 

Cloud computing 
Minimise the overall execution cost while meeting deadline 
constraints.  

(Jian et al., 2014) Cloud computing 
Optimise reliability of resource provider tasks in network data 
transmission.  

(Ramezani et al., 2014) Distributed system Load balancing by migrating tasks amongst virtual.  

(Verma and  
Kaushal, 2015) 

Cloud computing 
Minimise execution cost, while considering constraints of  
deadline and budget.  

(Milani and Navin, 2015) Cloud computing Minimise the execution time, waiting time and missed.  

(Aron et al., 2015) Distributed system 
Minimise the time and cost along with optimised utilisation of  
the resources, without violating the security norms.  

(Ghosh et al., 2017) Distributed system Minimise makespan and completion time.  

(Ghosh and Das, 2018) Distributed system 
Minimise makespan, processing cost and job failure rate, and 
maximise resource utilisation. 

 

(Zhang et al., 2018) Production processes Find optimal operation sequence and schedule.  

(Touzene et al., 2019) Distributed system Optimise the profits and resource utilisation over the smart grids.  

[Our proposal] EAI Minimise makespan while considering the constraints  
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3 Background 

In this section, we describe the main elements of a run-time 
system of integration platforms and present the execution 
model that uses multiple local thread pool. Figure 1 presents a 
conceptual map introducing concepts discussed in this 
section, starting from the concept of root that is the run-time 
system. 

The run-time system is the component that supplies 
fundamental services to a language or a library and 
applications implemented on top of them (Appel, 1990). It 
implements an execution model that determines how an 
integration process must be executed and provides resources 
that support this execution. The execution model determines 
the behaviour of the run-time system during the execution 
of an integration process. The main elements of run-time 
systems are: scheduler, task queue, thread pool, and 
monitors. The scheduler is the central element because it 
manages and orchestrates the activities of the task queue, 
the threads, and the monitors. It usually has a configuration 
file that contains information, such as the maximal number 
of threads, names and paths of files for data generated by 
monitors, monitors running frequency and logging system to 
notify about warnings and errors. The task queue maintains 
the tasks ready to be executed. 

A task is considered ready to be executed when a message 
arrives in its input. The execution of a task starts when the 
execution time, for which it was scheduled, expires and there 
are available threads to execute it. The thread pool owns 
threads that, when available, recurrently poll the queue for 
tasks and execute the tasks. The monitors provide data about 
computational resources, such as the percentage of memory 
usage, time consumed for execution, task queue size, and total 
number of tasks processed. Monitors are executed by specific 
threads, in which collect and store the information. A message 
is a packed data that the messaging system can transmit 
through a message channel. So, data must be converted into 
one or more messages in order to flow in an integration 
process. A task has one or more inputs, and one or more 
outputs, depending on the implemented integration pattern. 
Every integration pattern represents an atomic operation to 
construct, route, transform or to manage messages. The 
messages must be processed by every task, following the order 
of dependence, that is, a message only can be processing in a 
task, when this message was already processed in every task 
that precedes the current task. Additionally, every task instance, 
i.e., every task that processes a message, needs an available 
thread to execute it and the execution of a task instance cannot 
be divided, given that every task is atomic. The execution 
model is presented in Figure 2. 

Figure 1 Conceptual map of a run-time system 
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Figure 2 State diagram of the run-time system execution 

 

In local thread pool execution model, there is a thread pool 
and a queue of tasks ready for every task of the integration 
process. A thread pool configuration determines the number 
of threads that every local thread pool must have. When a 
message arrives in the input of a task, then, it is maintained 
in its specific task queue while waiting for an available 
thread of its specific thread pool. If many messages arrive at 
the task input, then many instances of this task can be 
simultaneously executed if there are available threads in the 
thread pool dedicated to this task; and the available threads 
of a local thread pool recurrently check the task queue 
dedicated to the task, obeying the First-In-First-Out (FIFO) 
policy. 

4 Problem formulation 

In this section, we formulate the research problem. Firstly, 
we describe the software ecosystem and an integration 
process of a real-world problem. Then, we introduce the 
problem definition and objective function. The former is the 
modelling and codification of the problem and the latter 
measures the adequacy of a thread pool configuration in 
order to minimise the makespan. 

4.1 The software ecosystem 

In order to demonstrate the feasibility of our proposal, we 
introduce a real-world software ecosystem that approaches a 
real estate tax management system used in Ijui City, Brazil. 
This ecosystem supports a business process that calculates the 
annual tax of registered real estates, generates the respective 
billing documents, and sends them to the real estate taxpayers. 
In 2017, Ijui had an estimated population of 83,173 inhabitants, 
38,723 registered real estates and the referred tax raised 
15,701,504 Brazilian Real (R$) collected by the city, according 
to Brazilian Institute of Geography and Statistic (Instituto 
Brasileiro de Geografia e Es- tatistica – IBGE) (IBGE, 2017).  
 
 
 
 
 
 

Seven applications from the software ecosystem of the  
city hall, are involved in the integration process, namely: 
Service Desk, Citizen Website, Tax Generator, Real Estate 
Registration, Tax Calculator, Email Server and, Print Server. 
When these applications were designed, their integration, in 
order to work together and collaborate with each other, was not 
the main focus of project. 

