
The Journal of Systems and Software 117 (2016) 612–637

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Automated design of multi-layered web information systems

Fábio Paulo Basso

a , ∗, Raquel Mainardi Pillat a , Toacy Cavalcante Oliveira

a ,
Fabricia Roos-Frantz

b , Rafael Z. Frantz

b

a Systems Engineering and Computer Science Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
b Department of Exact Sciences and Engineering, UNIJUÍ University, Ijuí, RS, Brazil

a r t i c l e i n f o

Article history:

Received 17 February 2015

Revised 10 March 2016

Accepted 25 April 2016

Available online 27 April 2016

Keywords:

Model-driven web engineering

Rapid application prototype

Domain-specific language

Prototyping

Automated design

Mockup

Experience report

a b s t r a c t

In the development of web information systems, design tasks are commonly used in approaches for

Model-Driven Web Engineering (MDWE) to represent models. To generate fully implemented prototypes,

these models require a rich representation of the semantics for actions (e.g., database persistence oper-

ations). In the development of some use case scenarios for the multi-layered development of web in-

formation systems, these design tasks may consume weeks of work even for experienced designers. The

literature pointed out that the impossibility for executing a software project with short iterations ham-

pers the adoption of some approaches for design in some contexts, such as start-up companies. A possible

solution to introduce design tasks in short iterations is the use of automated design techniques, which

assist the production of models by means of transformation tasks and refinements. This paper details

our methodology for MDWE, which is supported by automated design techniques strictly associated with

use case patterns of type CRUD. The novelty relies on iterations that are possible for execution with short

time-scales. This is a benefit from automated design techniques not observed in MDWE approaches based

on manual design tasks. We also report on previous experiences and address open questions relevant for

the theory and practice of MDWE.

© 2016 Elsevier Inc. All rights reserved.

(

g

W

d

b

i

i

m

a

c

p

m

t

m

s

a
1. Introduction

Model-Driven Engineering (MDE) (Kent, 2002) is a paradigm for

model-based software development implemented by several tech-

niques and used in several industrial contexts. In typical MDE-

based processes, model transformations should receive a highly de-

tailed model to generate working pieces of applications (Schmidt,

2006). To generate full source code, several parts of an application

design are detailed in Domain-Specific Languages (DSLs) (Voelter,

2009) and/or decorated with annotations added to model elements

represented with the Unified Modeling Language (UML) (Booch

et al., 2005), a general-purpose modeling language commonly

used. In any case, this makes the software construction dependent

of design tasks.

In the development of web information systems, web front

ends such as layout composed of Graphic User Interface (GUI)

components (Vanderdonckt, 2005) and behavioral diagrams
∗ Corresponding author.

E-mail addresses: fabiopbasso@cos.ufrj.br , fabiopbasso@gmail.com (F.P. Basso),

rmpillat@cos.ufrj.br (R.M. Pillat), toacy@cos.ufrj.br (T.C. Oliveira),

frfrantz@unijui.edu.br (F. Roos-Frantz), rzfrantz@unijui.edu.br (R.Z. Frantz).

t

v

o

a

t

2

http://dx.doi.org/10.1016/j.jss.2016.04.060

0164-1212/© 2016 Elsevier Inc. All rights reserved.
 Nunes and Schwabe, 2006) are usually represented. To allow the

eneration of full source code with an approach for Model-Driven

eb Engineering (MDWE) (Rossi, 2013), these models are manually

ecorated with semantics for the actions of users, screen flows and

usiness logic. It is possible to abstract implementation details us-

ng a design language, focusing on the specification of semantics

n models that formalize the knowledge about software require-

ents (France and Bieman, 2001). Before the source code gener-

tion, these models can be further refined by designers, enabling

lients to experiment an executable prototype in the end. This ap-

roach is known as multi-view (France and Bieman, 2001), and the

odel is created and enriched taking as input high-level abstrac-

ions of other models that map implementation details through

odel transformations.

The execution of a multi-view approach for MDWE may use de-

ign tasks that require months of work (Kulkarni et al., 2011; Zhang

nd Patel, 2011). Depending on the size of the software project and

he adopted schedule in software process iterations, the effort in-

ested in detailing models is seen as a reason to avoid the adoption

f some of MDWE approaches (Whittle et al., 2013). Therefore, the

bility to execute these tasks in short time-scales is a desirable fea-

ure in some contexts, such as in start-up companies (Rivero et al.,

014; Giardino et al., 2014).

http://dx.doi.org/10.1016/j.jss.2016.04.060
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2016.04.060&domain=pdf
mailto:fabiopbasso@cos.ufrj.br
mailto:fabiopbasso@gmail.com
mailto:rmpillat@cos.ufrj.br
mailto:toacy@cos.ufrj.br
mailto:frfrantz@unijui.edu.br
mailto:rzfrantz@unijui.edu.br
http://dx.doi.org/10.1016/j.jss.2016.04.060

F.P. Basso et al. / The Journal of Systems and Software 117 (2016) 612–637 613

i

o

2

f

t

C

e

i

M

s

W

i

p

a

a

fi

s

fi

m

i

p

2

a

m

e

t

m

M

o

M

n

r

c

S

m

i

w

t

c

w

o

S

w

2

t

p

w

i

t

A possible solution to speed-up the modelling phase, thus help-

ng in the execution of iterations in short time-scales, is the use

f techniques for automated design (Linington, 2005; Batory et al.,

013). In this paper, we suggest the use of three different phases

or constructing models for MDWE, namely: evolutionary, archi-

ectural, and functional. Models are based on the Model-View-

ontroller (MVC) architectural pattern (Evans, 2004). Although

ach prototyping phase is handled by some DSL and tools found

n the literature, their integrated use is still a challenge in MDWE.

We present a methodology for MDWE named MockupToME

ethod, which includes tasks supported by (semi-)automated de-

ign techniques for some use case patterns (Molina et al., 2002).

e extend previous contributions (Basso et al., 2014b), by detail-

ng tasks and artefacts that include many DSLs, developed to sup-

ort the design of many layers of MVC-based application models,

nd the tools associated with these tasks for automated design. We

lso summarized data collected from two software projects, the

rst considering mostly manual design tasks and the second con-

idering the use of tasks based on automated design techniques.

A partially assisted design through Wizards was used in the

rst software project, with iterations planned for one month or

ore. In the second project, we used MockupToME Method with

terations planned and executed with one to two weeks. Both ap-

roaches are based on use case patterns of type CRUD (Souza et al.,

007), and use the same DSLs for representation of MVC-based

pplication models, which are used in the end of a lifecycle for

odel transformations by the same source code generators. Differ-

ntly, MockupToME Method includes DSLs and tools for designers

o work in high-level of abstraction than in MVC-based application

odels.

The use of short iterations is a benefit observed in MockupToME

ethod, but not in our previous approach, i.e., in manual design

f these models. The reasons why short time-scales are feasible in

ockupToME Method has to do with the automated design tech-

iques discussed in this paper. Thus, we also derived interesting

esearch questions as a result from these two software projects.

The rest of the paper is organized as follows: Section 2 ,

onceptualizes this work and Section 3 motivates this research;

ection 4 exemplifies the representation of preliminary require-

ents, which are the input for the automated design approach

ntroduced in Section 5; Section 6 , describes the methodology,

hich is complemented in Section 7 with implementation de-

ails and in Section 8 with activities performed after the source

ode generation; Section 9 , summarizes the two software projects,

ith lessons and insights for future research; Section 10 , points

ut limitations; Section 11 presents the related work; and, finally,

ection 12 , reports on our main conclusions and possible future

ork.

. Concepts

In the context of the development of web information systems,

he following concepts are important for the understanding of this

aper (Evans, 2004; Souza et al., 2007; Allier et al., 2015):

• Model-View-Controller (MVC). Is an architectural pat-

tern (Parnas, 1994) frequently used in the construction of

web information systems (Burke and Monson-Haefel, 2006).

This pattern is important to modularize and structure the

source code in three layers, thus facilitating the mainte-

nance (Bosch, 2013) and avoiding the erosion of architectures

as they evolves over time.
• Conceptual model. A class diagram composed of analysis

classes, also named entities, which represents the Model layer

of the MVC (Evans, 2004).
• GUI Templates. Facilitate the development of standardized

structures for GUI (Han and Liu, 2010) allowing developers to

focus on the logic layer, while layout details and actions are

managed by a template engine. By means of templates, de-

velopers focus on the content that is placed inside a template

structure.
• CRUD. A type of GUI template and an acronym for create, read,

update, and delete (Souza et al., 2007) characterizing frequent

set of use cases developed in information systems that allow to

persist, retrieve and remove objects to/from a database. Differ-

ent structures for CRUD can be used, and may include a specific

GUI template.
• Domain-Driven Design (DDD). The Model layer is used to

represent all the other application layers using a DDD ap-

proach (Evans, 2004). In MDWE, DDD drives the generation of

a detailed MVC-based model, guiding the refinement of multi-

ple layers associated with a particular use case scenario and a

paper prototype.
• Master/Detail. A well-known concept among software develop-

ers, which allows the classification of use cases for use case pat-

terns (Molina et al., 2002). These concepts of Master and Detail

are well discussed in approaches for DDD (Evans, 2004) and the

object oriented method (Molina et al., 2002).

The following concepts are important to contextualize our

ork:

• Use case scenario. Is one of possible flows from a use

case (Sommerville, 2010) or user story (Landre et al., 2007). Use

case scenarios are important both for design and for tests with

clients (Sommerville, 2010), which evaluate models, prototypes

and also the final version of an application piece with accep-

tance tests.
• Paper prototype. A hand drawing on a paper showing user in-

terfaces with user interactions that represents use case scenar-

ios (Sommerville, 2010). It is a software artefact represented in

a high-level of abstraction than a mockup. A paper prototype

is not a model, but a document usually associated with user

stories specified in initial brainstorming meetings for the re-

quirements elicitation. It is also called as pre-prototype (Davis

and Venkatesh, 2004) and, sometimes, as throwaway proto-

type (Sommerville, 2010).
• Mockup. A model for a GUI, which is not possible to be

fully implemented in functional prototypes (Blankenhorn, 2004;

Rivero et al., 2014; Forward et al., 2012). In our understand-

ing, mockups are abstractions in a high-level than the business

logic needed in the development of web information systems,

focusing on GUI components specification. Mockups may also

be called sketches (Balsamic Mockups Company, 2015).
• Round-trip engineering. A set of activities aiming at syn-

chronize generated source code with manually developed

code (Mussbacher et al., 2014). It is performed automatically

with the support of tools or, sometimes, manually, when it is

required to update the model based on changes from source

code.
• Full source code generation. Is the ability to generate 100%

of what is designed, not 100% of all the application (Kelly

and Tolvanen, 2008). Kelly and Tolvanen (2008) claim that full

source code generation is a possible solution that mitigates the

execution of changes in generated artefacts.

The Java platform is important for the implementation of web

nformation systems and is divided in J2EE, J2SE, and J2ME edi-

ions. Burke and Monson-Haefel (2006) state that:

1. For the development of forms to desktop platforms, developers

adopt J2SE and APIs such as AWT and Java Swing.

614 F.P. Basso et al. / The Journal of Systems and Software 117 (2016) 612–637

Fig. 1. Implemented scenario for MDE as Service considering contexts from two

software projects, one executed by Adapit and the other by Company A.

Fig. 2. E-commerce use cases designed manually conforms to the CRUD UML
Profile . This is a use case view that illustrates a functionality considered for im-

plementation in a unique iteration of the software development process.

i

o

o

o

M

f

c

s

M

u

A

e

a

a

c

w

S

n

c

W

2

T

t

M

t

w

p

a

a

s

t

o

4

a

F

l

t

u

a

e

c

g

f

d

p

c
2. For the development of forms to mobile platforms, developers

adopt J2ME and APIs for MIDP such as Connected Limited De-

vice Configuration (CLDC) and Connected Device Configuration

(CDC). The latter API focuses on devices that allow for rich GUI

components and rich user interactions, whereas the former is

quite limited. For this reason, CDC is supported by GUIs devel-

oped with the AWT, similarly as in J2SE edition.

3. For the development of forms on the web, developers adopt

J2EE, which can include: (a) tools for the database manage-

ment system such as PostgreSql; (b) web frameworks such as

Spring Framework and frameworks for Object Relational Map-

ping (ORM) such as Hibernate; and, (c) APIs for the develop-

ment of the View layer including JSP, JSTL, Dojotoolkit, jQuery,

and so on.

Finally, some software projects may require all these editions

in the development of multi-layered systems. This is the case of

the systems that we have developed, which we discuss in the next

sections.

3. Motivation and context

We have been in an effort to introduce model-based solutions

in start-up contexts in an initiative for “MDE as a Service”, as il-

lustrated in Fig. 1 . In this scenario, resources developed for MDE

(e.g., model transformations, DSLs and tools) are applied in differ-

ent contexts. We have implemented MDE as a Service by means

of company Adapit , founded in 2007 and supported for three years

by a business incubator, hosted in one of the biggest scientific and

technological parks in Brazil. Through Adapit, we have introduced

resources for MDWE in five software projects, three out of them

developed by teams from Adapit and two out of them by teams

from other start-ups.

The motivation for the advent of a new methodology and tool

support came in 2007, from the internal application of our first

approach for MDWE. It is a software project for the development

of an web information system for online auction, hired on de-

mand by another start-up, i.e., by an auction agency. This project

needed the execution of iterations lasting one month due to dis-

tances between these start-ups. This time-scale implied in valida-

tions with clients carried out too late and, consequently, requiring

a considerable rework in model and source code due to changes

in requirements. Following the instructions from the software en-

gineering discipline (Sommerville, 2010), we concluded that with

shorter time-scales we could obtain feedback from clients in an

early stage. However, due to a sum of factors such as the time in-

vested in manual representation of models, issues in source code

generation and bad practices for manual coding, hampered the ex-

ecution of shorter time-scales.

As a solution to surpass these issues, between 2008 and 2010

we planned and developed an approach for automated design. It
ncludes a tool named MockupToME and other DSLs in a method-

logy named MockupToME Method. It is the result of three years

f industrial innovation, incepted exclusively for the application

f MDWE in target software projects for web information system.

oreover, this approach is limited to assist the design of models

or use case patterns such as CRUD, List, Filter, and Report.

We observed that MockupToME Method speed-up the specifi-

ation of detailed MVC-based models within iterations planned in

hort iterations. In 2010 we implemented a feasibility study for

DE as a Service, by introducing our new approach to other start-

p, referred to in this article as “Company A”. Differently from

dapit, Company A adopts Scrum (Moe et al., 2010) as the refer-

nce model for the software development process. Likewise, we

dapted our resources for the target context (Basso et al., 2013),

nalyzing issues associated with this specific reference model in

ombination with MDE (Basso et al., 2014d; 2015).

As illustrated in Fig. 1 , our approach for MDWE has been used

ith different frameworks for management of software processes:

crum and AMDA (Ambler, 2015). The MockupToME Method is ag-

ostic to the framework adopted by the target software project and

an be introduced in any model for software development process.

e also represented our methodology with the BPMN (Pillat et al.,

015). However, it is also agnostic to the BPMN representation.

hus, the reader can consider it as flexible for inclusion of other

asks.

We present a contribution for the theory and practice of

DWE, discussing elements from methodology and tool support

hat configures our best approach for two start-up contexts. Like-

ise, considering mostly the worst-case scenario for design, we

resent some elements that we consider essential and optional for

pplication of design techniques, tasks for validation with clients

nd coding issues. In the end, we also summarized a report of two

ystems, one developed with the automated design proposal and

he other using mostly manual design (some wizards), and discuss

n open questions associated with the MockupToME Method.

. Running example

We illustrate our methodology considering the development of

n e-commerce application, for the use case diagram shown in

ig. 2 . Two actors, Customer and Manager , can perform the fol-

owing use cases: (1) Maintain Account , which allows users

o persist their personal data, preferences for categories of prod-

cts and associate credit cards; (2) Maintain products , which

llows users to persist data associated with products (e.g., a cat-

gory); (3) List products by preferences , which allows

ustomers to list products based on their preferences for cate-

ories; (4) Generate billet , which allows customers to pay

or products using banking billet/slip. In the next sections, we

emonstrate the automated design of the use case Maintain
roducts .

