The Journal of Systems and Software 117 (2016) 612-637

The Journal of Systems and Software

Contents lists available at ScienceDirect

The Journalof
Systoms and Software

il

journal homepage: www.elsevier.com/locate/jss

Automated design of multi-layered web information systems

@ CrossMark

Fabio Paulo Basso®*, Raquel Mainardi Pillat? Toacy Cavalcante Oliveira?,
Fabricia Roos-Frantz®, Rafael Z. FrantzP

aSystems Engineering and Computer Science Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
b Department of Exact Sciences and Engineering, UNIJUI University, ljui, RS, Brazil

ARTICLE INFO

Article history:

Received 17 February 2015
Revised 10 March 2016
Accepted 25 April 2016
Available online 27 April 2016

Keywords:

Model-driven web engineering
Rapid application prototype
Domain-specific language
Prototyping

Automated design

Mockup

Experience report

ABSTRACT

In the development of web information systems, design tasks are commonly used in approaches for
Model-Driven Web Engineering (MDWE) to represent models. To generate fully implemented prototypes,
these models require a rich representation of the semantics for actions (e.g., database persistence oper-
ations). In the development of some use case scenarios for the multi-layered development of web in-
formation systems, these design tasks may consume weeks of work even for experienced designers. The
literature pointed out that the impossibility for executing a software project with short iterations ham-
pers the adoption of some approaches for design in some contexts, such as start-up companies. A possible
solution to introduce design tasks in short iterations is the use of automated design techniques, which
assist the production of models by means of transformation tasks and refinements. This paper details
our methodology for MDWE, which is supported by automated design techniques strictly associated with
use case patterns of type CRUD. The novelty relies on iterations that are possible for execution with short
time-scales. This is a benefit from automated design techniques not observed in MDWE approaches based
on manual design tasks. We also report on previous experiences and address open questions relevant for

the theory and practice of MDWE.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Model-Driven Engineering (MDE) (Kent, 2002) is a paradigm for
model-based software development implemented by several tech-
niques and used in several industrial contexts. In typical MDE-
based processes, model transformations should receive a highly de-
tailed model to generate working pieces of applications (Schmidt,
2006). To generate full source code, several parts of an application
design are detailed in Domain-Specific Languages (DSLs) (Voelter,
2009) and/or decorated with annotations added to model elements
represented with the Unified Modeling Language (UML) (Booch
et al., 2005), a general-purpose modeling language commonly
used. In any case, this makes the software construction dependent
of design tasks.

In the development of web information systems, web front
ends such as layout composed of Graphic User Interface (GUI)
components (Vanderdonckt, 2005) and behavioral diagrams

* Corresponding author.
E-mail addresses: fabiopbasso@cos.ufrj.br, fabiopbasso@gmail.com (EP. Basso),
rmpillat@cos.ufrj.br (RM. Pillat), toacy@cos.ufrj.br (T.C. Oliveira),
frfrantz@unijui.edu.br (F. Roos-Frantz), rzfrantz@unijui.edu.br (R.Z. Frantz).

http://dx.doi.org/10.1016/j.jss.2016.04.060
0164-1212/© 2016 Elsevier Inc. All rights reserved.

(Nunes and Schwabe, 2006) are usually represented. To allow the
generation of full source code with an approach for Model-Driven
Web Engineering (MDWE) (Rossi, 2013), these models are manually
decorated with semantics for the actions of users, screen flows and
business logic. It is possible to abstract implementation details us-
ing a design language, focusing on the specification of semantics
in models that formalize the knowledge about software require-
ments (France and Bieman, 2001). Before the source code gener-
ation, these models can be further refined by designers, enabling
clients to experiment an executable prototype in the end. This ap-
proach is known as multi-view (France and Bieman, 2001), and the
model is created and enriched taking as input high-level abstrac-
tions of other models that map implementation details through
model transformations.