Service Desk standalone renders the first citizen service, 
providing information regarding their taxes. Citizen Website 
is a web application that allows the issuance of new tax 
payment documents with the updated payment amount. Tax 
Generator requests the generation of the tax payment 
document to the registered real estates, which is done by an 
operator at the end of the year, issuing all the documents of 
the subsequent year. Real Estate Registration is a database 
containing taxpayer and real estate data used to calculate the 
tax. Tax Calculator calculates the amount of tax and 
generates the payment document. Email Server manages the 
requisitions to taxpayers and sends the payment document 
to their electronic address. Finally, the Print Server prints 
the tax payment documents that will be later sent to the 
physical address of the taxpayers. 

4.2 The integration process 

The integration process conceptual model integrates the 
applications involved in the software ecosystem, as Figure 3 
shows. Splitter T1, Normaliser T2, Content En-richer T3, 
Content Filter T4, Content Enricher T5, Recipient List T6, 
Message Filter T7, Message Translator T8 and, Message 
Translator T9 are the internal tasks and are inside the 
rectangle. Service Desk, Citizen Website, Tax Generator are 
applications that provide inputs to the integration process; 
Real Estate Registration, Tax Calculator are applications 
that provide information, which is used to compute the tax 
and the payment documents; Email Server, Print Server are 
applications that receive the outputs to the integration 
process. The applications are outside the rectangle. 
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Figure 3 Conceptual model of the real estate tax management system 

  

The process starts when any of the Service Desk, Citizen 
Website or Tax Generator application generates requests to the 
integration process. Service Desk and Citizen Website generate 
requests regarding a single real estate, while Tax Generator 
generates a list of requests regarding every registered real estate 
in the city. Splitter T1 breaks requests from Tax Generator into 
several output messages, each one of them corresponds to a 
single real estate register. Different formats of requests 
generated by the applications are sent to the Normaliser T2; T2 
normalises them, producing an output message in a canonical 
format. Content Enricher T3 enriches the information of the 
real estates with taxpayer and real estate data obtained from the 
Real Estate Registration database. Content Filter T4 filters the 
messages, eliminating the unnecessary ones, such as phone 
number or personal document numbers. Content Enricher T5 
enriches the information of the real estate’s payment document 
with the tax amount, calculated by Tax Calculator. Recipient 
List T6 makes a copy of the message that contains the payment 
document and forwards it to the Message Filter T7 and to the 
Message Translator T9. Message Filter T7 filters the messages 
eliminating those that do not have a registered electronic 
address and forwards those that have email to Message 
Translator T8; T8 translates the message to an e-mail  
server compatible format and forwards the transformed 
message to Email Server, so that the payment document is sent 
by email to the taxpayer. Similarly, Message Translator T9 
translates the message to a print server compatible format  
and forwards the transformed message to Print Server so that 

the payment document is printed and sent to the physical 
address of the taxpayer. 

4.3 Problem definition 

An integration process can be represented by a workflow 
composed by many paths of interdependent tasks linked by 
communication channels that desynchronise one task from 
another. A path is a set of sequentially arranged tasks in a flow, 
where every task has to be executed in a predefined order. 
Figure 4 shows an Integration Pattern Typed Graph (IPTG) 
(Ritter et al., 2018) that represents the integration process of 
Figure 3, in which each node represents a task and each edge 
represents a communication channel. Every edge has a weight, 
which represents the waiting time of the task in the queue. The 
set of tasks is composed by the 18 nodes, T = { t1, t2, t3, tc1, t4, 
t5, tc2, t6, t7, t8, t9, tA1, tA2, tA3, tA4, tA5, tA6, tA7} and the set of 
directed edges is composed by the 17 edges E = {a1, a2, a3, a4, 
a5, ae, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17}. An edge ak of 

the form  ,i jt t exists, if there is dependence between ti and tj, 

in which tj is the tj predecessor task and tj is the ti successor 
task. Therefore, a successor task cannot be performed until all 
of its predecessor tasks are completed. IPTG can be separated 
into several paths formed by tasks that must be executed 
sequentially in a predefined order. The critical path is where a 
message spends longer time to be processed (James and Kelley, 
1961). In IPTG of Figure 4, the critical path is highlighted with 
darker nodes, considering the execution time of the internal 
tasks of this path and their waiting time. 

Figure 4  Integration pattern typed graph example 
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Ritter et al. (2018) define IPTG as a direct graph with set of 
nodes T and a set of edge E T T   add to the function 

type: T  F, where F = {start, end, message processor, 
fork, structural join, condition, merge, external call}. For a 

node t  T,   |t t T t t E       for the set of direct 

predecessors of t, and   |t t T t t E        for the set 

of direct successors of t. An IPTG (T, E, type) is correct if 
the following condition apply: 

 1 2,t t T   with type (ti) = start and type (t2) = end; 

 if type (t)  [fork, condition} then | t| = 1 and |t | = n; 

 if type (t)  [join} then |  t | = n and |t 

 if type (t)  [message processor, merge} then |t| = 1 
and |t| = 1; 

 if type (t) G [external call} then |-t| = 1 and |t| = 2; 

 The graph (T, E) is connected and acyclic. 

The function type records what type of task each node 
represents. The first correctness condition claims that an 
integration pattern has at least one input and one output; the 
second indicates the cardinality of the involved tasks, i.e., 
the in-degrees and out-degrees of a node. The last condition 
states, «the graph (T, E) is connected and acyclic», indicates 
that a graph represents only a task and its relation with its 
predecessor and successor tasks and that messages do not 
loop back to previous tasks. 

Table 2 classifies the tasks that compose IPTG of Figure 4, 
by their types, c.f. Ritter et al. (2018), where the tasks represented 
by tAi correspond to applications; the tasks represented by tci 
connect with applications; and, the tasks represented by ti carry 
out internal operations into an integration process. 