The use case Maintain products , adopted for exemplifi-

ation, also includes the following use case scenarios: Success

F.P. Basso et al. / The Journal of Systems and Software 117 (2016) 612–637 615

S

c

q

t

S

w

t

f

a

L

t

v

i

p

s

a

b

t

f

l

b

s

s

t

5

d

M

m

r

a

p

5

o

t

P

F

a

w

p

a

t

t

t

e

r

c

s

G

T

u

l

c

n

m

Fig. 3. Model transformation lifecycle adopted in the automated design approach.

t

o

T

c

b

(

r

(

b

2

m

o

n

b

p

u

f

s

b

i

w

e

t
cenario, (1) - Find and Select a Category - the

ategory of a product is already available in the database, thus re-

uiring the development of a complementary mockup to Find and

o Select the category for inclusion in a product, or; Alternative
cenarios, (1.1) - Create a Category - the category

as not found, it must be created, then the end-user re-execute

he success scenario.

Although we focused on the exemplification of a form and filter

or CRUD, it is also possible to automate the design of reports, lists,

nd other variations of user interactions with CRUD operations.

ikewise, the unique use case that is not target for the presented

echniques is the Generate billet , which requires manual de-

elopment. The other use cases are possible to be automated sim-

larly as the use case Maintain products . A reason for exem-

lification of Maintain products is its use case scenarios: be-

ides the implementation of CRUD operations, the user can Find

nd Select the category for inclusion in a product.

Differently, the type of use case associated with Generate
illet implies in the development of a scenario composed of

he following implementations: (1) a mockup for list the products

rom a web shop kart; (2) a class to generate the PDF file. Due to

imitations in our tool support to assist the design of Generate
illet , the first implementation can be generated, but not the

econd one. Therefore, for didactic reasons, the reader should as-

ume that Generate billet is manually developed, allowing us

o exemplify the use of round-trip engineering.

. Approach

Our MDWE approach is illustrated in Fig. 3 and includes the

esign of mockups with the MockupToME DSL 1 . A screenshot of

ockupToME metamodel is shown in Fig. 4 (A). Models in confor-

ity with such DSL are refined and transformed into other rep-

esentations, thus following a multi-view design approach (France

nd Bieman, 2001). In the following sections we introduce our ap-

roach.

.1. Tool support for the design

In a previous lifecycle adopted in 2007 for the development

f the online auction system, the first representation adopted for

he View layer was a representation in conformity with the GUI

rofile (Blankenhorn, 2004), illustrated in a UML representation in

ig. 5 . The literature recommends the usage of use case patterns

nd Master/Detail as a solution to facilitate the development of

eb information systems (Molina et al., 2002; Evans, 2004). To im-

rove our previous practice based on manual design of MVC-based

pplication models, we adopted this recommendation. Besides, for

he sake of offering for designers a better conceptualization than

he one available in GUI Profile (Blankenhorn, 2004), we developed

he MockupToME DSL considering these recommendations (Molina

t al., 2002; Evans, 2004). Thus, our DSL is introduced after the

epresentation of the conceptual model shown in Fig. 6 and use

ases, which are located at the top-part of Fig. 3 as the first repre-

entation associated with models in the lifecycle.

We found that the GUI Profile is limited to the representation of

UI components and does not require concepts for Master/Detail.

his limitation was surpassed using MockupToME DSL, which is

sed as front end for the representation of GUIs together with re-

ationships of Master/Detail. However, the GUI Profile is not dis-

arded. Instead, we considered it as a generic DSL for GUI compo-

ents that follows other representation specific of target platforms.
1 MockupToME web page. Available at: < prisma.cos.ufrj.br/wct/projects/

ockuptome_home.html > .
In the lifecycle of our proposal, the GUI Profile is implemented

hrough the metamodel illustrated in Fig. 4 (B) and belongs to a set

f representations called MVC-Based Application Models .
his DSL is included in the second level of representation for GUIs

alled Concrete GUI metamodel , which in fact is generic and

uilt on top of other DSLs for platform dependent GUIs as follows:

a) Web DSL metamodel is illustrated in Fig. 4 (C) and allows the

epresentation of details for components based on W3C/HTML 5 2 ;

b) Mobile DSL metamodel is illustrated in Fig. 4 (D), which is

ased on the Java J2ME Components (Burke and Monson-Haefel,

006) programmed in MIDP and CDC-AWT 3 ; and (c) Desktop DSL

etamodel is illustrated in Fig. 4 (E) allows the representation

f details for components based on the Java J2SE/Swing compo-

ents (Burke and Monson-Haefel, 2006).

HTML properties such as css , class , background , etc., can

e represented in components from the Web DSL, which is not

ossible to be specified in components that conforms to the Mock-

pToME DSL. The same is valid for Mobile and Desktop DSLs. To

ocus on the methodology, this paper does not provide details on

uch metamodels neither the conservatives UML extensions that

elong to our UML Profiles.

To assist the representation of such models, our methodology

ncludes tasks supported by (semi-) automated design techniques,

hich speed-up the specification of the detailed MVC-based mod-

ls, allowing the use of iterations lasting one to two weeks. Thus,

hrough an specification in conformity with MockupToME DSL, we
2 < https://www.w3.org/TR/html5/ >

3 < http://www.oracle.com/technetwork/java/index- jsp- 138820.html >

https://www.w3.org/TR/html5/
http://www.oracle.com/technetwork/java/index-jsp-138820.html

616 F.P. Basso et al. / The Journal of Systems and Software 117 (2016) 612–637

Fig. 4. DSLs for representation of the View layer in different abstraction levels.

Fig. 5. Illustration of an annotated mockup, manually designed in the Astah UML

modeling tool with stereotypes from the GUI Profile (Blankenhorn, 2004) and our

extensions from Action Profile , as part of the view layer of a multi-layered

architecture based on MVC.

Fig. 6. Conceptual model designed manually with the Astah UML tool. This is a

logical view of the Model layer, illustrated as part of the scenario associated with

the use case view shown in Fig. 2 .

Fig. 7. Screen-shots of models and start templates.

v

i

f

u

p

t

o

l

t

m

d

l

m

s

l

t

T

t

(

w

i

t

t

fl

l

l

f

a

D

t

l

4 A demo from MockupToME tool is available at: < https://www.youtube.com/

watch?v=TrjuqLJMy8M > .
included (semi-) automatic transformations from mockup models

to other models in conformity with MVC-based architectures.

5.2. Lifecycle of model transformations

In the following we discuss some conceptual specificities used

in Fig. 3 :

Preliminary specifications. Are textual use cases/user stories

and paper prototypes, the minimum input for our approach to au-

tomate the design in MDWE. These artefacts are not model spec-

ifications and serve as guide for the designer that works in a use

case, such as those illustrated in Fig. 2 . In preliminary software de-
elopment phases, a requirement engineer draws user interfaces

n a paper, based on use cases or user stories. The engineer is

ree to select techniques and tools to perform these tasks, such as

se case augmentations (Ricca et al., 2010), inspections, and pre-

rototypes (Davis and Venkatesh, 2004).

Mockups are models. In the modelling of web information sys-

ems, a mockup is a GUI whose components are associated with

perations for CRUD, data filter and reports (Ricca et al., 2010). Fol-

owing the motivating example, Fig. 7 (2) shows the simplest struc-

ure for CRUD available in our prototyping tool 4 for the design of a

ockup that implements the use case Maintain products . The

esign in a mockup is semantically connected with one or more

ayout structures, e.g., with a GUI template for CRUD, that are com-

only used in the development of web information systems.

Annotated mockup. As illustrates Fig. 3 , mockups are repre-

ented and refined in conformity with the MockupToME DSL. This

anguage allows the representation of annotated mockups, as illus-

rated in the left-side of Fig. 7 (2) through tags and stereotypes.

hrough annotations, the proposed mockups own semantics for ac-

ion, as in the proposals by Ricca et al. (2010) and Rivero et al.

2014) . Mockup designs are annotated with semantics associated

ith standard actions, which are expanded in new mockups that

mplement the diverse scenarios of a use case. Thus, it is possible

o infer the user interaction in these type of functionality, allowing

o perform simulations in web browsers without the need to detail

ows between GUIs.

Assisted design of models. In previous experiences we always

ooked for ways to speed-up the design of models, making them

ess dependent from specialists. For example, the set of artefacts

ound in our MVC-Based Application Models (see Fig. 3)

re divided in some layers represented with specific EMF-based

SLs and UML Profiles. Fig. 5 illustrates some annotations based on

he GUI Profile (Blankenhorn, 2004), applied manually for the view

ayer. However, several other layers and annotations from other

https://www.youtube.com/watch?v=TrjuqLJMy8M

F.P. Basso et al. / The Journal of Systems and Software 117 (2016) 612–637 617

Fig. 8. Metamodels for the representation of MVC-based Application
Models .

U

r

i

e

F

c

e

o

m

p

g

o

a

F

p

p

g

m

s

t

t

t

D

s

t

w

M

a

R

o

fi

i

e

t

F

R

Fig. 9. Structures for multi-layered application based on MVC.

D

i

f

e

r

v

D

A

m

k

t

a

s

t

a

C

f

n

a

o

t

s

M

(

m

r

r

m

c

t

e

2

c

a

t

t

l

s

i

w

o

5

u

a

2

c

i

a

o
ML Profiles are necessary to represent the set of artefacts. This

equires a considerable time for design that should not be ignored

n software projects conducted with short iterations. Through the

xecution of the overall automated design lifecycle illustrated in

ig. 3 , we can assist the representation of these model specifi-

ations, some generated automatically, refined by the designer in

ach phase of prototyping.

Start templates. The difference between template-based devel-

pment and our approach is that templates are model transfor-

ations, thus not just as a source code facility. Likewise, we pro-

ose to use model transformations of type start templates to
enerate preliminary mockups. A start template is a classification

f model-to-model transformations that allows the generation of

 Preliminary Mockup Model , such as the one illustrated in

ig. 7 (2). Mockups embed the structure for one or more start tem-

lates. This is illustrated in Fig. 7 (1), which shows a start tem-

late executed against input entity classes designed in a class dia-

ram shown in Fig. 6 . This allows the automatic generation of the

ockup shown in Fig. 7 (2). Therefore, a start template follows the

ame principles from GUI templates, but it is applied specifically

o generate a model in conformity with the MockupToME DSL.

Refinement templates. A refinement template is similar, al-

hough strictly applicable to generate mockup structures for De-

ails in representations for use case scenarios. For example, a

etail from the entity Product is Category . Considering the

uccess use case scenario for Maintain Products , refinement

emplates are applicable to the entity Category in association

ith Product , allowing the generation of a Refined Mockup
odel in the lifecycle. This is because a refinement template is

ssociated with the Find pattern (see the button just above the

emove button in Fig. 7), which allows to generate automatically

ther mockups for Search . The generated mockup can also be re-

ned in another specifications to Create a Category and so on.

MVC-based application models . An annotated mockup is an

nput for model-to-model transformations, that allows the gen-

ration of other specifications in conformity with DSLs, as illus-

rates Fig. 8 , used to represent MVC layers, as illustrated in Fig. 9 .

ig. 8 (A) illustrates the metamodel for the representation of Object

elational Mappings (ORM) (Burke and Monson-Haefel, 2006), the
SL for the representation of business logic and database queries

s illustrated in Fig. 8 (B) , and Fig. 8 (C) illustrates the metamodel

or the representation of actions for the Controller layer. These DSLs

xtend the UML metamodel shown in Fig. 8 (D), allowing the rep-

esentation of annotations such as tags and stereotypes in conser-

ative extensions. The Action DSL also extends the MockupToME

SL, allowing the connection between mockups and MVC-based

pplication Models.

Multi-layered MVC. Some companies promote the usage of

ore layers for better structuring the source code than those

nown in the MVC pattern (Allier et al., 2015). As illustrated in

he bottom-part of Fig. 3 , MVC-based Application Models
re structured in multi-layers shown in Fig. 9 using some DSLs

hown in Fig. 8 . Likewise, apart from the Model , the View , and

he Controller layers, our architectural models and the gener-

ted source code are divided in: (a) Remote layer - it is a UML

lass whose operations are annotated with tags and stereotypes

rom the EDOC UML Profile (EDOC, 2014), used to integrate busi-

ess logic in a web server with client applications such as mobile

nd desktop; (b) Validation layer - it is a UML Class whose

perations contain semantics for server-side logic to validate enti-

ies and properties, i.e., persistence constraints and regular expres-

ions represented with metaclasses such as PropertyMask and

askType shown in Fig. 8 (A); (c) the Data Access Object
DAO) layer - it is a UML Class whose operations are confor-

ity with ServiceOperation shown in Fig. 8 (B), which allows the

epresentation of semantics to apply database queries from CRUD-

elated actions.

Functional prototype. A functional prototype is a fully imple-

ented prototype that can be tested in iteration cycles of ac-

eptance with clients. In a multi-view design approach, a func-

ional prototype is obtained through the representation of mod-

ls in a Platform-Specific Model (PSM) view (France and Bieman,

001). Thus, our functional prototypes are generated after the ar-

hitectural prototyping phase, after mapping mockup designs for

n MVC-based model. A functional prototype is result from model-

o-model transformations, manual model refinements and genera-

ion of source code through model-to-code transformations.

WCTSample. This is a web framework that implements a multi-

ayered architecture. The framework has 18 basic entity classes to

upport access control, customizable CRUDs and filters, functional-

ties to handle files, and images that are common features in many

eb information systems. This framework was used in the devel-

pment of the two systems reported in Section 9 .

.3. Final remarks

Although we focused and exemplified the design for a complex

se case scenario associated with Maintain products , it is

lso possible to generate CRUDs for simpler scenarios (Basso et al.,

015). For example, to persist a Category , the resultant mockup

ould be as simple as the one illustrated in Fig. 7 without any

nformation of Detail . Thus, the designer uses a start template

nd ignores the refinement templates. Moreover, for the design

f simple mockups, some tasks included in our methodology

618 F.P. Basso et al. / The Journal of Systems and Software 117 (2016) 612–637

Fig. 10. Overview of steps proposed for rapid application prototyping in four inter-

actions with client in the MockupToME Method.

Fig. 11. MockupToME Method with tasks assisted by tool, allowing the generation

of models in different abstraction levels.

T

t

u

s

c

a

t

a

S

t

d

w

s

e

o

d

i

m

A

i

c

s

t

t

fi

M

c
can be ignored or partially used. Besides, it is always possible to

represent components in mockups manually, detailing use case

scenarios with annotations that are not supported in MockupToME

tool. Thus, our contribution for automated design of mock-

ups is complementary to manual design techniques introduced

by Brambilla and Fraternali (2014) , Rivero et al. (2014) , and Ricca

et al. (2010) .

6. MockupToME method

Models are represented in different abstraction levels following

a multi-view lifecycle in the MDWE scenario shown in Fig. 3 . This

approach is discussed from the perspective of stakeholders inter-

acting with the MockupToME Method, as illustrated in Fig. 10 .

Our methodology allows to work with four abstraction levels of

artefacts associated with user interfaces: paper prototype, mockup

model, concrete GUI models (platform specific), and functional

prototype. Because we use more than one DSL in our approach,

its systematization requires the following four different phases for

prototyping:

1. Paper prototyping, which is executed in a requirement engi-

neering discipline and represents the first view from the client

about a functionality to be developed.

2. Evolutionary prototyping (Sommerville, 2010), which considers

the worst-case scenario about the uncertainty of requirements

as those found in start-up contexts (Giardino et al., 2014). This

phase targets the exploratory development (Schwaber, 1995) of

mockups with different options for clients to evaluate and de-

cide which ones have to be used in his/her applications.

3. Architectural prototyping (Allier et al., 2015), which explores

models that represent the MVC layers besides the View such

as business logic, object relational mapping, and property

validators.
4. Functional prototyping (Sommerville, 2010), which is the im-

plementation of the source code for a functional prototype in

which clients can perform acceptance tests.

Not all tasks presented in this methodology are mandatory.

hus, the software engineer must decide in each task about op-

ional elements, such as the representation of alternative mock-

ps for the implementation of a given use case scenario. The de-

ign of mockups for some use case scenarios associated with CRUD

an be complex, involving a set of specifications for GUIs, actions

nd entities that should be represented in synchrony. For example,

he use case Maintain products illustrated in Fig. 2 includes

t least two scenarios that should be implemented: Find and
elect a Category , or Create a Category . These seman-

ics for actions are commonly found in use case scenarios for the

evelopment of CRUDs and present a standard workflow. Likewise,

e found interesting to assist the design and refinement of these

cenarios through automated design techniques.

Fig. 11 presents our methodology in BPMN. It is used in ev-

ry iteration by a designer and developer to perform many cycles

f validation, allowing iterative and incremental steps towards the

evelopment of working pieces of application. The designer , which

s a specialist in mockup and MVC, refines a generated mockup

odel choosing mutually exclusive mockup structures from Tasks

 to D .