The execution of a multi-view approach for MDWE may use de-
sign tasks that require months of work (Kulkarni et al., 2011; Zhang
and Patel, 2011). Depending on the size of the software project and
the adopted schedule in software process iterations, the effort in-
vested in detailing models is seen as a reason to avoid the adoption
of some of MDWE approaches (Whittle et al., 2013). Therefore, the
ability to execute these tasks in short time-scales is a desirable fea-
ture in some contexts, such as in start-up companies (Rivero et al.,
2014; Giardino et al., 2014).

http://dx.doi.org/10.1016/j.jss.2016.04.060
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2016.04.060&domain=pdf
mailto:fabiopbasso@cos.ufrj.br
mailto:fabiopbasso@gmail.com
mailto:rmpillat@cos.ufrj.br
mailto:toacy@cos.ufrj.br
mailto:frfrantz@unijui.edu.br
mailto:rzfrantz@unijui.edu.br
http://dx.doi.org/10.1016/j.jss.2016.04.060

EP. Basso et al./The Journal of Systems and Software 117 (2016) 612-637 613

A possible solution to speed-up the modelling phase, thus help-
ing in the execution of iterations in short time-scales, is the use
of techniques for automated design (Linington, 2005; Batory et al.,
2013). In this paper, we suggest the use of three different phases
for constructing models for MDWE, namely: evolutionary, archi-
tectural, and functional. Models are based on the Model-View-
Controller (MVC) architectural pattern (Evans, 2004). Although
each prototyping phase is handled by some DSL and tools found
in the literature, their integrated use is still a challenge in MDWE.

We present a methodology for MDWE named MockupToME
Method, which includes tasks supported by (semi-)automated de-
sign techniques for some use case patterns (Molina et al., 2002).
We extend previous contributions (Basso et al., 2014b), by detail-
ing tasks and artefacts that include many DSLs, developed to sup-
port the design of many layers of MVC-based application models,
and the tools associated with these tasks for automated design. We
also summarized data collected from two software projects, the
first considering mostly manual design tasks and the second con-
sidering the use of tasks based on automated design techniques.

A partially assisted design through Wizards was used in the
first software project, with iterations planned for one month or
more. In the second project, we used MockupToME Method with
iterations planned and executed with one to two weeks. Both ap-
proaches are based on use case patterns of type CRUD (Souza et al.,
2007), and use the same DSLs for representation of MVC-based
application models, which are used in the end of a lifecycle for
model transformations by the same source code generators. Differ-
ently, MockupToME Method includes DSLs and tools for designers
to work in high-level of abstraction than in MVC-based application
models.

The use of short iterations is a benefit observed in MockupToME
Method, but not in our previous approach, i.e., in manual design
of these models. The reasons why short time-scales are feasible in
MockupToME Method has to do with the automated design tech-
niques discussed in this paper. Thus, we also derived interesting
research questions as a result from these two software projects.

The rest of the paper is organized as follows: Section 2,
conceptualizes this work and Section 3 motivates this research;
Section 4 exemplifies the representation of preliminary require-
ments, which are the input for the automated design approach
introduced in Section 5; Section 6, describes the methodology,
which is complemented in Section 7 with implementation de-
tails and in Section 8 with activities performed after the source
code generation; Section 9, summarizes the two software projects,
with lessons and insights for future research; Section 10, points
out limitations; Section 11 presents the related work; and, finally,
Section 12, reports on our main conclusions and possible future
work.

2. Concepts

In the context of the development of web information systems,
the following concepts are important for the understanding of this
paper (Evans, 2004; Souza et al., 2007; Allier et al., 2015):

o Model-View-Controller (MVC). Is an architectural pat-
tern (Parnas, 1994) frequently used in the construction of
web information systems (Burke and Monson-Haefel, 2006).
This pattern is important to modularize and structure the
source code in three layers, thus facilitating the mainte-
nance (Bosch, 2013) and avoiding the erosion of architectures
as they evolves over time.

Conceptual model. A class diagram composed of analysis
classes, also named entities, which represents the Model layer
of the MVC (Evans, 2004).