Table 2 Classification of the tasks of the IPTG 

Type Tasks 

Stark 
1 2 3, ,A A At t t  

Fork t7 

Join t2 

Message processor 
1 3 4 5 6 8 9, , , , , ,t t t t t t t  

External call 
1 2,c ct t  

End 
6 7,A At t  

In the integration process of Figure 3, tasks T3 and T5 execute 
two operations: message enrichment and communication with 
external resources. In the IPTG of Figure 4, the task T3 is 
represented by t3 and tc1 and the task T5 by t5 and tc2. The task 
types t3 and t5 is message processor and their operation 
implements a message enrichment; and the task types tc1  
and tc2 is external call and their operation implements a 
communication with external resources. 

4.4 Objective function 

In the approached execution model, there is a local thread 
pool to execute every internal tasks into the path of an 

IPTG. An internal task carries out internal operations into an 
integration process or makes connections with applications. 
In our mathematical model, we considered that: 

 there is a constraint for run-time systems that limits the 
total number of threads to be distributed amongst local 
thread pools; 

 the execution time of an internal task is estimated by 
the average number of instructions executed for each 
clock cycle of a processor (Abraham et al., 2016); 

 the processing time of an internal task is the total time 
that a message spends to be processed into a task, i.e., 
the sum of the execution time and the waiting time in 
the task queue; 

 a local thread pool must have an appropriate number of 
threads to execute instances of tasks in order to process 
messages at the shortest possible time. 

Some researchers presented mathematical modelling for 
time metrics of applications. Rodriguez and Buyya (2014) 
presented equation (1) for total processing time of a task  
in a virtual machine (VM) in the scientific workflows 

scheduling in a cloud environment. j

i

VM

tTE  is the task 

execution time ti in a VM of type VMj ; 
ijeTT  is the time it 

takes to transfer data between a task ti and its successor tj; k 
is the number of edges in which ti is the predecessor task 
and sk is 0 whenever ti and tj run on the same VM or 1 
otherwise. 

1

*j j

i i ij

k
VM VM

t t e kTP TE TT s
    
 
  (1) 

According to Chirkin et al. (2017), the processing time in a 
workflow can be represented by equation (2), where TE is 
the task execution time, TR is the resource preparation time, 
TQ is the queuing time, TD is the data transfer time, TO is the 
system overhead time, such as time spent in analysing the 
task structure, selecting the resource, amongst others. 

 R Q D OTP TE T T T T      (2) 

For Shishido et al. (2018), the total processing time of a task 
ti in a VM of type k

svm  is the sum of the task execution time 

 , ,k
i sTE t vm  transfer time TT(ti), and security services 

overhead of the SC (ti) as defined in equation (3). 

       ,k k
i s i s i iTP t vm TE t vm TT t SC t      (3) 

Many researchers use the makespan arithmetic average as a 
performance metric for scheduling algorithms (Abdulhamid  
et al., 2014; Chhabra and Oshin, 2018; Lin and Ying, 2019). 
According to Canon and Jeannot (2007), makespan is computed 
by instantiating every computation and communication 
duration according to random variables, i.e. it is the end-time  
of the processing last task. For Abdulhamid et al. (2014),  
the lower the makespan, the better the processing  
efficiency, meaning less processing time. They defined 
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equation (3) where makespan is the maximum time needed  
to complete processing max .iC  

   1 2max max , , ,i nMakespan C C C C       (4) 

We define an internal task total processing time in a thread 
pool as computed by equation (5), where 

it
TP  is the total 

processing time; 
it

TP  is a task execution time in a thread 

into its respective thread pool; 
ijtTQ  is the task waiting time 

in its task queue; and, k is the number of edges to which the 
current task is its successor. 

1
i i ij

k

t t tTP TE TQ   (5) 

The total task processing time that connects an application 
is estimated by the throughput time, which considers the 
time of sending and receiving of a message from a task to 
the external application. Equation (6) calculates the total 
processing time, where 

citTP  is the total processing time; 

citTSend  is the sending time of a message from a task to an 

application; and, 
citT Receive  is the receiving time of a 

message task from an application to a task. 

ci ci cit t tTP TSend T Receive   (6) 

In integration processes, we define makespan as the 
message processing total time in a workflow and it is 
calculated by the task processing times of the critical path of 
the IPTG. Equation (7) calculates the makespan, where n is 
the total number of tasks that carry out internal operations; 
and m is the total number of tasks that connect applications. 

1 1
i ci

n m

t tMakespan TP TP    (7) 

We defined that the Total Average Processing Time (TAPT) of 
a given number of messages is calculated by the division of the 
makespan by the total number of messages. Equation (8) 
calculates the TATP, where TM is the total number of 
messages. 

Makespan
TAPT

TM
  (8) 

Time optimisation becomes fundamental in situations where 
the process execution duration must meet certain constraints 
or deadlines, because, their violations increase the business 

processes costs (Pereira and Varajão, 2019). Thus, the 
problem can be formulated as: 

find the optimal or near optimal number of 
threads for every local thread pool, in order to 
process a given number of messages through 
the critical path of an integration process, 
spending the lowest total average processing 
time and subjected to a constraint of the total 
number of threads that can be distributed. 

This formulation is represented by the objective function of 
equation (9), in which TR is the total number of threads and 
r is a constraint of number of threads that can be 
distributed. 