Tasks A and B are fully executed independently of the complex-

ty of the use case. Considering the worst-case scenario for use

ases, Tasks C and D are fully executed. In these tasks, different

tructures of GUI components can support alternative implementa-

ion strategies, for example, different components, layouts and GUI

emplates for the same use case scenario. Finally, mockups are re-

ned to support new suggestions.

A first executable prototype is obtained in Task E: Generate
ockup Source Code . The generated prototype is evaluated by

lients to ensure that GUI flows and forms are in conformance

F.P. Basso et al. / The Journal of Systems and Software 117 (2016) 612–637 619

Fig. 12. Template catalogue, used as a guidance for execution of an assisted design

approach through the MockupToME tool.

w

a

P

t

m

c

g

c

s

u

e

s

l

S

6

t

w

m

a

f

q

t

t

C

T

G

w

b

b

p

s

p

f

l

S

u

t

M

F

w

6

M

t

i

t

s

a

t

r

a

c

6

p

r

k

a

i

a

p

d

t

s

p

a

o

g

a

c

s

〈

a

t

a

t

w

t

i

6

p

a

g

t

f

l

l

a

w

m

w
ith the expected behavior to a given functionality specified in

 textual use case scenario. Task F starts the Architectural
rototyping Phase , including the generation of models anno-

ated with tags and stereotypes for business logic. An accepted

ockup model is transformed into a concrete GUI model that is

omposed of DSL components supported by specific web technolo-

ies and APIs, e.g., an image chooser component. Concrete GUI

omponents are refined in multiple views for each target platform.

A functional prototype with is generated from Tasks F to I

hown in Fig. 11 . The source code is changed to adjust details, and

sability tests are executed by clients. Differently from the first

xecutable prototype that supports only the simulation of flow

creens, the functional prototype is fully implemented in MVC

ayers.

Tasks J and K, performed by the developer , are discussed in

ection 7 and 8 .

.1. Part I: requirement engineering phase

Use cases and paper prototypes are elicited in late phase of

he software development process and are used as input to decide

hether and how the MockupToME tool should be used to auto-

ate the design of mockups. Our methodology starts, in fact, with

 planning performed by a requirement engineer after the first client

eedback from the designed paper prototype and use case.

In case of acceptance from these initial requirements, the re-

uirement engineer will decide if the inputs are target for our au-

omated design approach. This is possible due to a catalogue of

emplates that give instructions for design of some structures for

RUDs, List, Filters, and Reports named Template catalogue .
his catalogue is illustrated in Fig. 12 and presents screen-shots of

UI structures for each classification of use case patterns together

ith annotations for Master/Detail. A template catalogue is used

y designers to decide which start and refinement templates must

e used for the assisted design of a mockup model. The design is

erformed considering a paper prototype, making a semantic as-

ociation among these three artefacts: template catalogue, paper

rototype, and mockup model. The mockup is the unique model

rom these artefacts, thus this association is not physically estab-

ished among them.

The generation of a preliminary mockup occurs by means of

tart templates . In this task the engineer semantically links

se cases with start templates. Differently from the previous case,

his link is physically established through a property of metaclass
ockup , available in the MockupToME metamodel illustrated in

ig. 4 . This allows the connection of representations in conformity

ith MockuptoME DSL and UML, as shown in Fig. 8 (D).

.2. Part II: evolutionary prototyping phase

In this section, we include a systematization of the usage of

ockupToME tool in our methodology, by describing the interac-

ions of the client/product owner with the designed mockups and

ts construction.

Fig. 11 illustrates the methodology that automates the tasks be-

ween requirement analysis and source code generation, and this

ection systematizes such tasks. To perform these tasks, end-users

re assisted by tutorials and supported by tools discussed along

he next sections, in which each task is detailed with: (a) artefacts

epresented as input and output; (b) a description of the associ-

ted model-based tool for design, refinement or transformation; (c)

lient interactions with the artefacts; and, (d) exemplifications.

.2.1. Task A: find master entities

Input: Textual use case, Use case diagram, Class diagram, Paper

rototype, Template catalogue.

Output: Master entities are included in textual use cases and

elated with a use case diagram using a tag. This is required to

eep traces between artefacts.

Description: After a textual use case is elaborated, the designer

nalyses the domain classes looking for those that are character-

zed as master entities by the domain-driven design (Evans, 2004)

nd the object oriented method (Molina et al., 2002). Based on the

aper prototype, the designer selects the Master entity from a class

iagram shown in Fig. 6 , for each use case to be developed from

he use case diagram shown in Fig. 2 .

Exemplification: After identifying the Master entity, the de-

igner accesses inputs from Task A to identify which of the tem-

lates from the Template Catalogue is more adequate to start

 design of GUI form. In order to automatically generate a mockup

f type form , MockupToME takes as input a domain class dia-

ram and, optionally, use cases. Forms are automatically gener-

ted through Start templates, selected in conformity with the use

ase scenario selected for development. For example, use cases

hown in Fig. 2 stereotyped with 〈〈 FilterBy 〉〉 , 〈〈 SimpleCRUD 〉〉 , and

〈 CRUDWithDetail 〉〉 are target for start templates, described in the

rtefact Template Catalogue . Use cases are not mandatory for

he generation of a mockup because they are used only to instruct

nd document, differently from the Master entity. Thus, to design

he solution for the use case Maintain product , the designer

ill use the start template Generate CRUD form , activated on

he entity Product , as shown in Fig. 6 . The execution of this task

s illustrated in Fig. 7 (1).

.2.2. Task B: use a start template

Input: Textual use case, Use case diagram, Class diagram, Paper

rototype, Template catalogue.

Output: Preliminary mockup.

Description: As in some web frameworks, many templates are

vailable as a facility for codification of CRUDs: some are used to

enerate a mockup based on forms, other ones for list and fil-

ers, others for reports, between other structures. Instead of code

acility, a start template is facility for the generation of pre-

iminary mockup models. The artefact Template catalogue il-
ustrates for the designer possible structures for generation of

 Preliminary mockup . Likewise, this task aims at deciding

hich start template is directed for the generation of a

ockup that must be developed in each iteration of the soft-

are development process. Thus, the designer choose the start

620 F.P. Basso et al. / The Journal of Systems and Software 117 (2016) 612–637

Fig. 13. Wizard executed by start templates.

Fig. 14. Steps to refine annotated mockups: changing refinement strategies to han-

dle associations.

c

n

e

o

F

t

m

t

e

i

t

o

t

C

g

t

u

l
template that best meets the structures drawn in the Paper
prototype .

Exemplification: The activation of start templates will display

the wizard illustrated in Fig. 13 : (1) the execution of the first step

named Select the associated use cases establishes au-

tomatically a link between the mockup with the selected use case.

Note that it was selected the use case Maintain products ; (2)

The second step is to select the associations of the master class

Product that will be included in the preliminary version of the

mockup, i.e., the Details that will be included into the preliminary

mockup. It was selected the association with Category ; (3) The

third step is to configure for each selected association a Layout

Strategy . A layout strategy is a template for Details , and it is in-

dependent from start templates and is used to provide a particular

layout that will handle the selected association, thus implementing

the relationship between Master and Detail. It is important to note

that, as long as the paper prototype represents exactly what the

client needs, this step is effective because the selection of a lay-

out strategy will generate the mockup with the structure as repre-

sented in the paper prototype. However, the effectiveness of step 3

is not always true, which imply in some cases in which the client

will request another layout strategy. MockupToME is ready for this

situation, allowing changes after the execution of start templates

through refinement templates (see Task C); (4) The last step is to

specify some properties of the mockup that will be generated after

the mockup designer activate the button Finish .
Considerations: For the generation of a mockup without de-

tails, the designer should not select associations in the step 2. The

non selection of at least one association will make the step 3 un-

necessary. The result is a Preliminary Mockup Model with or

without details.

6.2.3. Task C: refine the details

Input: Preliminary mockup, Master and Details, Textual use

case, Paper prototype.

Output: Refined mockup.

Description: The refinement of the preliminary mockup is ex-

emplified in Fig. 14 . The goal is to reach the representation of

a Paper prototype in a mockup specification through refine-

ments. This can happen if the designer selects wrongly the strategy

for a Detail in the screen (3) from the wizard shown in Fig. 13 or

due to changes requested by the client/product owner. Likewise,

after the generation of a preliminary mockup, the designer can

change, if needed, the structure used to persist the Detail = Cat-

egory inside a CRUD for the Master entity (Product), using other

alternative structures for Master/Detail. In case these changes of

structures are not necessary, then the designer apply adjustments

in the mockup specification and follows to Task E. In the worst-

case scenarios, where the designer is not 100% sure about the ac-

ceptance of preliminary requirements represented in textual use

case and paper prototypes, this task may introduce alternatives for

implementation of a use case scenario. Thus, the goal in this task

is, in the worst-case of a software project that presents some un-
ertainty on the preliminary requirements, the generation of alter-

ative structures to support the same master/detail relationship.

Exemplification: In the current format, a product and its cat-

gory are persisted in different transactions, each one having its

wn Form and Save button, as illustrated in the top-part of

ig. 14 . This structure should be changed by the one illustrated in

he bottom-part. Our tool facilitate the application of this refine-

ent. The transformation of one structure into another is an easy

ask since model transformations are available in pop-up menus

xecuted over each of the elements of designed mockup shown

n Fig. 14 (1). Using the drawing area one can undo transforma-

ions to decide what strategy best fits to express a specific part

f functionality. Assume that the mockup designer selects the op-

ion Find and Attach in the second step and that panel titled

ategory with a component to Find something is automatically

enerated and configured. In this example, a refinement generated

wo mutually exclusive Layout Strategies i.e., Fig. 14 (1) and (2).

Strategies to refine details in associations of type (0..1): The

se of different strategies to handle the same master/detail re-

ationship are shown in Fig. 15 . Given that compositions be-

F.P. Basso et al. / The Journal of Systems and Software 117 (2016) 612–637 621

Fig. 15. Layout strategies for 0..1 relationships.

t

e

p

p

g

F

S

a

t

P

s

n

t

t

S

d

f

o

T

s

T

i

t

s

t

t

t

s

t

m

t

e

m

e

F

t

a

f

F

u

p

s

m

Fig. 16. Implementation of scenarios for the use case Maintain Products .

p

s

s

a

a

6

a

t

t

t

t

t

t

s

n

t

t

m

M

i

b

T

u

p

g

T

t

c

q

i

i

q

ween master and detail , entities can be implemented with differ-

nt structures as well as using different GUI components. Tem-

lates for Detail are called refinement templates and sup-

ort flexible mockup constructions. Fig. 15 (1) shows the structure

enerated using a refinement template called Embedded Form ,
ig. 15 (2) shows the structure generated using another called

elect Single and Attach and the third is called Find
nd Attach . The original strategy illustrated in Fig. 14 (1), whose

emplate is called Independent Form , will persist data from

roduct and Category in different database transactions. The

trategy used in Fig. 15 (1) owns semantics for actions (i.e., an-

otations) that dictates that, when the Save button is pressed,

hen the data from the Detail = Category is persisted in the same

ransaction as the data from the Master = Product . The Select
ingle and Attach , shown in Fig. 15 (2), owns semantics that

ictates that all the Details = instances of Category will be loaded

rom the database, inserted into the combo-box, and the selected

ne is merged with the Master after the button Save is pressed.

he last, shown Fig. 15 (1), owns semantics that allow the user to

pecify a filter for the Detail , merging the detail into the master.

hese annotations and the associated UML Profiles are discussed

n Section 10 .

Success Scenario: Assuming that in the Paper prototype
he drawing is similar to the strategy shown in Fig. 15 (3), the de-

igner must now detail the actions from end-users derived from

his mockup. Thus, the use case Maintain products presents

he success scenario namely Find and Select a Category
hat must be detailed. Task C is useful for detailing this success

cenario for such a use case, as illustrated Fig. 16 . This is because

hrough the refinement templates we can assist designers in the

odelling of the sequent mockup, designed for the implementa-

ion of another associated mockup that Find and Select the cat-

gory, required for inclusion in a product. In this example, the

ockup shown on the right side of Fig. 16 (A) is automatically gen-

rated through a refinement template associated with the button

ind .

Alternative scenario: Task C is important for detailing alterna-

ive scenarios too. The use case Maintain products presents

n alternative scenario for the case when the category is not

ound through the the mockup shown on the right side of

ig. 16 (A). Thus, the category must be created so that the end-

ser re-execute the success scenario. Assuming that the paper
rototype presents a GUI similar to the one shown on the right

ide of Fig. 16 (B), the left side of this figure shows the popup

enu from MockupToME tool that allows the execution of the ap-
ropriate refinement template. This is possible because the de-

igner add a new button on the form for Filter . This button is

tereotyped as 〈〈 EditEntityAction 〉〉 , which allows for our tool to

ssociate and recommend refinement templates for detailing the

ction in a new mockup.

.2.4. Task D: select the strategy for details

Our tool support is important for the execution of a creative

nd incremental design process in MDWE, allowing for designers

o explore use case scenarios. This is important when some func-

ionalities present uncertainty on the requirements. For example,

he case that the client changed his idea about the implementa-

ion of a scenario developed in a previous iteration and also along

he same iteration. This is a little bit common in start-up con-

exts (Giardino et al., 2014). In this case, the designer should con-

ider changes before starting the design of models associated with

ew use cases or the architectural models, discussed in the Archi-

ectural Prototyping Phase . When this worst-case scenario occurs,

hen it is important to apply the changes in models, starting by

odifications in mockup specifications. Thus, Task D is defined in

ockupToME Method for designers to deal with this situation.

Input: Refined mockup (i.e., with different GUI structures).

Output: Refined mockup (i.e., with selected components).

Description: This task is executed only if the designer includes

n Task C options for Master and Detail that should be re-validated

y the client , otherwise, the designer should skip it and perform

ask E. Task D is useful for the worst-case scenario, when textual

se cases and the paper prototype present uncertainty from the

oint of view of client . The designer may alternate between strate-

ies used to structure each association owned by the Master entity.

hen, options available for the designed mockups are accorded be-

ween client and designer in a second cycle of validation. Besides,

onsidering the worst-case when requirements change with fre-

uency among iterations, thus needing to change models designed

n previous iterations. It possible to undo a refinement performed

n Task C and also to select which strategy better meets to the re-

uested change in a new iteration.

622 F.P. Basso et al. / The Journal of Systems and Software 117 (2016) 612–637

Fig. 17. Design elements represented through the methodology in support for the use case Maintain Products .

p

w

s

m

5

p

t

S

t

i

a

o

t

o

c

t

6

t

m

i

o

i

m

i

t

s

t

s

f

M

s

a

p
Exemplification: Tasks C and D allow the execution of an itera-

tive and incremental design approach, always updating previously

designed models and keeping them synchronized along the execu-

tion of iterations. Consider the mutually exclusive layout strategies

shown in Fig. 14 (3). Each menu item will select one of the layouts

shown in Fig. 15 , which may occur in worst-case scenarios. Tag

LayoutStrategy = xyz shown in Fig. 15 (1–3) provides seman-

tics that links to the adopted refinement template. Note that, af-

ter the selection of a strategy for each Detail relationship, mockup

components are not removed, but deactivated. These elements al-

low to group and select strategies for Master and Detail . In case a

sequent refinement is needed after a selection, than the mockup

designer will detail the sequent actions, starting a new instance

of the proposed methodology. For example, if the selected strategy

is the one illustrated in Fig. 17 (2), the warning icon associated

with the button decorated with the Find icon suggests that this

component needs refinement. In this case, a new mockup anno-

tated with 〈〈 FilterBy 〉〉 must be specified and associated with the

Find button. This is a very similar situation to the use case List
products by preferences , shown in Fig. 2 . MockupToME as-

sists the designer in the representation of the sequential refine-

ments, allowing the automatic generation of new mockup shown

in Fig. 17 (3) and the specification of the Filter operation shown in

Fig. 17 (4) with the help of a wizard.

Client evaluation: Through the popup menu items shown in

Fig. 14 (3), and together with the mockup designer, the client can

interact/simulate with the mockup before the source code is gen-

erated, deciding the best structure for a mockup. In the case of

non-acceptance or corrections in mockups, previous tasks are ex-

ecuted again until the client decide for a specific structure. In the

case of acceptance, the next task is executed. Thus, following the

motivating example, assume that the client has selected the option

Find and Attach, resulting in an accepted mockup as illustrated in

Fig. 14 (2).

Final steps: After client acceptance, GUI components are more

detailed, components are standardized in size, position, font, etc.