GUI Templates. Facilitate the development of standardized
structures for GUI (Han and Liu, 2010) allowing developers to
focus on the logic layer, while layout details and actions are
managed by a template engine. By means of templates, de-
velopers focus on the content that is placed inside a template
structure.

CRUD. A type of GUI template and an acronym for create, read,
update, and delete (Souza et al., 2007) characterizing frequent
set of use cases developed in information systems that allow to
persist, retrieve and remove objects to/from a database. Differ-
ent structures for CRUD can be used, and may include a specific
GUI template.

Domain-Driven Design (DDD). The Model layer is used to
represent all the other application layers using a DDD ap-
proach (Evans, 2004). In MDWE, DDD drives the generation of
a detailed MVC-based model, guiding the refinement of multi-
ple layers associated with a particular use case scenario and a
paper prototype.

Master/Detail. A well-known concept among software develop-
ers, which allows the classification of use cases for use case pat-
terns (Molina et al., 2002). These concepts of Master and Detail
are well discussed in approaches for DDD (Evans, 2004) and the
object oriented method (Molina et al., 2002).

The following concepts are important to contextualize our
work:

o Use case scenario. Is one of possible flows from a use
case (Sommerville, 2010) or user story (Landre et al., 2007). Use
case scenarios are important both for design and for tests with
clients (Sommerville, 2010), which evaluate models, prototypes
and also the final version of an application piece with accep-
tance tests.

Paper prototype. A hand drawing on a paper showing user in-
terfaces with user interactions that represents use case scenar-
ios (Sommerville, 2010). It is a software artefact represented in
a high-level of abstraction than a mockup. A paper prototype
is not a model, but a document usually associated with user
stories specified in initial brainstorming meetings for the re-
quirements elicitation. It is also called as pre-prototype (Davis
and Venkatesh, 2004) and, sometimes, as throwaway proto-
type (Sommerville, 2010).

Mockup. A model for a GUI, which is not possible to be
fully implemented in functional prototypes (Blankenhorn, 2004;
Rivero et al., 2014; Forward et al, 2012). In our understand-
ing, mockups are abstractions in a high-level than the business
logic needed in the development of web information systems,
focusing on GUI components specification. Mockups may also
be called sketches (Balsamic Mockups Company, 2015).
Round-trip engineering. A set of activities aiming at syn-
chronize generated source code with manually developed
code (Mussbacher et al., 2014). It is performed automatically
with the support of tools or, sometimes, manually, when it is
required to update the model based on changes from source
code.

Full source code generation. Is the ability to generate 100%
of what is designed, not 100% of all the application (Kelly
and Tolvanen, 2008). Kelly and Tolvanen (2008) claim that full
source code generation is a possible solution that mitigates the
execution of changes in generated artefacts.

The Java platform is important for the implementation of web
information systems and is divided in J2EE, J2SE, and J2ME edi-
tions. Burke and Monson-Haefel (2006) state that:

1. For the development of forms to desktop platforms, developers
adopt J2SE and APIs such as AWT and Java Swing.

614 EP. Basso et al./The Journal of Systems and Software 117 (2016) 612-637

Target Companies for MDE Adoption

—

<<ManualDevelopment==
Generate billet
— <<CRUDWithDetail=>
P

Analysis of the
Target Context
A/\I/\A_ O [adapit] (AMDA)
MDE Resources Adapted for ERP and CRM
§id Company Context for Online
-~ Auction

° [Company A] (Scrum)

MDE as
Service MDE Resources Adapted for FRP f‘?f

Y i Company Context Financial
[Adapit] Management

Fig. 1. Implemented scenario for MDE as Service considering contexts from two
software projects, one executed by Adapit and the other by Company A.

2. For the development of forms to mobile platforms, developers
adopt J2ME and APIs for MIDP such as Connected Limited De-
vice Configuration (CLDC) and Connected Device Configuration
(CDC). The latter API focuses on devices that allow for rich GUI
components and rich user interactions, whereas the former is
quite limited. For this reason, CDC is supported by GUIs devel-
oped with the AWT, similarly as in J2SE edition.