 Minimise TAPT  (9) 

subject to rTR   

5 Our proposal 

In this section, we model the previously formulated problem 
as a PSO problem and propose an algorithm to resolve it. 
The algorithm provides an optimum or near optimal 
configuration for the local thread pool that executes tasks of 
a given path of the integration process workflow. The thread 
pool configuration produced by the algorithm is a vector 
composed of n elements, where n is the number of tasks of 
the path. The element order on this vector corresponds to 
the task order in the path and the value of each element is 
the number of threads in the local thread pool for each task. 

Three algorithms were implemented: «Population 
Generation», «TAPT Calculation», and «Best Configuration». 
«Population Generation» generates a population composed of 
possible configurations of the thread pool for the critical path of 
an integration process, i.e., a population of possible solutions. 
«TAPT Calculation» calculates the total average processing 
time of a given number of messages into tasks of a workflow 
path. «Best Configuration» combines the previous two 
algorithms to find the configuration that minimises the total 
average processing time amongst the possible solutions.  
The «Best Configuration» generates the several thread  
pool configurations by «Population Generation»; for every 
configuration, it calculates the TAPT by «TAPT Calculation» ; 
and updates the minimum TAPT, if the TAPT calculated is 
lower than the current minimum TAPT, c.f. flowchart shown in 
Figure 5. 

Figure 5 Best configuration flowchart 
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5.1 Population generation 

The population of thread pool configurations is obtained by 
the Algorithm 1. It receives as input: the constraint of the 
number of possible solutions, the constraint of the total 
thread number, and the number of local thread pools. 

 

The algorithm starts with a set of initial configurations for 
thread pool, and three auxiliary variables, a vector with the 
number of threads available, the available thread pool 
number, and a vector for the sum of used threads. From lines 
5 to 9, the algorithm initialises the number of threads with a 
random number for every local thread pool of the initial 
configurations set. Then, it updates the vector for the sum of 
the threads and the vector for the number of available threads. 
From lines 10 to 18, the algorithm generates the remaining 
elements for the initial configurations set, which corresponds 
to the number of threads from the second thread pool to the 
last pool thread. Then, the algorithm updates the used threads 
sum vector; the available thread number vector; and, the used 
threads sum and the available thread pool number. At line 19, 
the algorithm returns the initial configuration set for thread 
pools. 

5.2 TAPT calculation 

Algorithm 2 calculates the value of the total average 
processing time, which is used to test the objective function. 
It receives as input the following parameters: processing 
time vector, pool configuration vector, and the total message 

number. The parameter «processing time vector» represents 
a path, in which each element represents the value of a task 
processing time. The parameter «pool configuration vector» 
is a local thread pool configuration. The parameter «total 
message number» represents the total message number to 
process, i.e., a workload in a given moment. 
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The algorithm initialises the number of thread pool, a matrix 
to keep the final processing time of each message, a vector 
to keep the total processing time of each message; a variable 
to keep the accumulated value of the processing time for all 
the messages, and an auxiliary vector to keep the number of 
threads of each thread pool. 

The algorithm calculates from lines 7 to 16, for each 
message, the first task final processing time for the first 
thread pool. The number of messages simultaneously 
processed is equal to the number of threads in the pool. The 
final processing time of the messages in the first task is 
equal to the number of threads in first local thread pool 
times the processing time of the first task. From lines 18 to 
23, the algorithm calculates the final processing time of the 
second until the last task, for the first message until the n-th 
message, where the n-th message corresponds to the number 
of threads of the pool dedicated to the task that is being 
processed. Since a task has to wait for messages from its 
predecessor to process, the final processing time of these 
messages is equal to the sum of two processing times: the 
final processing time of the message in the predecessor task 
and the processing time of the current task. 

From lines 24 to 37, the algorithm calculates the final 
processing time from the second task until the last task in 
every thread pool, for the n-th message until the last 
message. There are two conditions to start the message 
processing in a task. First, the current message processing  
in the predecessor task has to be finished. Second, the 
predecessor message processing in a current task has to be 
finished. The processing time that finishes later between 
these two will be considered in the computation of the final 
processing time, called delay. Then, the final processing 
time of the messages is equal to the sum of two processing 
times: the delay and the processing time of the current task. 
From lines 38 to 41, the algorithm updates the final 
processing time of each message and the sum of these final 
processing times. At line 42, the algorithm calculates the 
total average processing time by the division of the sum of 
the final processing times by the total message number, and 
at line 43 it returns the total average processing time. 

5.3 Best configuration 

Algorithm 3 aggregates algorithms for «Population 
Generation» and for calculation of the total average 
processing time, based on the original PSO implementation. 
It provides the configuration for the local thread pool that 
results in the lowest total average processing time. The 
«Best Configuration» algorithm receives as inputs: the 
constraint of possible configurations, the constraint for the 
total number of threads, the total message number, and the 
processing time vector. Algorithm 1 is invoiced at line 5 to 
generate the initial population of configurations to thread 
pool. At line 10, the algorithm tests the stop condition, 
which is the constraint for the number of possible solutions. 
At line 12, the algorithm calculates the objective function by 
the invocation of Algorithm 2. At line 13, the algorithm 
compares the TAPT of the current configuration with the  
 

lower TAPT found until that moment. At line 18, the 
algorithm returns the minimal TAPT and the best configuration 
for the thread pool amongst the solutions of the generated 
population. 

 

6 Validation 

In this section, we describe the experiment that performed 
using the real-world integration process, introduced in 
Section 4. The applied protocol was based on the works of 
Jedlitschka and Pfahl (2005), Wohlin et al. (2012) and 
Basili et al. (2007) which provide procedures for controlled 
experiments in the engineering studies field. Then, we 
collected performance metrics from algorithm executions 
and used ANOVA and Scott & Knott statistical techniques 
to evaluate the results. In the following sections, we detailed 
the steps of the experiment and its validation. 