6.2.5. Task E: generate mockup source code

A choice made by the client about strategies in mockups will

allow the mockup designer to generate the source code. This code

is used to apply the first test of a runnable prototype (a Browser
rototype generated directly from a mockup). Thus, associated

ith the previous tasks, only active mockup components are con-

idered during the source code generation.

Input: Refined mockup (i.e., with different structures).

Output: Browser prototype, accepted mockup.

Description: The execution of Task E implies in the use of a

odel-to-code transformation that generates source code for HTML

 directly from mockup. This transformation is simpler than others

erformed in Task F, which includes model-to-model transforma-

ions from mockup to multi-layered model elements named UML
tructural and Behavioural Diagrams . In this case, only

he view layer is generated as source code. In the next phase it

s also possible, using model-to-model transformations, to gener-

te what we call Concrete GUI Components , characterized by

ther models in conformity with three other DSLs for GUI (Desk-

op, Web and Mobile). Both transformations enable the simulation

f GUI’s flows and user interactions in a web browser. Thus, the

lient evaluate the Browser prototype and, in case of accep-

ance, the next prototyping phase is executed.

.3. Part III: architectural prototyping phase

Tasks A to E are used to generate the first compiled proto-

ype based only on mockups. Tasks F to H aim at generating other

odel specifications that connect GUI DSLs and business layers

mplemented with MVC-based models. Therefore, instead of using

nly the MockupToME DSL and entity classes/use cases discussed

n the previous phase, the architectural prototyping phase includes

odel specifications considering heterogeneous DSLs.

In this section, we introduce the underlying architecture that

mplements the MVC pattern. We separate the business logic from

he controller layer to better modularize the source code. Thus, the

emantics for business logic is placed in a UML interface stereo-

yped as 〈〈 Service 〉〉 . This interface is implemented by other layers

uch as: (a) Remote; (b) Validation; and, (c) DAO.

The architectural prototyping phase represents the transition

rom mockup specifications illustrated in Fig. 17 (2 and 3) to other

VC-based layers illustrated in Fig. 17 (4–9) which, follows the

tructures of a multi-layered MVC. In this phase, models in (4–9)

re generated and refined, e.g., detailing properties of GUI com-

onents that are not possible to be represented in mockups. In

F.P. Basso et al. / The Journal of Systems and Software 117 (2016) 612–637 623

o

u

o

g

t

e

6

a

U

t

f

a

m

t

U

t

t

e

t

s

m

a

(

F

a

o

p

T

f

t

e

L

B

S

t

t

a

m

i

t

l

e

c

a

P

T

a

c

f

d

m

fl

(

+

H

p

u

Fig. 18. Message call to process the action saveAndMerge in the underlying

multi-layered architecture.

s

t

m

f

m

a

m

f

e

q

t

a

p

f

t

t

m

p

s

a

i

g

e

e

I

i

b

r

a

c

t

c

d

a

m

p

a

p

c

a

m

s

C

6

e

ur first MDWE approach dating back 2008 (Basso et al., 2007) we

sed to represent these models manually. Due to the introduction

f evolutionary prototyping, these models are now automatically

enerated. Besides, in this stage, the client has already accepted

he designed mockups. Thus, this is the correct moment to detail

lements associated with the MVC.

.3.1. Task F: generate MVC layers

In this task, mockups are transformed into MVC-based model

pplication layers as follows.

Input: Accepted mockup.

Output: Concrete GUI components, controllers and services,

ML structural and behavioral diagrams.

Description: Once the mockup model is validated and a struc-

ure for a mockup is decided, the process towards generating a

unctional prototype can be executed. This implies in generating

ll web information systems layers considering the selected do-

ain features. Fig. 17 presents the generation of other layers of

he MVC from mockups. Some of these layers are represented with

ML Profiles (Entity and Service) and others with DSLs that ex-

ends the UML metamodel (Controller and View). The execution of

his task outputs the following artefacts:

Concrete GUI components. MockupToME DSL have few prop-

rties to set GUI components, thus in a high-level of abstraction

han target platforms, e.g., Mobile, Desktop, and Web. To repre-

ent a GUI in a target platform, mockups must be transformed by

eans of specialized DSLs. Thus, three DSLs for GUI can be used

nd are supported in our set of model-to-model transformations:

1) the Web DSL; (2) the Desktop DSL; and, (3) the Mobile DSL.

ig. 17 (6 and 9) shows the elements generated from mockups (2

nd 3) conforms to the Web DSL.

Controllers and services. The buttons specified in mockups

wn semantics for actions. For example, the Save button allows to

ersist entities and the button Filter allows to query a database.

hese buttons allow us to infer the flow between the user inter-

aces. For example, MockupToME keeps a trace/flow that connects

he mockups shown in Fig. 17 (2 and 3). Another example of infer-

nce is the button Save , that for the success view will show the

ist Form and for the error view will show the Crud Form .
ased on these inferences, Controllers (see Fig. 17 - 5 and 8) and

ervice interfaces (see Fig. 17 7) are automatically generated. Con-

rollers are in conformity with the Action Profile, a DSL that ex-

ends the UML we have developed to handle actions commonly

ssociated with the Spring Framework, e.g., simple form controller,

ulti-action controller, command controller. Service interfaces are

n conformity with the Service Profile, a DSL that extends the UML

o represent database query semantics.

UML structural and behavioral diagrams. Each application

ayer derived from the Service or Controller models belongs

ither to validation, or to persistence, or to remote operation

alls, and are generated only when Desktop and Mobile DSLs

re used. Fig. 18 shows three layers derived from the interface

roductService represented in a UML sequence diagram.

his diagram is optionally represented for use cases that are

utomated through our methodology, because the model, view,

ontroller and service layers are already linked during the trans-

ormation from a mockup (see Fig. 17 - 5, 6 and 7). For manually

esigned functionalities, the messages between these layers

ust be manually annotated. The exemplified messages define

ow and business logic operations related to entity Product :
 ProductRemote or ProductMultiActionController)
 ProductServiceValidator + ProductServiceDAO
ibernate .

Generation of platform-specific models for GUI. The GUI com-

onents represented in a mockup model are conform to the Mock-

pToME DSL, and must be transformed to one or more platform-
pecific models for GUI. For example, if requested by the client,

he designer must select a mockup model and execute a specific

odel-to-model transformation to generate a specification in con-

ormity with the Web DSL. Thus, the designer can transform a

ockup to one or more DSLs for GUI: Web DSL , Mobile DSL
nd Desktop DSL . Each platform-specific model for GUI must be

anually enriched with details from each DSL. If transformations

or desktop and/or mobile platforms are executed, then the gen-

ration and refinement of a class from the Remote Layer is re-

uired (Basso et al., 2014c), which allows to apply remote connec-

ions between devices and the web server. Therefore, this approach

llows for designers to represent details from each platform sup-

orted in the underlying implementation framework.

Exemplification. For applications that run in a desktop plat-

orm, the designer generates a model in conformity with the Desk-

op DSL, used in the end of our model transformation lifecycle

o generate source code mapped into the Java Swing API. The

ulti-layered architecture allows remote connections from client

latform (Desktop) with the server platform. In case of platform-

pecific models for GUI in conformity with the Mobile DSL, the

rchitecture works in the same way. We have already tested

t through remote http connections, linking mobile devices pro-

rammed with J2ME API and the web server with remote calls, as

xemplified in Section 7.3 . Thus, the Remote layer delegates op-

rations to a validation layer which is hosted by the web server.

n the case of exchange of View platforms in the client side, e.g.,

nstead of GUI developed for Desktop use GUIs developed for Mo-

ile devices, at least the validation layer and persistence layer are

eused.

Client evaluation. Two model elements generated in this phase

re important for client evaluations. (A) the concrete GUI
omponents which, for the reported experiences in the next sec-

ions, uses the Web DSL. The model associated with the artefact

oncrete GUI components is, therefore, a DSL in a platform-

ependent model view for GUI in a lower abstraction level than

 mockup, which is a platform-independent model for GUI. This

odel owns a unique structure, does not have deactivated com-

onents neither master/detail properties, and its components are

ble to store specific properties that the mockup does not sup-

ort, such as events, layout, and appearance properties. (B) the

ontroller layer, in which action/event components are defined also

s a domain-specific models. Thus, with these two generated ele-

ents and considering only the use of Web DSL, a second browser

imulation can be performed by clients considering the View and

ontroller layers.

.3.2. Task G: detail the business logic

Input: Concrete GUI components, controller, master and detail

ntities.

624 F.P. Basso et al. / The Journal of Systems and Software 117 (2016) 612–637

Fig. 19. Entity layer annotated with the ORM Profile with the help of a wizard.

Fig. 20. Component diagram describing the architecture.

6

w

a

m

p

f

e

q

6

m

i

m

u

i

t

l

E

t

S

c

6

e

M

f

f

7

d

t

a

Output: Controller and GUI components with authority map-

pings, service UML interface.

Description: This task intends to generate other specific model

layers that are mostly mapped into the DAO layer, to constraint

controller layer access, and to constraint GUI fields with secu-

rity details. The bottom-part of Fig. 17 shows a piece of the wiz-

ard to annotate the Controller model responsible to represent ac-

cess constraints. For an example related with the controller opera-

tion, assume that functionality = elements 4, 8, and
9 from Fig. 17 . This example shows that the actor Manager has

full access to the functionality Filter Category , while the ac-

tor Customer can only visualize it.

6.3.3. Task H: apply UML profiles

This task is assisted by wizards such as the one exemplified in

Fig. 19 .

Input: Domain-Specific Models (Concrete GUI components and

Controller layer), Elements Annotated With UML Profiles (Model

layer and Service Interface).

Output: Input elements with more annotations to allow the ex-

ecution of platform-independent model to platform-specific model

transformations.

Description: This task is optional, since one can be interested

in transform domain-specific input models into UML models. Be-

sides, aiming at generating a more complete source code, the de-

signer can specify some details such as annotations, not generated

by previous transformations. To represent annotations for ORM,

it is used a wizard to decorate entities. This is exemplified in

Fig. 19 (1), where a wizard allows the generation of an Id Class
in Fig. 19 (2) followed by a guided annotation, resulting in the an-

notated entity named Category as illustrated in Fig. 19 (3).

Source code generation: Model-to-code transformations are

applied against the input elements to map them to the Java ar-

chitecture used by the development team. This transformation en-

ables the generation of a functional prototype, since all layers are

generated as source code. Afterwards, source code is refined by

programmers and then tested. For example, ORM annotations are

used to generate Java classes decorated with the JPA (Burke and

Monson-Haefel, 2006), as exemplified in Section 7 .

Client evaluation: Finally, the client performs his/her forth in-

teraction for the acceptance test. Then, improvements and correc-

tions are made in the generated functional prototype, delivering a

working piece of application, the last software artefact as shown in

Figu. 11 .
.4. Part IV: functional prototyping phase

A fully executable piece of software is obtained in this phase,

here generated prototypes are target for acceptance tests. These

rtefacts are then detailed and used by a development team. Using

odel-to-code transformations it is possible to generate functional

rototypes, which can be tested by clients in web browsers. There-

ore, a functional prototype is a fully implemented functionality,

.g., considering the implementation of database transactions and

ueries, which must be tested by clients in a real-world scenario.

.4.1. Task I: generate complete source code

Input: All aforementioned models.

Output: Source code for MVC-based layers.

Description: The result is a fully testable platform-independent

odel prototype. This is achieved after the usage of a platform-

ndependent model to generate platform-specific model transfor-

ations. This means that all strategies used in annotated mock-

ps imply on the use of different transformations from platform-

ndependent models to platform-specific models. Currently, model

ransformations enable the generation of source code for the fol-

owing layers:

1. Model-Entity layer with support of object-relational mapping

details.

2. Controller-Business layer with support for transactions involv-

ing the service/business layer and calls for a remote access

layer.

3. Controller-Persistence layer with the layer for handling the data

access object.

4. Controller-Actions layer to handle GUI events.

5. View layer in the client side application.

Fig. 20 illustrates components that, except for the Model-

ntity , implement aforementioned layers of a functional proto-

ype. Thus, as part important of the Functional Prototyping phase,

ection 7 provides information about the implementation of these

omponents.

.5. Final remarks

It is important to mention that the usage of model transform-

rs to refine mockups is a practice that can also be used by other

DWE proposals. Thus, the concepts introduced in MockupToME

or semi-automated refinement of mockups are general and useful

or researchers and practitioners of MDWE.

. Implementation

The aforementioned automated design tasks were used in the

evelopment of real-world web information systems. In this sec-

ion, we present implementation details, including artefacts gener-

ted in the Functional Prototyping Phase .

F.P. Basso et al. / The Journal of Systems and Software 117 (2016) 612–637 625

Fig. 21. Resultant GUIs executed in a mobile emulator and in a web browser.

7

c

A

l

G

a

r

t

T

w

r

l

l

x

s

t

m

b

i

c

o

W

m

J

a

c

a

i

s

b

t

t

p

7

T

t

t

n

a

i

a

p

t

e

i

a

s

E

l

m

a

t

t

c

c

i

i

a

G

i

t

t

t

i

s

o

i

r

a

f

p

s

f

s

p

a

p

c

i

e

o

c

t

i

h

r

s

p

c

n

w

C

7

b

f

f

s

d
.1. Underlying architecture

Following the motivating example, this section exemplifies the

lasses that are generated from the models represented in the

rchitectural Prototyping Phase . These classes are connected in a

ogic flow illustrated in Fig. 18 as a UML sequence diagram. For

UIs developed for Desktop or Web platforms, these method calls

re similar. Both GUIs will delegate the processing of business

ules for a Validator class hosted in the web server which, in

urn, delegates the task of persistence for the persistence layer.

his flow between layers is performed/injected by Spring Frame-

ork. When one need to change something in the application

egarding the business layer, it will be made in the control

ayer xxxMultiActionController , and/or in the validation

ayer xxxServiceValidation , and/or in the persistence layer

xxServideDAOHibernate , where xxx is the name of the as-

ociated entity. Actions found in screen flows will be handled in

he controller, or in action listeners developed for Swing or in com-

ands developed for J2ME/MIDP.

The generated source code includes the GUI layer for Mo-

ile, Desktop and Web platforms, data access layer, entity layer,

ntegration/remote layer, xml configuration files, text files, Java

lasses, data base scripts, models, etc. The following configuration

f technologies from the underlying target platform are used in

CTSample, the pre-configured MVC framework for web develop-

ent used in our experiences, which is composed by: Hibernate,

PA, jQuery, JSTL, Swing, PostgreSql, Apache Commons Validation,

nd Spring Framework. This architecture is flexible and supports

hanges through the FOMDA Approach (Basso et al., 2013). For ex-

mple, the following technologies were changed in the underlying

mplementation of WCTSample across software projects: (1) first,

oftware projects dating back 2008 used HBM files to apply Hi-

ernate mappings (ORM) and in recent projects JPA was used; (2)

he first software project was developed at Adapit adopting Dojo-

oolkit API as web technology to write rich GUIs, and in the second

roject we used jQuery.

.2. Generated source code

Fig. 21 shows the resultant GUI from the overall methodology.

his GUI is executed in a web browser and represents the func-

ional prototype for the use case Maintain products . Behind

his simple GUI, several application layers based on the MVC con-

ects GUI components, action and flow handling, field validation

nd database persistence. These layers are presented in the follow-

ng.
The source code generated for the entity Product is illustrated

t the center of Fig. 22 . Note that a dashed line includes the map-

ing from tags and stereotypes from our UML Profile for ORM to

he JPA representation. Besides, XDoclet comments such as the op-

ration getName are also mapped into the Apache Commons Val-

dator API, which automatically validate GUI form fields. As long

s the MVC designer specifies ORM annotations using the wizard

hown in the right side of Fig. 22 , the source code generated for

ntities will not require manual changes.

Fig. 23 exemplifies the source code generated for the Validation

ayer located in the server-side. Each action/button specified in a

ockup that semantically submits a form, e.g., 〈〈 SaveOrUpdate 〉〉
nd 〈〈 FilterBy 〉〉 , also presents an implemented operation into

he xxxValidator class. The implementation of the opera-

ion saveAndMerge delegates for the Spring Framework API the

hecking if the data from the instance of Product are valid. In the

ase it is valid, then the operation delegates the task to persist the

nstances of Product and Category to the DAO Layer (injected

nto the property productService). In case of invalidity, then

n exception is thrown to be handled in the client-side, where a

UI will presents a user friendly message. The developer is free to

nclude a specific validation in source code if he/she needs. Thus,

his operation do not require changes to work in a functional pro-

otype.