3. For the development of forms on the web, developers adopt
J2EE, which can include: (a) tools for the database manage-
ment system such as PostgreSql; (b) web frameworks such as
Spring Framework and frameworks for Object Relational Map-
ping (ORM) such as Hibernate; and, (c) APIs for the develop-
ment of the View layer including JSP, JSTL, Dojotoolkit, jQuery,
and so on.

Finally, some software projects may require all these editions
in the development of multi-layered systems. This is the case of
the systems that we have developed, which we discuss in the next
sections.

3. Motivation and context

We have been in an effort to introduce model-based solutions
in start-up contexts in an initiative for “MDE as a Service”, as il-
lustrated in Fig. 1. In this scenario, resources developed for MDE
(e.g., model transformations, DSLs and tools) are applied in differ-
ent contexts. We have implemented MDE as a Service by means
of company Adapit, founded in 2007 and supported for three years
by a business incubator, hosted in one of the biggest scientific and
technological parks in Brazil. Through Adapit, we have introduced
resources for MDWE in five software projects, three out of them
developed by teams from Adapit and two out of them by teams
from other start-ups.

The motivation for the advent of a new methodology and tool
support came in 2007, from the internal application of our first
approach for MDWE. It is a software project for the development
of an web information system for online auction, hired on de-
mand by another start-up, i.e., by an auction agency. This project
needed the execution of iterations lasting one month due to dis-
tances between these start-ups. This time-scale implied in valida-
tions with clients carried out too late and, consequently, requiring
a considerable rework in model and source code due to changes
in requirements. Following the instructions from the software en-
gineering discipline (Sommerville, 2010), we concluded that with
shorter time-scales we could obtain feedback from clients in an
early stage. However, due to a sum of factors such as the time in-
vested in manual representation of models, issues in source code
generation and bad practices for manual coding, hampered the ex-
ecution of shorter time-scales.

As a solution to surpass these issues, between 2008 and 2010
we planned and developed an approach for automated design. It

S /Manager Maintain products
<<SimpleCRUD=>
Maintain account R
’

<<FilterBy=>
List products by
preferences

Alternative Scenario-Create a Category

Success Scenario-Find and Selecta Categowj

Fig. 2. E-commerce use cases designed manually conforms to the CRUD UML
Profile. This is a use case view that illustrates a functionality considered for im-
plementation in a unique iteration of the software development process.

includes a tool named MockupToME and other DSLs in a method-
ology named MockupToME Method. It is the result of three years
of industrial innovation, incepted exclusively for the application
of MDWE in target software projects for web information system.
Moreover, this approach is limited to assist the design of models
for use case patterns such as CRUD, List, Filter, and Report.

We observed that MockupToME Method speed-up the specifi-
cation of detailed MVC-based models within iterations planned in
short iterations. In 2010 we implemented a feasibility study for
MDE as a Service, by introducing our new approach to other start-
up, referred to in this article as “Company A”. Differently from
Adapit, Company A adopts Scrum (Moe et al., 2010) as the refer-
ence model for the software development process. Likewise, we
adapted our resources for the target context (Basso et al., 2013),
analyzing issues associated with this specific reference model in
combination with MDE (Basso et al., 2014d; 2015).

As illustrated in Fig. 1, our approach for MDWE has been used
with different frameworks for management of software processes:
Scrum and AMDA (Ambler, 2015). The MockupToME Method is ag-
nostic to the framework adopted by the target software project and
can be introduced in any model for software development process.
We also represented our methodology with the BPMN (Pillat et al.,
2015). However, it is also agnostic to the BPMN representation.
Thus, the reader can consider it as flexible for inclusion of other
tasks.