6.1 Research questions and hypothesis 

To validate the proposed algorithm in this article, our 
experiment answers the following research questions: 

RQ1: Is it possible to obtain the optimal or near optimal 
local thread pool configurations for run-time systems of 
integration platforms, which minimises the total average 
processing time? 
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RQ2: Is it possible to obtain a mathematical model for the 
total average processing time as a function of the total 
thread number used in local thread pools? 

For each research question, we provide a hypothesis that has 
to be confirmed or refuted by the experiment, respectively: 

H1: An optimal or near optimal thread pool configuration 
for run-time systems of integration platforms can be found 
by an algorithm based on optimisation techniques, in which 
objective function is to minimise the average total time of 
message processing in integration processes. 

H2: A mathematical model for the total average processing 
time as a function of the thread number can be found by 
statistical techniques. 

6.2 Environment and support tools 

The experiments were carried out on a machine equipped 
with 2 processors Intel Core i5-5200U, 2.20 GHz, 4GB of 
RAM, and the operating system Microsoft Windows 10 
Education 64-bits. The Matlab (Leonard and Levine, 1995) 
software, version R2013, was used to create and execute the 
algorithms. The Genes (Cruz, 2006) software, version 
2015.5.0, was used to statistically analyse measured data in 
this experiment. The source code developed and used in this 
experiment is publicly available for download.1 

6.3 Variables 

Independent variables are: 

 Solutions number: The initial population of thread pool 
configurations tested by the optimisation algorithm. The 
tested value for this variable was 10 solutions. 

 Threads number: The number of threads that can be 
distributed amongst the thread pools. The tested values 
for this variable were: 10, 20, 30, 40, 50, 60, 70, 80, 90 
and 100 threads. 

 Messages number: The messages number that is 
processed, i.e., the integration process workload. The 
tested value for this variable was 38,723 messages. This 
value is the number of registered real estates in Ijuí 
town, in Brazil, where the integration process is used. 

Dependent variables are: 

 Total average processing time: The meantime a message 
takes to be processed by all tasks that compose the critical 
path of the integration process. 

 Execution time: The time that the algorithm spends to 
conclude an execution. 

6.4 Execution and data collection 

The execution of the algorithm was conducted using the 
critical path of the integration process highlighted in the 
integration pattern type graph shown in Figure 4. Table 3  
shows the times, in milliseconds (ms), for every internal  

task of the critical path, obtained from the execution of the 
actual implementation of the integration process. 

Table 3 Processing times of tasks 

Task 
Execution 

time 
Waiting 

time 
Sending 

time 
Receiving 

time 
Processing 

time 

t1 0.531 2 – – 2.531 

t2 0.303 1 – – 1.303 

t3 0.005 – 2 2 4.005 

tc1 0.005 1 – – 1.005 

t4 0.003 1 – – 1.003 

t5 0.005 – 2 2 4.005 

tc2 0.005 1 – – 1.005 

1 t6 0.531 1 – – 1.531 

t7 0.003 1 – – 1.003 

t8 0.001 1 – – 1.001 

Total 1.392 9 4 4 18.392 
 

The experiment is classified in the literature as a termination 
simulation, in which the experiment output is express as a 
function of the initial conditions. In these cases, the results 
are usually analysed statistically by the method of the 
repetitions, where a repetitions number between 20 and 30 
is sufficient to obtain a population mean, in distributions 
with more extreme values that a normal distribution 
(Sargent, 2013). We experimented 200 different scenarios, 
which are synthesised follows: 

Solutions
number:

10 


Threads  
number: 

10, 20,…, 100


Messages 
number: 
38,723 

 Executions: =
Total of 

scenarios

1  10  1  20 = 200 
 

We executed the algorithm by setting the number solutions, the 
messages number, and the integration process. The latter is 
represented by a vector, in which every element represents the 
processing time of one of the tasks of the critical path of the 
integration process. Besides this, we varied the threads number. 
The execution of the algorithm was repeated 20 times for  
every thread number. In every execution, we collected the 
minimal total average processing time, the best thread  
pool configuration, and the execution time of the «Best 
Configuration» algorithm. The standard deviation and the gain 
were calculated by the average total times of processing 
measured in the experiment. 

Statistical theory is indicated for the analysis of data 
from experiments on performance (Georges et al., 2007), 
since statistical reasoning is an appropriate resource to  
deal with the non-determinism in computational systems, 
such as run-time systems (Frantz et al., 2011). We used  
the ANOVA variance analysis statistical technique to 
differentiate amongst the variations found in a set of results,  
which are derived from random factors called error and are  
influenced by the total number of threads. Because there  
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was a statistical difference in the results of the variance 
analysis, we used the Scott & Knott technique to find out 
how much the number of threads impacted differently the 
total average processing time. The Scott & Knott technique 
is considered a more rigorous test because it only considers 
relevant differences between the alternatives and is adopted 
in the literature in experiments with performance due to its 
simplicity. 

6.5 Results 

In this section, we present the results. Line charts present the 
optimal configurations of the thread pools and the total average 
processing time for every one of constraints of total number of 
threads. A table summarises standard deviations, execution 
time averages of the algorithm, and the gains in total average 
processing time. A scatter chart compares the results of 
minimum average total times processing for every one of 
constraints. Lastly, tables present the statistical analysis carried 
out with ANOVA and Scott & Knott techniques. 