Fig. 24 shows the implementation of the DAO layer with

he Hibernate. Soon after opening a database transaction, the

nstance of entity Category is set to a persistent state:

ession.refresh(category) . This clean any information

wned into the parameter category except the primary key. This

s due to the stereotype 〈〈 EmbeddedEntity 〉〉 assigned by the pa-

ameter illustrated in the top of Fig. 24 , automatically generated

long the transformation from a mockup to the Service UML Inter-

ace. This operation do not require changes to work in a functional

rototype.

Fig. 25 shows the source code required to handle the action

aveProductAction . This action is mapped to the button Save
rom the JSP source code presented in Fig. 26 . The operation

aveProductAction first binds the request parameters into the

roperties of the entities represented in the mockup, then it prop-

gates the validation and persistence for the other layers. The last

art of the source code is dedicated to process exceptions that

ame from the Validator and DAO layers. Note that the validation

s delegated to the Validator layer, which is injected into the prop-

rty productService . This controller has a considerable amount

f source code because it was generated based on the Multi-Action

ontroller from the Spring Framework, which have several opera-

ions.

The source code for JSP (Burke and Monson-Haefel, 2006)

s shown in Fig. 26 . The top-part of Fig. 26 (A) shows the

eader information included in all root JSPs, e.g., the ones di-

ectly associated with a mockup, with the information neces-

ary to use the access control functionality from the WCTSam-

le framework. The bottom part of Fig. 26 (A) shows the source

ode that maps the properties from entity Product , e.g., id and

ame . Fig. 26 (B) shows the source code for pane Category
hich associates the action of button Find to the controller

ategoryMultiActionController .

.3. Implementation for mobile

These source code illustrate the minimum artefacts generated

y our approach in the development of a functionality for web in-

ormation systems. However, other devices can connect with these

unctionalities available on the web server. For instance, the web

erver can provide access to external components, such as GUIs

eveloped to run in mobile devices and in desktop applications.

626 F.P. Basso et al. / The Journal of Systems and Software 117 (2016) 612–637

Fig. 22. Generated source code for the Model layer implemented with JPA (2.0).

Fig. 23. Generated source code for the Validation layer implemented with

Springframework and Commons Validator.

Fig. 24. Generated source code for the DAO layer implemented with Hibernate in

HQL.

a

c

l
Thus, our model transformation lifecycle supports the generation

of GUIs programmed with J2ME and, for desktop applications, pro-

grammed with J2SE. Thus, two other DSLs are important besides

Web DSL : the Mobile and Desktop DSLs.

We demonstrate the worst-case scenario on the refinement of

a model in conformity with Mobile DSL. The connection between

MockupToME DSL and Mobile DSL is through transformations, as il-

lustrates Fig. 27 . The first DSL holds richer types of GUI compo-

nents than those available in the Mobile DSL. If a GUI for mobile

platform is needed, then the designer executes a transformation

from a model 1 , which is in conformity with MockupToME DSL,

to another model 2 , which in conformity with the Mobile DSL.

This transformation is illustrated in Fig. 27 (1) and shows a piece

of a model-to-model transformation. The result is the model 2
shown in Fig. 27 (2).
Mobile DSL represents the J2ME profile named CLDC, thus for

 limited GUI API. Because model 2 owns less representative GUI

omponents than the Mobile DSL , there is lost of information about

ayout from transformation from model 1 to model 2 . For ex-

F.P. Basso et al. / The Journal of Systems and Software 117 (2016) 612–637 627

Fig. 25. Generated source code for the Controller layer implemented with

Springframework (2.5).

a

c

f

n

C

o

t

c

o

i

t

o

l

G

b

a

G

r

d

f

t

p

s

i

m

Fig. 26. Generated source code for the View layer in JSP.

c

f

t

p

t

t

p

b

(

f

n

e

m

i

t

m

7

c

s

f

s

r

a
mple, the transformation illustrated in Fig. 27 (1) show that a

omponent instance of ScreenLayoutSpecification (in con-

ormity with MockupToME DSL) is transformed to another compo-

ent instance of Form , which is in conformity with Mobile DSL for

LDC. While the first supports layout managers such as a flow lay-

ut, used to centralize components such as the button Save illus-

rated in Fig. 21 , the second does not support layout manager. This

omponent in model 1 in conformity with MockupToME DSL is

f type Button , while for the model 2 it is instance of Command
n conformity with Mobile DSL, as illustrates Fig. 27 (4).

The best-case scenario for mobile is also supported. Thus, al-

hough the information about the flow layout is lost in the sec-

nd model, this is a constraint from the Mobile platform, not a

imitation in the MockupToME Method. For example, for richer

UI components that can run in other mobile devices, it is possi-

le to include in the model transformation lifecycle another pack-

ge for Mobile DSL. This package allows the designer to represent

UI components mapped for the CDC profile, which allows the

epresentation of GUIs programmed with Java AWT. Likewise, for

esktop platform we include the Desktop DSL, which is mapped

or source code developed with Java Swing. For CDC platforms, a

ransformation from MockupToME DSL to Mobile DSL will not im-

ly in lost of layout information.

For the design of Mobile GUIs, we prefer the use of Matisse De-

igner 5 , as shown in Fig. 27 (4), instead of the EMF editor shown

n Fig. 27 (2). This means that, differently from the other DSLs in-
5 Matisse Designer - < https://netbeans.org/community/magazine/html/03/

atisse/ >

i

m

R
luded in our lifecycle, the refinement of a GUI for mobile is per-

ormed with an external tool. Because Matisse exports and imports

he design in XML, this external tool is integrated with our sup-

orting tool through operations of type import/export. This means

hat the model 2 is transformed for the XML in conformity with

he Matisse Designer, resulting in model 2’ . As illustrates the

iece of source code in Fig. 27 (3), we also developed a model-

ased operation of type text-to-model that reverses data from XML

 model 2’) to the representation in model 2 , which is in con-

ormity with Mobile DSL .
The limitation in user interactions from the CLDC profile have

o effect the model elements represented on the web server. How-

ver, as illustrated in Fig. 20 , for establishing the connection of the

obile device with the business logic available on the server side,

t is needed to use an API that deals with limited remote connec-

ions in the client-side of the application. The design and imple-

entation of such connection are discussed in the next subsection.

.4. Remote connection

As illustrates the component diagram in Fig. 20 , devices on the

lient-side are connected with the business logic available on the

erver-side through remote connections. Likewise, any DSL added

or the View layer, i.e., which will not executes inside the web

erver, demands a new layer in the MVC structure to handle the

emote connection between the device and the web server. This

llows that the whole source code for application logic remains

solated on the web server, a good approach for modularity and

aintenance of source code (Allier et al., 2015).

As illustrated in the top-part of Fig. 28 , a class named

emoteProductService is mapped for the Remote layer, thus

https://netbeans.org/community/magazine/html/03/matisse/

628 F.P. Basso et al. / The Journal of Systems and Software 117 (2016) 612–637

Fig. 27. Generated models for the View layer on a mobile device dependent from

the CLDC platform: the source code in (1) allows the generation of a model con-

forms to Mobile DSL shown in (2) and; the source code in (3) allows to im-

port/export such model for the XML file associated with the Matisse (Mobile De-

signer) shown in (4).

Fig. 28. Generated source code for the Remote layer in HTTP Remote.

M

t

t

w

t

c

t

p

t

s

i

M

t

i

w

t

f

t

M

g

s

o

D

a
a piece of a multi-layered MVC structure. This new class is gen-

erated from the representation of the ProductService inter-

face. It holds semantics for connection in conformity with annota-

tions from the EDOC UML Profile, such as 〈〈 EJBImplementation 〉〉
and 〈〈 EJBRemoteMethod 〉〉 . Such specification is transformed

into the source code illustrated in Fig. 28 (2). The class

RemoteProductService is also considered for the generation

of the source code shown in Fig. 28 (3), which is used by the Ma-

tisse plug-in for simulation of GUIs for mobile devices.

7.5. Final remarks

The example shown in Fig. 27 illustrates the flexibility pro-

moted by a multi-layered architecture. In case the designer needs

to include a representation for an external mobile GUI, such as a

DSL mapped to Android SDK

6 , it would be enough to: (1) develop a

model-to-model transformation from model 1 in conformity with
6 Android SDK - < http://developer.android.com >

t

v

w

ockupToME DSL into a model 2 in conformity with the hypo-

hetical Android DSL; and (2) develop a model-to-code transforma-

ion from model 2 to the underlying implementation associated

ith this API.

Each inclusion of a DSL in the lifecycle of model transforma-

ion implies in a set of new models and refinements. This is be-

ause MockupToME DSL is defined in a high-level of abstraction

han these platform specific DSLs for GUI. The inclusion of the hy-

othetical Android DSL would not imply in change for the Evolu-

ionary Prototyping Phase. However, it would imply in inclusion of

uch new DSL into the Architectural Prototyping Phase . For example,

n this phase the use of CDC requires a different package from the

obile DSL and also a different model-to-model transformation in

he lifecycle illustrated in Fig. 27 .

Through the FOMDA Approach (Basso et al., 2013) we add flex-

bility for the methodology in the implementation level. Although

e consider that this approach for MDE as Service is not easy nei-

her cheap, it is very flexible to include new DSLs and model trans-

ormations as requested by software factories. Thus, it is possible

o evolve the presented methodology in terms of new DSLs, new

VC layers, underlying implementation frameworks and APIs. The

eneration of source code, strictly from what is designed, is pos-

ible due to the development of some DSLs and the integration

f several concepts considered in the literature of the area. Other

SLs are not included in our lifecycle for model transformations

nd methodology, which means that the reader should consider

his as a limitation of our proposal. Despite this limitation, we pro-

ided an interesting set of tools in support for automated design of

eb information systems.

http://developer.android.com

F.P. Basso et al. / The Journal of Systems and Software 117 (2016) 612–637 629

Fig. 29. Manual implementation of Generate Billet in the controller layer.

8

t

8

f

o

p

t

f

i

F

r

s

g

s

t

W

a

o

m

l

l

a

o

l

F

p

t

v

m

i

m

m

C

i

Fig. 30. The class developed for automatic reverse engineering.

w

s

r

a

d

d

p

c

a

t

a

M

c

f

t

r

I

l

m

t

a

o

M

c

M

u

t

t

i

s

s

M

t

o

n

i

2

r

l
. After source code generation

This section describes activities recommended to execute after

he functional prototyping phase.

.1. Round-trip engineering

Full source code generation is achieved in our experiences. By

ull we mean from the perspective of what is designed, not the

verall application. Thus, the full generation is for few use case

atterns. This practice have a drawback: for non generated func-

ionalities, which are programmed without the use of model trans-

ormations, round-trip engineering can be necessary. This would

mply in an overhead to synchronize source code and models.

or example, when functionalities developed without MockupToME

equire the developers to change manually an already generated

ource code. Round-trip engineering is necessary to ensure that re-

enerated source code is correct.

To exemplify how this issue is tackled in our approach, con-

ider that, after the source code generation discussed previously,

he use case Generate Billet has to be manually developed.

e acknowledge that such use case is possible to be abstracted in

 model, demanding only an increment in a DSL discussed previ-

usly. However, assume that this is not the case and the developer

ust develop it manually.

In the worst-case scenario, the implementation of the controller

ayer follows as is illustrated in Fig. 29 . It is composed of the fol-

owing other implementations: (1) assume that the developer has

dded the operation generateBilletAction inside the previ-

usly generated class shown in Fig. 25 , representing the controller

ayer; (2) line 152 shows a call for the DAO layer illustrated in

ig. 24 , which contains a manually implemented operation to list

roducts from a web shop kart; (3) line 167 shows an operation

hat generates the PDF file with information for payment, also de-

eloped manually inside the controller.

In this case, two previously generated classes where changed

anually, requiring the execution of a manual round-trip engineer-

ng. As consequence, the developer or designer needs to update the

odel elements (5) and (7) shown in Fig. 17 . They need to specify

anually one operation in each model element with a tag Body-

ode , whose internal source code is represented as a string. This

s an issue when developers or designers are inexperienced. Thus,
henever possible, this reverse and manual round-trip engineering

hould be avoided.

Our recommendation to mitigate the need for reverse manual

ound-trip is simple and also well-known in the literature (Kelly

nd Tolvanen, 2008; Whittle et al., 2013). Developers should not

evelop new features inside the generated source code, thus

eveloping new classes and, preferably, locate it in a separate

ackage. Instead of adopting an approach that leads to the worst-

ase scenario, we recommend that the developers: (1) create

 new package; (2) manually develop another class for con-

roller, e.g., ManualCodeMultiActionProductController ;
nd, (3) manually develop another class for DAO, e.g.,

anualCodeProductDAOHibernate .
These recommendations will keep isolated the generated

lasses from the manually coded ones, reducing the chances

or the execution of manual round-trip engineering from code

o model. The generation of source code must obey the same

ules. Of course, there are always exceptions to these rules.

n our experiences, we observed that entities, in the Model

ayer, are the unique source codes were conflicts between

anual and generated source code occurs, independently from

he aforementioned recommendation. This is because entities

re the centralizer source code in a DDD approach. While

ther layers accept the development of several classes, the

odel layer is more rigid. For example, we can develop two

lasses for the DAO layer, namely ProductDAOHibernate and

anualCodeProductDAOHibernate , but they both refer a

nique entity class Product .
Changes in entities require round-trip engineering. However,

his is not a big deal. We are not giving too much credit in regard

o process overhead when it is necessary to apply specific changes

n entity classes, e.g., into the model element shown in the left

ide of Fig. 22 . That is because the wizard illustrated in the right

ide of Fig. 22 helps in the execution of these manual round-trips.

oreover, as illustrates Fig. 30 , we also developed a feature for au-

omatically reverse Java source code to model. This feature is part

f our tool support integrated with the Java platform. It is con-

ected with adaptive test cases and model transformations, allow-

ng the execution of operations of type code-to-model (Basso et al.,

014a).

It is important to mention that our tool support for automatic

everse round-trip is limited and it is not applicable to the View

ayer (JSP source code). For the worst-case scenario, whose changes

630 F.P. Basso et al. / The Journal of Systems and Software 117 (2016) 612–637

t

q

t

T

e

r

t

i

t

c

t

a

d

9

o

F

p

m

m

l

p

t

g

a

R

(

i

2

s

c

P

M

P

m

c

A

T

a

e

d

t

a

o

l

f

9

p

c

e

t

e

a

n
are not supported by wizards neither by automatic reverse engi-

neering, the software engineer must plan whether the execution

of a manual round-trip engineering is needed and when it should

be made. Manual round-trip engineering is not a mandatory task

for each iteration. For example, the software engineer should plan

whether its execution takes place in the current iteration or in the

next or only in the end of the project (Basso et al., 2015). This

decision depends on the ability of the teams to perform manual

round-trip.

For those frequent changes observed along iterations, another

possibility to avoid manual round-trip is to introduce them into

model transformations. Likewise, our tool allows extensions in

model transformation components, made on the fly, through spe-

cialization points (Basso et al., 2014c). Preferable, these extensions

should be added before the beginning of software project, when

these components are adapted in the pre-game phase (Basso et al.,

2015). However, they can also be introduced along the execution of

a software project. To reach benefits and drawbacks that this ap-

proach introduces for a software project, a future work will discuss

how a team received increments in components for source code

generation along the execution of iterations.

It is also good to remember that a version control system helps

developers to compare versions of the generated source code. De-

velopers trace overwritten artefacts in a new source code genera-

tion (forward round-trip), making punctual manual adjustments in

source code when needed. Artefact that is not fully generated im-

plies on a big effort for developers to apply adjustments. We are

able to generate full source code, which mean that, when source

code generators are calibrated and without errors, developers do

not spent a big effort in making adjustments. Therefore, even con-

sidering the worst-case scenario, developers are capable to make

punctual adjustments in source code, which is also not considered

in our experiences as a big issue that hampers the execution of

iterations.

8.2. Acceptance tests

From the generation of functional prototypes, acceptance tests

are conducted in iteration cycles following the selected reference

model for software development process. Thus, it is important to

test in a web browser or in a mobile emulator, together with the

client, each use case scenario developed or not with the assistance

of our tool support.

For a general guidance on the execution of acceptance tests,

we found very interesting the Acceptance Test-Driven Development

(ATDD) (Gärtner, 2012). It includes some practices for the execu-

tion of acceptance test cases, which can be performed manually

or automatically with the framework JBehave 7 . After the develop-

ment of the new use cases, automated test cases in JBehave can

quickly detect whether functionalities, developed in previous iter-

ations, fails in the new iteration due to the introduction of new

source code. For this reason, acceptance tests are complementary

to the tests/validations with clients performed in the Evolutionary

and Architectural Prototyping Phases, which consider only features

developed in the current iteration.