The results of average total times processing for the 
configurations of the local thread pool to the tasks of the 
integration process of Figure 3 are presented in Figure 7.  
In this last figure, the x-axis represents the order of the 
execution. The y-axis represents the total average processing 
time, in seconds. 

A thread pool configuration is represented by a vector, 
whose elements are the number of threads in each thread pool 
and the index of the vector corresponds to the order of local 
thread pool for tasks of a path of the integration process. The 
black square on the curves shows minimum total average 
processing time and the thread pool configuration that 
provides this TAPT. 

The standard deviation of the total average processing time, 
the execution time of the algorithm, and the gain in total 
average processing time are presented in Table 4. The standard 
deviation is a measure that expresses the degree of dispersion 
of a data set, i.e., it indicates how uniform a set of data is. Thus, 
the more homogeneous a data set is, the closer the value of the 
standard deviation is to zero. The execution time of  
the algorithm is extracted by the execution tool itself,  
which calculates the spent time executing in seconds  
the algorithm by calculating the processing times of each 
message in the threads, checking for the best thread 
configuration for the thread pool, and calculating the total 
average processing time. This metric does not include the time 
of random generation of the initial population of solutions since 
it is done only once and is fixed for every variation of the total 
number of threads and for the variation of the number of 
messages. The gain in total average processing time, defined 
like the absolute value of the highest difference between the 
TAPT and the minimum TAPT obtained with the optimal 
configuration of thread pool, measured in seconds. 

A scatter chart presents the lowest total average 
processing time of all the executions for every value of the 
total thread number constraint, cf. Figure 6. The x-axis 
represents the total thread number constraint and the y-axis 
represents the values of the total average processing time. 

Table 4 Summary of the calculated results 

Total number 
of threads 

Standard 
deviation of the 

TAPT 

Execution time 
average of the 

algorithm 

Gain of  
the TAPT 

10 0 102.18 0 

20 19.26 108.32 47.89 

30 15.93 147.84 47.89 

40 18.75 183.26 51.69 

50 15.35 227.79 58.08 

60 12.22 282.87 58.12 

70 12.42 347.45 58.12 

80 16.80 404.76 58.16 

90 12.84 505.10 58.16 

100 6.78 577.32 19.39 

Figure 6 Minimal total average processing time 

 

Regression analysis is a method to estimate the relation 
amongst the dependent variable, TAPT, and the independent 
variables, threads number, NT. Let NT = (NT1, NT2,..., NTp) 
be a vector of the independent variables and TAPT a 
dependent variable, the mathematics function, which relates 
TAPT and NT, can be expressed by the regression model, 
c.f. In equation (10), where β is a vector of unknown 
parameters, and ε is a disturbance term (Yao and Liu, 2018). 

( | )TAPT f NT     (10) 

In regression analysis, the square of Pearson product-moment 
correlation coefficient is an important parameter to determine 
the degree of linear correlation of variables. This coefficient is 
known as the correlation coefficient or, simply, R2. R2 is 
defined by equation (11), where SSE is the sum of squared 
error and SST is the sum of squared total (Kaytez et al., 2015).  
Thus, R2 tends to 1 when SSE  SST, i.e., the sum of squared 

error is too small compared to the sum of the squared total. 

2 1
SSE

R
SST

   (11) 

TAPT is represented by a statistical trend line in Figure 6. 
The trend line is a polynomial equation that describes the 
behaviour of the total average processing time as a function 
of the total threads number. The value of R2 was equal to 
0.9947. Analytically, TAPT is represented by equation (12), 
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where NT represents the number of threads and TAPT is the 
value of the minimum total average processing time. 

   
   
   

6 5

4 3

2

0.014 0.5003

7.053 49.946

186.03 346.3 280.99

TAPT NT NT

NT NT

NT NT

 

 

  

 (12) 

We used statistical techniques to verify the influence of the 
total number of threads used in the total average processing 
time. Table 5 presents the analysis of variance of the 
dependent variable, TAPT. The total of results is calculated 
upon the multiplication of the number of executions by the 
number of possible values for the total number of threads. 
The total freedom degree is calculated by the total of  
results –1. 

Table 5 Variance analysis of TAPT by ANOVA technique 

Sources of variation 
Degree of 
freedom  Average square 

Total numbers of 
threads 

9  4412.04† 

Error  190  200.83 

Total  199   

 Overall average 39.99  

 
Coefficient of  
variation (%) 

35.43  

Note: †significant statistical by Fisher-Snedecor’s 
Probability and error level of 5%. 

Table 6 Average of TAPT by Scott & Knott technique 

Total number of threads Average of the TAPT Group 

10 77.55 a 

20 49.55 b 

30 41.85 b 

40 42.31 b 

50 34.70 c 

60 32.26 c 

70 30.25 c 

80 34.04 c 

90 29.42 c 

100 27.94 c 

Note: Error level of 5% by Scott & Knott model. 
 

The degree of freedom of the total number of threads is 
calculated by the amount of possible values of the total 
number of threads subtracting 1. The degree of freedom for 
error, calculated by the difference between the degree of 
freedom of the total of results and the degree of freedom of 
the factors. The analysis of variance of TAPT shows the 
average square of 4412.04 for the total number of threads and 
200.83 for error. Overall average was equal to 39.99 seconds 
and the coefficient of variation was 35.43 %. 

The average comparison test by Scott & Knott technique 
of the dependent variable is presented in Table 6. The  
 

constraints on the number of threads are in first column, 
average of the minimum TAPT in the 20 executions is in 
second column, and the group of Scott & Knott technique is 
in second column. This technique groups number of threads 
that are not the statistically different between themselves. 
There were three groups: a, b and c. In «a» group are the 
constraints on the number of threads 10. In «b» group are 
the constraints on the number of threads 20, 30, and 40. In 
«c» group are the constraints on the number of threads 50, 
60, 70, 80, 90 and 100. 

6.6 Discussion and comparison 

The algorithm was able to find the minimum total average total 
processing time, c.f. Figure 7. The total average total 
processing time reduces with the increase of the thread number, 
c.f. Figure 8. However, it is possible to infer that this reduction 
has a limit, after which it, the TAPT stabilise and do not 
decrease. The minimal number of threads to distribute amongst 
the 10 thread pools equals 10, one thread for every pool. In this 
case, the algorithm only can provide one configuration for 
thread pools and the minimum total average processing time 
was 77.55 seconds. When the number of threads to distribute  
is greater than 10, the algorithm can provide different 
configurations for thread pools, resulting in different values for 
minimum average total time. When the constraint equals 20 
and 30 threads, the minimum TAPT was 29.66 seconds, so 
there was a 47.89 seconds reduction regarding the constraint 
equal 10 threads. When the constraint equals 40 threads, the 
minimum TAPT was 25.86 seconds, so there was a 3.80 
seconds reduction regarding the constraint equals 20 or 30 
threads. When the constraint equals 50 threads, the minimum 
TAPT was 19.47 seconds, so there was a 6.39 seconds 
reduction regarding the constraint 40 threads. When the 
constraint equals 60, 70, or 80, the minimum TAPT was the 
same: 19.43 seconds, so there was only 0.04 seconds reduction 
regarding the constraint equals 50 threads. When the constraint 
equal 90 threads and 100 threads, the minimum TAPT was the 
same: 19.39 seconds, so there was only 0.04 seconds reduction 
regarding the constraint equals 60, 70 and 80 threads. 

The values of the standard deviation show that the set of 
configurations for thread pool was quite heterogeneous. The 
execution time values of the proposed algorithm increase 
proportionally to the number of threads, cf. 4. We can infer that 
it is possible to improve the implementation performance of the 
algorithm changing the stop criterion, such as establishing a 
previous value for TAPT and stopping the algorithm execution 
when a thread configuration reaches a TAPT value lower than 
this. We also identified that a variation of the total of threads 
distributed results in a variation of until 50 seconds in the total 
average processing time. Trend line in Figure 6 shows that the 
minimum total average processing time decreases with the 
increase of the number of threads, suggesting that the total 
average processing time decreases with the addition of threads 
up to a limit. The trend line allows to predict the TAPT value 
for a given number of threads in local thread pools. In this 
figure, the coefficient of determination value equal to 1 
indicates that the model is able to explain the observed TAPT 
in the experiments conditions. 
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Figure 7 Minimum TAPT in every execution of algorithm 

 

Figure 8 TAPT reduction 
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We observed that the variation of the total number of threads 
generates a significant difference on total average processing 
time, cf. Table 5. The coefficient of variation was reduced, 
indicating that the experiment is adequate and reliable. In The 
Scott & Knott averages comparison test, the lowest TAPT 
was using 100 threads, the lowest TAPT average was  
27.94 seconds, cf. Table 6. The largest difference between 
TAPT averages was between 10 and 100 threads was 49.61 
seconds, whereas the difference between 30 and 40 threads 
was only 0.46 seconds. In the TAPT analysis, same letter 
groups do not differ statistically amongst themselves. The 
TAPT averages with 20,30 and 40 threads do not differ 
statistically, which belong «b» group; from 50 threads there is 
no statistically significant difference, which belong «c» 
group; whereas, the use of 10 threads presents a statistically 
significant difference of the others. 

6.7 Summary of results 

In this section, we sum up the main conclusions from the 
results found in our experiment, answered our research 
questions and validate our hypothesis. Regarding the 
conclusions: 

 In terms of processing time savings, the gain achieved 
by the thread pool configuration found by the algorithm 
attests the advantage of using this algorithm rather than 
empirically choose a configuration. 

 The polynomial equation found to represent TAPT as a 
function of the total number of threads shows that TAPT 
tends to a constant, that is, from a certain point, TAPT 
does not change when the thread number increase. Thus, 
the model finds the least number of threads for a given 
TAPT value that one wishes to obtain. 

 The ANOVA technique proved that our experiment is 
valid, since there was a significant difference in TAPT 
with different numbers of threads. 

 The Scott & Knott technique showed that thread 
numbers can be grouped and within each group, these 
numbers bring similar results from TAPT. Therefore, 
one can choose the least number of threads in the group 
that results in the desired TAPT, in order to save 
computational resources and, consequently, costs for 
the companies. 

Regarding the research questions and hypothesis: 

 RQ1: Our algorithm obtained a near optimal local 
thread pool configurations of run-time systems that 
minimised the total average processing time. Gain 
about 75% was obtained between TAPT found 19.39 
seconds and the worst case with TAPT equals 77.55 
seconds, using 90 threads. 

 RQ2: A trend line found by regression analysis and 
shown in equation (12), represents the total average 
processing time as a function of the total number of 
threads used in the local thread pool execution model. 

By the experiment, we confirm our hypothesis for each of 
the research questions, respectively: 

 H1: An optimal or near optimal configuration for the 
thread pools of run-time systems was found by a PSO-
based algorithm, which objective function was to 
minimise the total average processing time messages in 
an integration process. 