We have no clear position about whether these tests should

be developed in conditions of worst-case scenarios, when require-

ments changes with many frequency such as in start-ups (Giardino

et al., 2014).

8.3. Final remarks

Worst-case scenarios, such as those found in start-ups, need

the execution of iterations considering features for innova-
7 JBehave - < http://jbehave.org/ >

O

e

h
ion (Giardino et al., 2014). Authors state that this can imply in re-

uirements that change very fast. This is an issue when performing

ime-scales planned for one month or more (Whittle et al., 2013).

hus, other authors suggested the execution of tasks for discov-

ry and invention (Schwaber, 1995), which is a characteristic from

apid application prototyping few understood in research and prac-

ice of MDWE.

For these reasons, we recommend the execution of Tasks C-E

n the MockupToME Method. In our approach, designers are free

o explore alternatives for implementation of one or more use

ases/user stories. We believe that this possibility influences posi-

ively the use of activities performed after the source code gener-

tion. In this point, we have some lessons and open questions, as

iscussed in the next section.

. Experience report

This section reports on an industrial innovation effort devel-

ped in collaboration with the Brazilian start-up company Adapit.

ive applications were developed using the automated design ap-

roach for MDWE (integrally or partially) to the following do-

ains: agribusiness management, online auction, trainee manage-

ent, quality management, and financial management. We se-

ected two software projects, presenting a summary about the ap-

lication of these techniques in each one. Table 1 presents the

eam configuration associated with the design and source code

eneration tasks, where “SP i is a software project for i in 1-2”:

SP

1 -ERP and CRM for online auction. This is a web/desktop

pplication to apply online auction with support for Enterprise

esource Planning (ERP) and Customer Relationship Management

CRM). It was developed between 2007 and 2008 by Adapit us-

ng AMDA as framework for software process (Basso and Oliveira,

007). The team configuration that was allocated to this project is

hown in Table 1 and includes a developer and a designer. SP 1 was

onducted only with the Architectural Prototyping and Functional

rototyping phases because at the time we had not developed the

ockupToME nor tasks associated with Evolutionary Prototyping

hase.

SP

2 -ERP for financial management. It is a web application to

anage financial support for innovation projects. The latter appli-

ation has been developed between 2010 and 2011 by Company

. This project was supervised by the Adapit’s team. As shown in

able 1 , to perform the activities discussed previously, Company A

llocated in SP 2 a team with low design and development experi-

nce. The team in SP 2 adopted integrally the tasks and tool support

iscussed in this paper.

In the following we discuss: (1) the experience that justifies

he advent of MockupToME Method and tool support; (2) discrep-

ncies of these software projects that suggest improvements from

ur current approach in comparison to our previous initiative; (3)

essons learnt from these projects; and, (4) open questions derived

rom these experiences.

.1. Justification

In 2007, the development of wizards in support to MDWE was

art of services added in a business plan proposed by Adapit, in-

ubated at RAIAR-TECNOPUC-Brazil between 2007 and 2011. The

xecution of SP 1 was far to be considered as productive, leading to

he conclusion that this business plan failed due to difficulties to

xecute our first approach for MDWE in start-up contexts. For ex-

mple, in SP 1 we observed issues associated with round-trip engi-

eering, which leaded to some good practices discussed previously.

ur worst-case scenario in SP 1 occurred when we performed an it-

ration lasting two months. After five weeks, the client changed

is idea about the requirement in the first cycle of validation.

http://jbehave.org/

F.P. Basso et al. / The Journal of Systems and Software 117 (2016) 612–637 631

Table 1

Attributes of the teams used in each software project.

Attributes of the team used in SP 1

Num. Stakeholder Experience Education level Exp. in UML Exp. in MDE Exp. in J2EE Exp. in MVC

1 Designer Senior Master degree Advanced Advanced Basic Advanced

1 Programmer Senior Master degree Advanced Advanced Advanced Advanced

Attributes of the team used in SP 2

Num. Stakeholder Experience Educationlevel Exp. in UML Exp. in MDE Exp. in J2EE Exp. in MVC

1 Designer Trainee Graduate Basic None Basic Basic

1 Programmer Trainee Undergraduate Basic None Basic Basic

T

t

c

n

i

t

F

s

m

A

a

s

k

L

M

a

b

e

i

t

i

h

i

t

v

i

o

w

F

m

i

w

i

w

t

f

i

S

o

i

w

w

p

w

9

t

Table 2

MVC-based layers used in each software project.

Application layers SP 1 SP 2

Entities and enumerations 64 13 .44% 50 25 ,25%

Validation on the server side 20 4 .20% 35 17 ,68%

Web controllers 11 2 .31% 22 11 ,11%

Data Access Object (DAO) 16 3 .36% 35 17 ,68%

JSP [web view layer] 190 39 .91% 56 28 ,28%

Java swing [forms/tables] 112 23 .53% 0 0%

Java swing [window/dialog] 41 8 .61% 0 0%

Remote layer 22 4 .62% 0 0%

Lines of code (LOC) SP 1 SP 2

Entities and enumerations 4 947 4 .38% 5 477 14.95%

Validation on the server side 2 919 2 .58% 4 152 11.33%

Web controllers 6 283 5 .56% 11 652 31.81%

Data Access Object (DAO) 11 310 10 .02% 5 441 14.85%

JSP [web view layer] 17 249 15 .28% 7 266 19.83%

Java swing [forms/tables] 60 876 53 .92% 0 0%

Java swing [window/dialog] 6 524 5 .78% 0 0%

Remote layer 2 781 2 .46% 0 0%

Table 3

Data from application in software projects.

Where automated design helped? SP 1 SP 2

Total weeks to conclude each software project 58 44

Average of weeks that MDWE was used 22 20

Best performance for design 27 h 8 h

Average of time-scales in iterations ≥ 4 weeks 1–2 weeks

Generated source code 64% 82%

a

S

a

B

l

b

t

D

i

L

s

(

S

s

m

E

w

M

w

i

i
his required the re-execution of the phases Architectural Proto-

yping and Functional Prototyping, resulting in changes in source

ode and model. Because we had no tool support for reverse engi-

eering, this experience in SP 1 suggested that round-trip engineer-

ng should be executed manually. It was executed before restart

he Architectural Prototyping phase, re-generating source code in

unctional Prototyping phase and making manual adjustments in

ource code.

We concluded that manual design of MVC-based application

odels is very tiring and expensive to the point that, in 2008,

dapit considered the possibility to leave the MDWE approach. We

greed that MDWE was not productive for the company context:

tart-up and small company, with few money and new in the mar-

et. However, it was decided to give for MDWE one more chance.

ikewise, issues observed in SP 1 leaded to the development of the

ockupToME Method. This allowed professionals from Adapit to

dopt a new perspective for implementation of MDE as Service

ased on automated design.

From the point of view of research and practice, these experi-

nces allowed a better understanding of contexts of start-ups and

ssues for the MDE adoption. To improve our design practices for

he next software projects, we looked for prototyping tools used

n agile methods. We concluded that designers should work in a

igh-level of abstraction than MVC-based application models. More

mportantly, in order to reduce risks of producing wrong features,

he method should also consider design tasks for discovery and in-

ention (tasks C and D). Thus, these are the justifications for the

ntroduction of the Evolutionary Prototyping phase in our method-

logy for MDWE.

Experiences such as the one in SP 1 provided the reasons

hy we included many interactions with clients in the process.

or the worst-case scenarios that present uncertainty in require-

ents, besides the acceptance tests after the Functional Prototyp-

ng phase, we introduced in MockupToME Method two validations

ith clients that are associated with design tasks. In our position,

t is a common mistake to assume that interactions with clients

ill ever “delay something” in the software development. In fact,

he opposite was observed in practice, with books suggesting that

requent validations with clients is good for shortening time-scales

n worst-case scenarios (Schwaber, 2004; Shore and Warden, 2008;

ommerville, 2010). Besides, frequent validations reduce the risks

f producing wrong features and, in consequence, reducing rework

n iteration cycles and also among iterations. Thus, considering

orst-case scenarios that we have experienced, our methodology

as also conceived to allows client interaction in three phases of

rototyping, each one aiming at reducing the risk of producing

rong features for the next.

.2. Discrepancies in software projects

These software projects present similar MVC layers, as illus-

rated by the data in Table 2 . Table 3 shows some statistical data
bout each software project. SP 1 is a little bit more complex than

P 2 due to the development of some more complex use cases, such

s Generate billet , not supported by source code generators.

esides, Table 2 suggests that SP 1 is more complex due to the fol-

owing reasons: (1) it is larger and includes the support for CRM

esides functionalities for ERP that contextualizes the type of sys-

em in SP 2 ; (2) SP 1 includes a second DSL for the View layer, the

esktop DSL that is implemented in Java Swing, besides JSP that

mplements the Web DSL used also in SP 2 ; (3) SP 1 owns many

ines-Of-Code (LOC) associated with the Desktop view and less

ource code for Controller and JSP from the Web view than in SP 2 ;

4) SP 1 includes source code for the Remote layer, not included in

P 2 ; and, (5) In SP 1 , the MVC-based architectural models were de-

igned mostly manually with the help of wizards and in SP 2 these

odels were automatically generated after the execution of the

volutionary Prototyping Phase.

Table 3 also shows that MDWE was used in 22 weeks for SP 1 ,

hile it was used in 20 weeks for SP 2 . This only means that

DWE is used in less than a half of the time of the overall soft-

are projects that consumed a total of 57 weeks in SP 1 and 44

n SP 2 . Although not comparable due to differences in underlying

mplementation technologies and processes, they have the follow-

632 F.P. Basso et al. / The Journal of Systems and Software 117 (2016) 612–637

p

a

9

t

a

s

m

a

b

t

T

c

a

t

n

m

l

e

t

b

s

s

i

t

S

f

m

p

p

f

q

a

n

a

u

t

s

2

A

d
ing similarities: (1) they were conducted with MDWE, allowing the

generation of many functionalities of type CRUD, and (2) they used

the Architectural Prototyping and Functional Prototyping phases,

with few differences in source code generators (Basso et al., 2013).

We acknowledge that we cannot compare these two software

projects. However, as suggests the data shown in Table 3 , these

software projects presented different time-scales adopted in each

one when compared with the team skills shown in Table 1 . In

this regard, discrepancies between time-scales are clear. Company

A successfully executed SP 2 with iterations planned for one to two

weeks, with the best performance for modelling reported as eight

hours in the last iterations, i.e., after a learning curve period (Basso

et al., 2015). With our first approach for MDWE our best perfor-

mance for design was 27 h. It demanded in SP 1 an experienced de-

signer and developer, while Company A used only non experienced

stakeholders. Based on such information, one could expect that, in

SP 2 , the MDWE approach would present a worst performance than

in SP 1 . However, the opposite was observed. Other discrepancy is

in regard to the activities performed after the source code genera-

tion. Company A did not reported issues associated with round-trip

engineering. These are benefits/effects that we have not a clear un-

derstanding about the causes, as discussed in the next subsection.

9.3. Lessons learnt

Round-trip engineering is still a challenge in regard to tool

support (Mussbacher et al., 2014). However, from our newest ex-

perience, we confirm that it is not a big issue, as suggested

by Hutchinson et al. (2011) . We have learned that a multi-layered

architecture associated with the good practice of separating what

is generated from manual coding mitigates this overhead. Kelly and

Tolvanen (2008) make these recommendations too. Besides, based

on an industrial survey, Whittle et al. (2013) agrees in this re-

spect. They have not considered this as an “Achilles heel” for the

MDE adoption. Thus, through the assimilation of good practices

for the development of manual code, Company A did not consider

the round-trip engineering a big issue for the execution of our

methodology.

Another important good practice is discussed in the literature

by Kelly and Tolvanen (20 08) : generate 10 0% of the overall appli-

cation is difficult, if not impossible; instead, teams should focus

on full source code generation, i.e., generate 100% of what is de-

signed. They suggest that lifecycles for model transformations will

always present a delimited scope of DSLs and a delimited scope

for source code generation. These limitations are not considered as

reasons for a non adoption, which means that software factories

can benefit from MDE without the generation of 100% of final ap-

plication (Whittle et al., 2013).

These experiences allowed us to observe some benefits pro-

moted by this methodology as follows.

1. To reduce the risks of producing wrong features between itera-

tions, Schwaber (1995) suggests to acquire feedback about what

is being produced in cycles of validation. Thus, short time-

scales for iterations are preferred to quickly get feedback from

clients, as the ones allowed in our approach.

2. A rich set of CRUD templates to generate diverse GUI structures,

besides allowing non-experienced modelers to be included in

MDWE-based processes, also allows the design of annotated

mockups with action semantics that, for some use case pat-

terns, allowed producing working pieces of software that did

not required adjustments in source code.

3. Mockups are helpful to get feedback from clients of require-

ments in the Evolutionary Design phase and, similarly as Rivero

et al. (2014) , we also noticed that clients feel more comfort-

able to opine about requirements when experimenting mock-
ups than visualizng UML diagrams representing MVC-based

models.

Because our proposal requires the use of transformation tem-

lates to generate and refine mockups, there are some drawbacks

s follows.

1. Model transformations can fail, meaning that the proposed

methodology is only effective if transformation templates are

perfectly working.

2. Client can request CRUD structures, or other use case scenarios,

not yet developed as transformation templates.

(a) This would require a manual design of annotated mock-

ups, implying in the development of the use case without

the automated design techniques introduce in the Evolu-

tionary Prototyping phase.

(b) This could also imply in issues for execution of MDWE,

such as those observed in SP 1 , instead of benefits ob-

served in SP 2 .

3. This methodology is only effective if enough transformation

templates are available and if they meet the client needs. Oth-

erwise, it became a manual design approach for MDWE, which

we did not considered interesting for start-up contexts.

.4. Open questions

In a previous work we reported some issues and open ques-

ions to implement MDE as Service considering the pragmatical

spect of combination of MDWE and Scrum (Basso et al., 2015),

ummarized as follows: (1) The literature of the area lacks infor-

ation on how to introduce MDE in specific contexts; (2) Some

uthors claim UML-based MDWE approaches are “counter agility”,

ut are they really?; (3) The “good” and “bad” on the combina-

ion of MDE and Agile should be associated with a context; (4)

here is no requirement for “agile tools”; (5) There is no empiri-

al information in the literature on incompatibilities between MDE

nd Agile Methods/Principles; and (6) Which are the suitable MDE

echniques for dealing with round-trip?

The last open question is discussed in this paper with the tech-

iques that we considered interesting. In the following we comple-

ent the aforementioned work with research gaps for technical-

evel issues. For example, the execution of SP 2 presents some ben-

fits not observed in SP 1 such as short time-scales and the mitiga-

ion of reverse engineering. For instance, we concluded that such

enefits are associated with our methodology for automated de-

ign and tool support when executed integrally. However, the rea-

ons for such benefits are not totally clear, thus raising the follow-

ng open questions:

Is full source code generation the unique reason for mitiga-

ion of issues associated with reverse round-trip engineering in

P

2 ? In our tool support, full source code generation allow to per-

orm changes from model to code following an iterative and incre-

ental process. This is possible only for specific types of use case

atterns for web information systems: CRUD, List, Filter, and Re-

ort. Since the execution of SP 2 we concluded that, for this type of

unctionalities, changes performed along iterations would not re-

uire the execution of manual round-trip engineering, since they

re changed in models and re-generated. Besides, Company A did

ot considered round-trip engineering as an issue. Currently, we

re asking ourselves whether the full source code generation is the

nique reason why round-trip engineering is not an issue.

Is our approach good for improve the quality, modulariza-

ion, and maintenance of source code? Related works present

uch benefits as promoted by their approaches (Martínez et al.,

011; 2013; Brambilla and Fraternali, 2014; Rivero et al., 2014).

nalysing the data shown in Table 2 , we conclude that the intro-

uction of tool support in Evolutionary Prototyping phase, adopted

F.P. Basso et al. / The Journal of Systems and Software 117 (2016) 612–637 633

i

i

a

t

m

p

t

t

e

f

w

d

l

s

t

i

l

r

r

C

d

s

b

t

f

i

a

m

B

f

t

i

a

A

a

p

q

o

m

s

t

i

E

c

c

o

s

t

e

e

a

t

c

o

s

t

b

1

s

a

a

f

g

o

h

t

r

p

t

o

2

e

p

h

e

e

p

w

T

f

e

1

s

a

d

m

t

t

s

t

m

t

t

(

t

d

e

t

t

s

r

u

F

r

(

k

p

p

f

u

m

(

t

o

t

a

u

h

c

e
n SP 2 , may have influenced the generation of more elements

n the MVC layers than in SP 1 , thus resulting in more modular

nd maintainable source code. Paradoxically, this would mean that

he automated design techniques, introduced on the top of our

ethod, could lead inexperienced stakeholder to produce an ap-

lication with more quality than the produced by the two first au-

hors of this article, which are “experts”. This question needs fur-

her investigation.

Is the multi-layered architecture good to mitigate round-trip

ngineering? In our approach, developers commit changes quickly

rom models to the implementation without overriding the manual

ork made in previous iterations. Allier et al. (2015) state that a

esign directed to the MVC-based architecture helps on the modu-

arization and organization of the source code. The regeneration of

ource code includes as input model elements designed conforms

o MVC-based application layers. Based on principles of modular-

ty, we recommended that manual coding must be allocated in iso-

ated modules from the generated source code. In this sense, this

ecommendation associated with a multi-layered design may be

esponsible for the non existence of big issues for round-trip in

ompany A. However, although not prepared with good practices

iscussed above, with the same multi-layered architecture we ob-

erved round-trip issues in SP 1 . Thus, this is a paradox that must

e investigated.

Is our approach good for requirement discovery and valida-

ion? One of the reasons for the development of a new approach

or MDWE was our incapacity to perform validations of models

n short time-scales in SP 1 . Our clients feel comfortable to opine

bout requirements represented in paper prototypes, but they have

any difficulties to understand and opine about the UML models.

esides, they wanted to click in buttons from real prototypes be-

ore provide a feedback of “100% sure” about validity of paper pro-

otypes. We could not do this in SP 1 . The Evolutionary Prototyp-

ng Phase was introduced to bridge the requirement engineering

nd the representation of models associated with MVC layers. In

dapit we observed this as a benefit for the requirement discovery

nd validation promoted by MockupToME Method. However, Com-

any A reported that they have not experienced a case where re-

uirements changed radically, as occurred within SP 1 . We consider

bservations made internally in Adapit few to answer the afore-

entioned question, mainly because there is a tendency to con-

ider this important. Thus, an open question is whether and where

asks associated with discover and invention (C–E) help designers

n this transition from the Requirement Engineering Phase to the

volutionary Prototyping Phase in other software projects.

When developers should not automate acceptance test

ases? This question is relevant because we consider that in worst-

ase scenarios the automation of acceptance test cases may add

verhead to the iterations. Likewise, due to frequent changes on

ome requirements from the worst-case scenarios observed in SP 1 ,

he development of automated acceptance test cases may be non

ffective. Anyway, assuming that requirements changed, that mod-

ls must be changed, that the source code must be regenerated,

cceptance tests need to be re-executed in a new cycle of accep-

ance. Our doubt is whether developers should automate the ac-

eptance test cases for this cases. The automation would imply also

n the redevelopment of the algorithm for behavior and, as con-

equence, adding overhead for the execution of iterations in short

ime-scales. Thus, we are investigating whether these tests can also

e generated.

0. Limitations

Limited to some use case patterns. This methodology and tool

upport are limited for use case patterns of type CRUD, List, Filter

nd Report. Examples of what we have not yet considered in the
utomated design includes: top-level layouts for web sites, features

rom HCI (rich menus, navigation, flows, responsive design), inte-

ration with web services, enterprise application integration, and

thers. Although our work is limited in this regard, several DSLs

ave been proposed in the literature to represent such abstrac-

ions. Thus, they may be included in this methodology conform

equests.

No silver bullet. Although MDE is not new, i.e., an MDWE ap-

roach dates 20 0 0 (Brambilla et al., 2008), putting it into prac-

ice remains a challenge. Mussbacher et al. (2014) have pointed

ut issues that would be fixed only in the next thirty years from

014. MDE can work on certain conditions and contexts (Martínez

t al., 2011; 2013), such as for the contexts of the reported software

rojects. However, any MDE approach presents several “Achilles

eel” that should be explored in research and practice (Torchiano

t al., 2013; Agner et al., 2013; Whittle et al., 2013; Mussbacher

t al., 2014). For example, this work is limited for some use case

atterns supported by the presented automated design techniques,

hich means that it is ineffective for other types of use cases.

herefore, this work should never be considered as a silver bullet

or software development, needing investigation of feasibility for

ach context.

1. Related work

We present the related works with the methodology and tool

upport, considering three phases for prototyping: (1) Evolution-

ry Prototyping , which is classified as an approach for exploratory

esign; (2) Architectural Prototyping , which is classified as a

odelling phase dedicated to represent models with more de-

ails and in conformity with layers of the MVC; and, (3) Func-

ional Prototyping , which is characterized by the generation of full

ource code for all the layers of the adopted underlying architec-

ure.

The evolutionary prototyping is dedicated to the design of

ockups. Balsamic Mockups Company (2015) provides a software

ool to represent sketches, without the support for annotations

hat embed business logic. Blankenhorn (2004) ; Vanderdonckt

20 05) and Kavaldjian (20 07) provide similar tools to support

he design of mockups with UML Profiles, also without embed-

ing the business logic into GUI components. WebML (Brambilla

t al., 2008) and its commercial implementation named WebRa-

io (Brambilla and Fraternali, 2014) also presents contributions for

his phase, allowing the transformation from BPMN flows repre-

enting the business model of the application into GUI mockups

epresented with the WebML. Other DSLs are closer to the Mock-

pToME DSL, such as those provided by Rivero et al. (2014) and

orward et al. (2012) , which use annotations in mockups to

epresent the semantics for business logic. In this sense, Stary

20 0 0) suggests that transformations started from mockup are the

ey to improve client feedback in preliminary phases of a software

rocess, since they verify acceptance of a given requirement using

aper prototypes. Our differential is the introduction of techniques

or automated design that speed-up the design of annotated mock-

ps.

To visualise and modify intermediate specifications between

ockups and executable prototypes for GUI, Molina et al.

2012) propose an interesting tool namely CIAT-GUI that allows

o test information system models in different abstraction layers

f application. CIAT-GUI can also be classified as implementing

hese three phases of prototyping. The differences are that their

pproach uses a unique DSL while ours use many (e.g., Mock-

pToME DSL, Web DSL, Desktop DSL, Mobile DSL). Although we

ave not yet tested other DSLs in our tool support than those dis-

ussed in this paper, we hope that this feature will enable us to

xplore/include other possibilities for DSLs and design tools in iso-

634 F.P. Basso et al. / The Journal of Systems and Software 117 (2016) 612–637

p

o

M

a

M

p

d

T

a

p

1

d

T

s

q

t

s

i

p

s

d

o

t

t

p

F

t

f

m

i

b

d

D

t

i

p

p

c

s

s

v

c

d

r

e

t

f

a

i

o

g

s

w

t

t

t

t

f

s

a
lated phases of prototyping. On the other hand, the use of a unique

DSL simplifies the execution of the three phases of prototyping,

connecting elements based on the same metamodel.

Our methodology also includes resources for model transforma-

tion to help designers in the transition from the evolutionary to

the architectural prototyping phase. Rivero et al. (2014) present a

similar proposal to ours, since that annotated mockups are used as

input to generate other application layers. The differences are: (1)

we applied the generation of a mockup using start transformation

templates, while these authors suggest to manually design mock-

ups; (2) we included a richer support for the execution of auto-

mated design techniques; and, (3) we used mockups in the evolu-

tionary phase to explore different possibilities of implementation,

while the authors considered a static structure for mockups with-

out options for selection.

Related with the architectural prototyping phase, some works

proposes DSLs for the design of web information systems based on

the MVC. Souza et al. (2007) presents an approach for MDWE us-

ing UML interfaces very similar to those used in our methodology

to represent the business logic. Nunes and Schwabe (2006) pro-

pose the HyperDE, an environment to produce web information

systems by specifying models and transforming them into func-

tional prototypes, starting by a domain model. Similarly, Vara

and Marcos (2012) propose a framework composed of a set of

model transformations that allows to develop information systems

through DSLs. An experience report with the WebRatio (Brambilla

and Fraternali, 2014) also presents positive results associated

with the source code generation based on architectural mod-

els manually specified: a small difference is that WebRatio uses

as input a conceptual model representing the data-model for a

database while we use a class diagram. Thus, as a small con-

tribution to the practice, our methodology includes wizards that

help the designer on the representation of details for MVC-based

models.

All these works allows the generation of prototypes. However,

only those that are classified as part of the architectural prototyp-

ing can also generate fully implemented prototypes.

Yulkeidi, Martinez, Rivero and Brambilla concluded that, in a

comparison of MDWE with manual coding, a model-based pro-

cess improves the productivity and software quality through mod-

ularization and maintenance of source code (Martínez et al., 2011;

2013; Rivero et al., 2014; Brambilla and Fraternali, 2014). We have

not yet reached these benefits through our analytical studies, more

related with the execution of approaches for MDE as Service than

specificities of results from MDWE.

Finally, other type of proposal aims at starting prototyping with

the specification of many web information systems details with

textual DSLs. It is the case for Forward et al. (2012) , whose ap-

proach is similar to modern frameworks to develop web applica-

tions such as Ruby on Rails. These frameworks are used on devel-

opment phase, not in the evolutionary prototyping. Our method-

ology is different from theirs since it implements three phases of

prototyping based on MDWE, while Forward et al. (2012) used a

more direct approach for prototyping. To the best of our knowl-

edge, there is no experimental evidences that suggests that the use

of textual DSLs in preliminary software phases is a better solution

to perform a requirement analysis than using architectural designs.

Thus, this is also an open question that should be investigated in

empirical studies.

Rossi (2013) discusses on existing web DSLs, highlighting the

importance of a new standard proposed by OMG to design web

applications: the Interaction Flow Modeling Language (IFML). IFML

standardises several of the representations included by the afore-

mentioned DSLs. This language, as well as WebML and WebRatio,

are complementary to MockupToME and overlaps some represen-

tations used in the UML Profiles from the Architectural Prototyping
hase. A future work will explore this complementarity, presenting

ur profiles with appropriate comparisons with the state-of-art in

DWE.

Our contribution complements the literature of the area with

n integrated approach by methodology and tool support for

DWE. In addition, the reported experiences suggest that the im-

lemented automated design techniques can promote the intro-

uction of MDWE in contexts that present issues for adoption.

hus, we present improvements in practices and tools with fully

ssisted design tasks for web information systems, which is only

artially explored by related works.

2. Conclusions and future work

This paper presents a new MDWE methodology to automate the

esign of multi-layered web information systems called Mockup-

oME Method. Along the development of some web information

ystems, we noticed that, for the worst-case scenarios on the re-

uirement engineering (i.e., in start-up contexts), paper prototypes

hemselves do not ensure the validity about requirements along

oftware process iterations. These specifications change along the

terations, which makes difficult the execution of a MDWE ap-

roach. To deal with these chaotic scenarios, we concluded that

hort duration iterations should be adopted. However, the manual

esign of MVC-based application models hampers the execution

f short time-scales. Thus, we proposed the automation of design

asks.

The MockupToME Method suggests the execution of design

asks and client evaluations about the designed models in three

hases: Evolutionary Prototyping, Architectural Prototyping and

unctional Prototyping. This execution includes the following fea-

ures for rapid application prototyping that we consider as benefits

or the state-of-practice in MDWE: (1) designers specify annotated

ockups with semantics for actions in the Evolutionary Prototyp-

ng with the assistance of automated design techniques, supported

y model transformations and refinements allowed in a mockup

rawing tool; (2) the adoption of concepts such as Master/Detail,

DD, Multi-view, and other, allows the development of different

emplates for construction and refinement of models represented

n different abstractions levels, thus allowing the use by non ex-

erienced designer; (3) these techniques are limited for use case

atterns of type CRUD, List, Filter and Report; (4) for the worst-

ase scenarios regarding requirements uncertainty, client and de-

igner interact in tasks for discovery and invention, e.g., while con-

tructing and updating a model specification, they are allowed to

isualize different im plementation options for a use case to de-

ide which of them fits best to the needs of the iteration; (5) the

iscovery and invention is considered as important for clients to

each more necessities, which is good in MDWE, allowing design-

rs to quickly change designed models before execute the Architec-

ural Prototyping and Functional Prototyping phases; and, (6) these

eatures, added to other elements such as source code generation

nd practices discussed in this paper, allowed for the execution of

terations lasting one week.

We summarized two industrial experiences in the development

f web information system using our proposal in piece and inte-

ral. In the first experience, which adopted mostly a manual de-

ign approach, we observed many issues for execution of the soft-

are project including the long time invested in manual represen-

ation of models, issues in source code generation and bad prac-

ices for manual coding. Moreover, changes in requirements, mo-

ivated by misunderstanding or simply because the client decided

o adopt other features for innovation, consumed too much time

rom the overall software project. We concluded that MDWE is-

ues associated with these changes such as round-trip engineering

nd rework in two levels of abstractions (models and code) could

F.P. Basso et al. / The Journal of Systems and Software 117 (2016) 612–637 635

b

w

t

s

s

t

b

l

t

c

o

t

i

o

v

q

M

c

A

p

i

a

S

f

R

A

A

A

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

D

E

E

F

F

G

G

H

H

K

K

K

K

L

L

M
e related with the execution of iterations, planned and executed

ith more than one month. However, due to the incapacity in our

ool support and practices adopted in 2007, we could not perform

horter iterations than a month.

The need for execution of shorter time-scales is the main rea-

on for the development of the proposed methodology. Likewise,

he most recent experience presented promising results promoted

y our proposal, such as the possibility of execution of iterations

asting one to two weeks. The reasons for such a benefit are not

otally clear for us. However, automated design techniques are

learly related. Other features that can be related include our rec-

mmendations for manual coding, client validations executed in

hree phases of prototyping, full source code generation, modular-

ty promoted by a multi-layered MVC structure, the introduction

f a phase for discovery and invention and the context of the de-

eloped system. Thus, we also addressed these features as open

uestions relevant for the theory and practice of MDWE.

To have a clear notion about the reasons why MockupToME

ethod is capable for execution of short duration sprints, we will

onduct new works as follows:

• Conduct a study in retrospective considering projects executed

with different approaches for MDWE. Accordingly, we will mine

repositories from five software projects that used partially and

integrally the tasks and tools associated with the MockupToME

Method. We believe that, by mining these repositories, we can

find answers for our open questions.
• Execute a second study for evaluation of the quality attribute

“productivity” in agile teams. In a previous study that aimed

at compare the productivity of two agile teams (Basso et al.,

2014d), one adopting our methodology and tool support and

the other developing the software without MDWE, we could

not reach strong conclusions. This is because the study pre-

sented confounding factors such as differences on the under-

lying implementation framework and lacks of quantitative data.

Thus, a future work will apply this methodology in another ag-

ile context to measure this quality attribute.
• Highlight our technical contributions, presenting details of as-

sociated scripts for model transformations and metamodels. So

far, our contributions discusses only aspects associated with

the management and reuse of model transformation compo-

nents (Basso et al., 2013). Our long-term goal for future works

is to discuss particularities from our metamodels and tool sup-

port, thus presenting some contributions for the state-of-art in

MDWE.

cknowledgments

The research work on which we report in this paper is sup-

orted by CNPQ and Capes-Brazil (first three authors), and by the

nternal Research Programme 2012/13 at UNIJUI University (fourth

nd fifth authors).

upplementary material

Supplementary material associated with this article can be

ound, in the online version, at 10.1016/j.jss.2016.04.060 .

eferences

gner, L.T.W. , Soares, I.W. , Stadzisz, P.C. , Simao, J.M. , 2013. A brazilian survey on uml
and model-driven practices for embedded software development. J. Syst. Softw.