 H2: A mathematical model for the TAPT as a function 
of the number of threads was obtained by linear 
regression after validation of the results by ANOVA 
and Scott & Knott statistical techniques. 

6.8 Threats to validity 

As researchers, our goal is to mitigate all possible validity 
threats, since they are present in any empirical research 
(Cruzes and Ben Othman, 2017). We evaluated the factors 
that could influence results of the experiment and tried to 
mitigate these threats. In the following, we discuss its 
constructor, conclusion, internal, and external validity. 

First, we substantiate our research by previous studies  
and mathematical base. After, we planned the experiment 
according to procedures from empirical software engineering 
presented by Jedlitschka and Pfahl (2005), Wohlin et al. (2012) 
and Basili et al. (2007). In this planning, we provide 
information about the execution environment, supporting tools, 
variables, execution and data collection. Then, we simulate a 
real-world integration process in two hundred different 
scenarios and used ANOVA and Scott & Knott statistical 
techniques to evaluate the results. 

Conclusion validity concerns with to ensure that the 
treatment used in the experiment is really related to the 
actual outcome observed (Feldt and Magazinius, 2010). We 
used statistical techniques to assure that the actual outcome 
observed in our experiment is related to the used threads 
configurations, and not to factors that we do not control or 
have not measured, and we verified that there was a 
significant difference in the outcome. 

Internal validity aims to ensure that the treatment 
actually caused the outcome, mitigating effects of other 
uncertain factors or not measured (Feldt and Magazinius, 
2010). In order to minimise interference in the execution 
time of the algorithm, the experiment was performed in the 
same machine, that was set on security mode, using minimal 
features and the machine was disconnected from the internet 
during the executions. 

External validity focuses on the generalisation the 
results outside the scope of our study (Feldt and 
Magazinius, 2010). The steps of the experiment are valid to 
compare other scenarios with other integration processes, 
other numbers of messages and other numbers of possible 
solutions generated by the population algorithm. Thus, as 
future work, we intend to perform the experiment with a 
large data set in order to evaluate the generalisation of the 
results. 
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7 Conclusions 

Integration platforms are tools used by companies to 
exchange data and share functionality amongst different 
applications that compose their software ecosystems. These 
platforms implement and execute integration processes, 
which can be seen as workflow composed of atomic tasks. 
The run-time system is the component of the platform 
responsible for the execution of integration processes. 
Therefore, it is the most important element when the goal of 
a companies is performance. The runtime system efficiency 
is directly related to configuration of computational 
resources that perform the tasks, the threads. However, this 
configuration is based only in the experience of software 
engineers because there is no automatic way to do this. 
Threads are grouped in local thread pools and every one of 
them must contain the proper number to achieve the shortest 
processing time. 

This article proposed an algorithm that obtains an 
optimum or near optimal configuration for local thread 
pools, which provides a lower average processing time of 
messages. This approach improves the performance of run-
time systems and, consequently, increases productivity and 
reduces costs for enterprises. The algorithm, which is based 
on PSO meta-heuristic, was implemented in a programming 
language and experimented in the execution of a real-world 
integration process, where the scenarios varied the total 
number of threads distributed in local thread pools. We also 
applied statistical techniques to analyse the results and find 
a mathematical model to describe the behaviour of the total 
average processing time as a function of the total number of 
threads. We can point out our main contributions: 

 Optimal thread pool configuration found by algorithm 
obtains the lowest message processing time. 

 The ANOVA technique showed a significant difference 
in relation to the use of different thread numbers to 
local thread pools, thus it makes sense to find the 
optimum thread number. 

 The Scott & Knott technique found groups of thread 
numbers, where every group results in the same gain, in 
statistical terms. Thus, it is possible to select the lowest 
thread number in every group and so to save costs to 
obtain the same TAPT. 

 A polynomial equation that describes the TAPT can 
help to estimate it varying the thread numbers or to 
estimate the thread number to obtain a determined 
TAPT. 

 The experiment can be adopted for other scenarios, 
varying message numbers, integration processes, thread 
numbers, and tested configuration numbers. 

We answered the research questions and confirm the initial 
hypotheses: 
 

RQ1: Our algorithm allowed to obtain near-optimal local 
thread pool configurations of run-time systems of integration 
platforms that minimised the TAPT. Thus, the algorithm is a 
helpful tool for software engineers to obtain thread pool 
configurations. 

RQ2: We obtained a mathematical model for the TAPT, 
where it is possible to estimate the TAPT to a given number 
of threads or to choose the number of threads that results in 
the desired TAPT. 

H1: Our PSO-based algorithm found a near-optimal 
configuration for the thread pools of run-time systems of 
integration platforms, which resulted in the lowest TAPT of 
the set of configurations tested. 

H2: From linear regression statistical technique, obtained a 
mathematical model for the TAPT as a function of the 
number of threads. 

Following, we list the points that intent to carry out in the 
experiment, as future work, in order to extend the results of 
this research. 

 Variation in messages number, aiming to analyse the 
algorithm behaviour in big data scenarios. 

 Variation in message arrival rates, aiming to analyse the 
algorithm behaviour in stream processing systems. 

 Variation in the total thread number, aiming to analyse 
the algorithm behaviour in thrashing scenarios. 

 Simulation of the other integration processes, aiming to 
analyse the algorithm behaviour in different integration 
logic. 

 Increase in tested solution number in the initial population 
of Algorithm 1, aiming to analyse the algorithm general 
behaviour. 
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