86 (4) .

llier, S. , Barais, O. , Baudry, B. , Bourcier, J. , Daubert, E. , Fleurey, F. , Monperrus, M. ,
Hui, S. , Tricoire, M. , 2015. Multitier diversification in web-based software appli-

cations. Softw., IEEE 32 (1), 83–90 .
mbler, S.W., 2015. A Roadmap for Agile MDA. Technical Report. Agile Model-

ing . Available at: http://www.agilemodeling.com/essays/agileMDA.htm
alsamic Mockups Company, 2015. Balsamiq Mockups Company URL: https://
balsamiq.com/products/mockups/ .

asso, F.P. , Becker, L.B. , Oliveira, T.C. , 2007. Uma solução para reuso e manutenção
de transformadores de modelos usando a abordagem fomda. In: Simpósio

Brasileiro de Engenharia de Software. Anais do 21o Simpósio Brasileiro de En-
genharia de Software, pp. 130–146 .

asso, F.P. , Oliveira, T.C. , 2007. WorkCASE Toolkit: Uma Ferramenta de Suporte para
Agile Model Driven Architecture. Technical Report. Adapit Soluções em TI .

asso, F.P. , Oliveira, T.C. , Farias, K. , 2014a. Extending junit 4 with java annotations

and reflection to test variant model transformation assets. In: Proceedings of
the 29th Symposium On Applied Computing, pp. 1601–1608 .

asso, F.P. , Pillat, R.M. , Frantz, R.Z. , Rooz-Frantz, F. , 2014b. Assisted tasks to generate
pre-prototypes for web information systems. In: Proceedings of the 16th Inter-

national Conference on Enterprise Information Systems, pp. 14–25 .
asso, F.P. , Pillat, R.M. , Oliveira, T.C. , Becker, L.B. , 2013. Supporting large scale model

transformation reuse. In: Proceedings of the12th International Conference on

Generative Programming: Concepts & Experiences, pp. 169–178 .
asso, F.P. , Pillat, R.M. , Oliveira, T.C. , Fabro, M.D.D. , 2014c. Generative adaptation of

model transformation assets: experiences, lessons and drawbacks. In: Proceed-
ings of the 29th Symposium On Applied Computing, pp. 1027–1034 .

asso, F.P. , Pillat, R.M. , Roos-Frantz, F. , Frantz, R.Z. , 2015. Combining mde and scrum
on the rapid prototyping of web information systems. Int. J. Web Eng. Technol.

10 (3), 214–244 .

asso, F.P. , Pillat, R.M. , Rooz-Frantz, F. , Frantz, R.Z. , 2014d. Study on combining mod-
el-driven engineering and scrum to produce web information systems. In: Pro-

ceedings of the 16th International Conference on Enterprise Information Sys-
tems, pp. 137–144 .

atory, D. , Latimer, E. , Azanza, M. , 2013. Teaching model driven engineering from a
relational database perspective. In: Proceedings of the 16th International Con-

ference on Model Driven Engineering Languages and Systems, pp. 121–137 .

lankenhorn, K., 2004. A UML Profile for GUI Layout. University of Applied Sci-
ences Furtwangen. Department of Digital Media Master’s thesis . URL: http:

//www.bitfolge.de/pubs/thesis/ .
ooch, G. , Rumbaugh, J. , Jacobson, I. , 2005. The Unified Modeling Language User

Guide (2nd Edition). Addison-Wesley .
osch, J. , 2013. Achieving simplicity with the three-layer product model. IEEE Com-

put. 46 (11), 34–39 .

rambilla, M. , Fraternali, P. , 2014. Large-scale model-driven engineering of web user
interaction: the webml and webratio experience. Sci. Comput. Program. 89, Part

B (0), 71–87 .
rambilla, M. , Fraternali, P. , Tisi, M. , 2008. A metamodel transformation framework

for the migration of webml models to mda. In: CEUR-WS Proceedings of the
4th International Workshop on Model-Driven Web Engineering (MDWE 2008).

volume 389, Tolouse, France., pp. 91–105 .

urke, B. , Monson-Haefel, R. , 2006. Enterprise JavaBeans 3.0: Developing Enterprise
Java Components. O’Reilly .

avis, F. , Venkatesh, V. , 2004. Toward preprototype user acceptance testing of new
information systems: implications for software project management. IEEE Trans.

Eng. Manag. 51 (1), 31–46 .
DOC, 2014. UML Profile For Enterprise Distributed Object Computing (EDOC) URL:

http://www.omg.org/spec/EDOC/ .
vans, E. , 2004. Domain-DrivenDesign: Tackling Complexity in the Heart of Soft-

ware. Addison Wesley .

orward, A. , Badreddin, O. , Lethbridge, T. , Solano, J. , 2012. Model-driven rapid pro-
totyping with umple. Softw.: Pract. Exp. 42 (7), 781–797 .

rance, R.B. , Bieman, J.M. , 2001. Multi-view software evolution: a UML-based frame-
work for evolving object-oriented software. In: ICSM, pp. 386–395 .

ärtner, M. , 2012. ATDD by Example: A Practical Guide to Acceptance Test-Driven
Development. Addison-Wesley Signature Series (Beck) 1st Edition .

iardino, C. , Unterkalmsteiner, M. , Paternoster, N. , Gorschek, T. , Abrahamsson, P. ,

2014. What do we know about software development in startups? Softw. IEEE
31 (5), 28–32 .

an, H. , Liu, B. , 2010. Problems, solutions and new opportunities: using
pagelet-based templates in development of flexible and extensible web appli-

cations. In: Proceedings of the 12th iiWAS’10, pp. 679–682 .
utchinson, J. , Whittle, J. , Rouncefield, M. , Kristoffersen, S. , 2011. Empirical assess-

ment of MDE in industry. In: Proceedings of the 33rd International Conference

on Software Engineering, pp. 471–480 .
avaldjian, S. , 2007. A model-driven approach to generating user interfaces. In: Pro-

ceedings of the 6th Joint Meeting on European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of Software Engineering:

Companion Papers, pp. 603–606 .
elly, S. , Tolvanen, J.-P. , 2008. Domain Specific Modeling: Enabling Full Code Gener-

ation. IEEE Computer Society - John Wiley & Sons .

ent, S. , 2002. Model driven engineering. In: Integrated Formal Methods,
pp. 286–298 .

ulkarni, V. , Barat, S. , Ramteerthkar, U. , 2011. Early experience with agile methodol-
ogy in a model-driven approach. In: Proceedings of the 14th International Con-

ference on Model-Driven Engineering Languages and Systems, pp. 578–590 .
andre, E. , Wesenberg, H. , Olmheim, J. , 2007. Agile enterprise software development

using domain-driven design and test first. In: Companion to the 22nd ACM SIG-

PLAN Conference on Object-Oriented Programming Systems and Applications
Companion, pp. 983–993 .

inington, P.F. , 2005. Automating support for e-business contracts. Int. J. Cooperative
Inf. Syst. 14 (2–3), 77–98 .

artínez, Y. , Cachero, C. , Matera, M. , Abrahao, S. , Luján, S. , 2011. Impact of mde ap-

http://dx.doi.org/10.1016/j.jss.2016.04.060
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0002
http://www.agilemodeling.com/essays/agileMDA.htm
https://balsamiq.com/products/mockups/
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0005
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0005
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0005
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0010
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0010
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0010
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0010
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0010
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0012
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0012
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0012
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0012
http://www.bitfolge.de/pubs/thesis/
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0014
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0014
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0014
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0014
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0015
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0015
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0018
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0018
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0018
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0019
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0019
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0019
http://www.omg.org/spec/EDOC/
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0021
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0021
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0021
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0021
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0021
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0022
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0022
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0022
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0023
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0023
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0024
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0024
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0024
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0024
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0024
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0024
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0025
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0025
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0025
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0026
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0026
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0026
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0026
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0026
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0027
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0027
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0028
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0028
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0028
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0029
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0029
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0030
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0030
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0030
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0030
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0031
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0031
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0031
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0031
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0032
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0032
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0033
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0033
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0033
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0033
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0033
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0033

636 F.P. Basso et al. / The Journal of Systems and Software 117 (2016) 612–637

S

S

S

S

S

S

S

T

V

W

Z
proaches on the maintainability of web applications: an experimental evalua-
tion. In: Conceptual Modeling - ER 2011. In: Lecture Notes in Computer Science,

Vol. 6998. Springer Berlin Heidelberg, pp. 233–246 .
Martínez, Y. , Cachero, C. , Meliá, S. , 2013. MDD vs. traditional software devel-

opment: a practitioner’s subjective perspective. Inf. Softw. Technol. 55 (2),
189–200 . Special Section: Component-Based Software Engineering (CBSE), 2011

Moe, N.B. , Dingsoyr, T. , Dyba, T. , 2010. A teamwork model for understanding an agile
team: a case study of a scrum project. Inf. Softw. Technol. 52 (5), 4 80–4 91 .

Molina, A.I. , Giraldo, W.J. , Gallardo, J. , Redondo, M.A. , Ortega, M. , García, G. , 2012.

Ciat-gui: a mde-compliant environment for developing graphical user interfaces
of information systems. Adv. Eng. Softw. 52, 10–29 .

Molina, P.J. , Meliá, S. , Pastor, O. , 2002. Just-ui: A user interface specification model.
In: Computer-Aided Design of User Interfaces III, pp. 63–74 .

Mussbacher, G. , Amyot, D. , Breu, R. , Bruel, J.-M. , Cheng, B.H. , Collet, P. , Combe-
male, B. , France, R.B. , Heldal, R. , Hill, J. , Kienzle, J. , Schöttle, M. , Steimann, F. ,

Stikkolorum, D. , Whittle, J. , 2014. The relevance of model-driven engineering

thirty years from now. In: Model-Driven Engineering Languages and Systems,
pp. 183–200 .

Nunes, D.A. , Schwabe, D. , 2006. Rapid prototyping of web applications combining
domain specific languages and model driven design. In: Proceedings of the 6th

International Conference on Web Engineering, pp. 153–160 .
Parnas, D. , 1994. Software aging. In: Proceedings of the 16th International Confer-

ence on Software Engineering, pp. 279–287 .

Pillat, R.M. , Oliveira, T.C. , Alencar, P.S. , Cowan, D.D. , 2015. BPMNt: a BPMN extension
for specifying software process tailoring. Inf. Softw. Technol. 57 (0), 95–115 .

Ricca, F. , Scanniello, G. , Torchiano, M. , Reggio, G. , Astesiano, E. , 2010. On the effort of
augmenting use cases with screen mockups: results from a preliminary empir-

ical study. In: Proceedings of the 2010 ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement, pp. 40:1–40:4 .

Rivero, J.M. , Grigera, J. , Rossi, G. , Luna, E.R. , Montero, F. , Gaedke, M. , 2014. Mockup–

driven development: providing agile support for model-driven web engineering.
Inf. Softw. Technol. 56 (6), 670–687 .

Rossi, G. , 2013. Web modeling languages strike back. Internet Comput., IEEE 17 (4),
4–6 .
chmidt, D.C. , 2006. Guest editor’s introduction: model-driven engineering. IEEE
Comput. 39 (2), 25–31 .

chwaber, K., 1995. Scrum development process. In: Workshop on Business Ob-
ject Design and Implementation, OOPSLA’95, pp. 1–23 . URL: http://agilix.nl/

resources/scrum _ OOPSLA _ 95.pdf
chwaber, K. , 2004. Agile Project Management with Scrum (Microsoft Professional).

Microsoft Press .
hore, J. , Warden, S. , 2008. The Art of Agile Development. O’Reilly .

ommerville, I. , 2010. Software Engineering (9th Edition). Addison-Wesley .

ouza, V.E.S. , Falbo, R.D.A. , Guizzardi, G. , 2007. A UML profile for modeling frame-
work-based web information systems. In: Proceedings of the 12th International

Workshop on Exploring Modelling Methods in Systems Analysis and Design
EMMSAD ’2007, pp. 153–162 .

tary, C. , 20 0 0. Contextual prototyping of user interfaces. In: Proceedings of the 3rd
Conference on Designing Interactive Systems: Processes, Practices, Methods, and

Techniques, pp. 388–395 .

orchiano, M. , Tomassetti, F. , Ricca, F. , Tiso, A. , Reggio, G. , 2013. Relevance, benefits,
and problems of software modelling and model driven techniques-a survey in

the italian industry. J. Syst. Softw. 86 (8), 2110–2126 .
anderdonckt, J. , 2005. A MDA-compliant environment for developing user inter-

faces of information systems. In: Proceedings of the 17th International Confer-
ence on Advanced Information Systems Engineering, pp. 16–31 .

Vara, J.M. , Marcos, E. , 2012. A framework for model-driven development of infor-

mation systems: technical decisions and lessons learned. J. Syst. Softw. 85 (10),
2368–2384 .

Voelter, M. , 2009. Best practices for dsls and model-driven development. J. Object
Technol. 8 (6), 79–102 .

hittle, J. , Hutchinson, J. , Rouncefield, M. , Burden, H. , Heldal, R. , 2013. Industrial
adoption of model-driven engineering: are the tools really the problem? In:

Proceedings of the 16th International Conference on Model Driven Engineering

Languages and Systems, pp. 1–17 .
hang, Y. , Patel, S. , 2011. Agile model-driven development in practice. Softw. IEEE

28 (2), 84–91 .

http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0033
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0034
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0034
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0034
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0034
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0035
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0035
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0035
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0035
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0036
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0036
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0036
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0036
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0036
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0036
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0036
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0037
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0037
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0037
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0037
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0039
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0039
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0039
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0040
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0040
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0041
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0041
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0041
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0041
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0041
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0042
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0042
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0042
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0042
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0042
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0042
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0043
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0043
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0043
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0043
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0043
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0043
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0043
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0044
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0044
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0045
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0045
http://agilix.nl/resources/scrum_OOPSLA_95.pdf
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0047
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0047
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0048
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0048
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0048
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0049
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0049
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0050
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0050
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0050
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0050
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0051
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0051
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0052
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0052
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0052
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0052
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0052
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0052
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0053
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0053
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0054
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0054
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0054
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0055
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0055
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0056
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0056
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0056
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0056
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0056
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0056
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0057
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0057
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0057

F.P. Basso et al. / The Journal of Systems and Software 117 (2016) 612–637 637

F (COPPE/UFRJ), Brazil. His effort is on the technical feasibility of Model-Driven Engineering
a guages and adaptive support for Model Transformation Chains.

R l University of Rio de Janeiro (COPPE/UFRJ), Brazil. Her research interests include software

p BPMN.

T eiro (COPPE/UFRJ), Brazil. He is also Adjunct Professor with the David R. Cheriton School

o on at Pontifical Catholic University of Rio de Janeiro, Brazil (Electrical Engineering -1992,

M urrent research interests are under the software engineering umbrella, including software
p s and tools to improve the way software systems are developed. He has published over

5 ous highly-regarded conferences and workshops. He has also been a leading investigator
i

F act Sciences and Engineering of the UNIJUÍ University, Brazil. She received her PhD in

S rests include software product lines and search-based software engineering.

R iences and Engineering of the Unijui University, Brazil, and leads the Applied Computing
R by the University of Seville, Spain. His current research interests focus on the integration

o

ábio Paulo Basso is currently a P hD student at Federal University of Rio de Janeiro
pplied as Service in startup contexts, including topics such as Domain Specific Lan

aquel Mainardi Pillat is currently a PhD student in Software Engineering at Federa

rocesses, Model-Driven Engineering and tailoring of models represented with the

oacy Oliveira is currently an Assistant Professor at Federal University of Rio de Jan

f Computer Science at the University of Waterloo, Canada. He received his educati

Sc-1997, PhD - 2001) and spent 3 years at University of Waterloo as a posdoc. His c
rocesses and software reuse. Toacy focuses on the use notations, models, processe

0 refereed publications, and has been a member of program committees of numer
n national projects supported by CAPES and CNPq.

abricia Roos-Frantz is an Associate Professor who is with the Department of Ex

oftware Engineering from the University of Seville, Spain. Her current research inte

afael Z. Frantz is an Associate Professor who is with the Department of Exact Sc
esearch Group since 2013. He was awarded a PhD degree in Software Engineering

f enterprise applications and search-based software engineering.

	Automated design of multi-layered web information systems
	1 Introduction
	2 Concepts
	3 Motivation and context
	4 Running example
	5 Approach
	5.1 Tool support for the design
	5.2 Lifecycle of model transformations
	5.3 Final remarks

	6 MockupToME method
	6.1 Part I: requirement engineering phase
	6.2 Part II: evolutionary prototyping phase
	6.2.1 Task A: find master entities
	6.2.2 Task B: use a start template
	6.2.3 Task C: refine the details
	6.2.4 Task D: select the strategy for details
	6.2.5 Task E: generate mockup source code

	6.3 Part III: architectural prototyping phase
	6.3.1 Task F: generate MVC layers
	6.3.2 Task G: detail the business logic
	6.3.3 Task H: apply UML profiles

	6.4 Part IV: functional prototyping phase
	6.4.1 Task I: generate complete source code

	6.5 Final remarks

	7 Implementation
	7.1 Underlying architecture
	7.2 Generated source code
	7.3 Implementation for mobile
	7.4 Remote connection
	7.5 Final remarks

	8 After source code generation
	8.1 Round-trip engineering
	8.2 Acceptance tests
	8.3 Final remarks

	9 Experience report
	9.1 Justification
	9.2 Discrepancies in software projects
	9.3 Lessons learnt
	9.4 Open questions

	10 Limitations
	11 Related work
	12 Conclusions and future work
	 Acknowledgments
	 Supplementary material
	 References