We present a contribution for the theory and practice of
MDWE, discussing elements from methodology and tool support
that configures our best approach for two start-up contexts. Like-
wise, considering mostly the worst-case scenario for design, we
present some elements that we consider essential and optional for
application of design techniques, tasks for validation with clients
and coding issues. In the end, we also summarized a report of two
systems, one developed with the automated design proposal and
the other using mostly manual design (some wizards), and discuss
on open questions associated with the MockupToME Method.

4. Running example

We illustrate our methodology considering the development of
an e-commerce application, for the use case diagram shown in
Fig. 2. Two actors, Customer and Manager, can perform the fol-
lowing use cases: (1) Maintain Account, which allows users
to persist their personal data, preferences for categories of prod-
ucts and associate credit cards; (2) Maintain products, which
allows users to persist data associated with products (e.g., a cat-
egory); (3) List products by preferences, which allows
customers to list products based on their preferences for cate-
gories; (4) Generate billet, which allows customers to pay
for products using banking billet/slip. In the next sections, we
demonstrate the automated design of the use case Maintain
products.

The use case Maintain products, adopted for exemplifi-
cation, also includes the following use case scenarios: Success

EP. Basso et al./The Journal of Systems and Software 117 (2016) 612-637 615

Scenario, (1) - Find and Select a Category - the
category of a product is already available in the database, thus re-
quiring the development of a complementary mockup to Find and
to Select the category for inclusion in a product, or; Alternative
Scenarios, (1.1) - Create a Category - the category
was not found, it must be created, then the end-user re-execute
the success scenario.

Although we focused on the exemplification of a form and filter
for CRUD, it is also possible to automate the design of reports, lists,
and other variations of user interactions with CRUD operations.
Likewise, the unique use case that is not target for the presented
techniques is the Generate billet, which requires manual de-
velopment. The other use cases are possible to be automated sim-
ilarly as the use case Maintain products. A reason for exem-
plification of Maintain products is its use case scenarios: be-
sides the implementation of CRUD operations, the user can Find
and Select the category for inclusion in a product.

Differently, the type of use case associated with Generate
billet implies in the development of a scenario composed of
the following implementations: (1) a mockup for list the products
from a web shop kart; (2) a class to generate the PDF file. Due to
limitations in our tool support to assist the design of Generate
billet, the first implementation can be generated, but not the
second one. Therefore, for didactic reasons, the reader should as-
sume that Generate billet is manually developed, allowing us
to exemplify the use of round-trip engineering.

5. Approach

Our MDWE approach is illustrated in Fig. 3 and includes the
design of mockups with the MockupToME DSL!. A screenshot of
MockupToME metamodel is shown in Fig. 4 (A). Models in confor-
mity with such DSL are refined and transformed into other rep-
resentations, thus following a multi-view design approach (France
and Bieman, 2001). In the following sections we introduce our ap-
proach.

5.1. Tool support for the design

In a previous lifecycle adopted in 2007 for the development
of the online auction system, the first representation adopted for
the View layer was a representation in conformity with the GUI
Profile (Blankenhorn, 2004), illustrated in a UML representation in
Fig. 5. The literature recommends the usage of use case patterns
and Master/Detail as a solution to facilitate the development of
web information systems (Molina et al., 2002; Evans, 2004). To im-
prove our previous practice based on manual design of MVC-based
application models, we adopted this recommendation. Besides, for
the sake of offering for designers a better conceptualization than
the one available in GUI Profile (Blankenhorn, 2004), we developed
the MockupToME DSL considering these recommendations (Molina
et al,, 2002; Evans, 2004). Thus, our DSL is introduced after the
representation of the conceptual model shown in Fig. 6 and use
cases, which are located at the top-part of Fig. 3 as the first repre-
sentation associated with models in the lifecycle.

We found that the GUI Profile is limited to the representation of
GUI components and does not require concepts for Master/Detail.
This limitation was surpassed using MockupToME DSL, which is
used as front end for the representation of GUIs together with re-
lationships of Master/Detail. However, the GUI Profile is not dis-
carded. Instead, we considered it as a generic DSL for GUI compo-
nents that follows other representation specific of target platforms.

T MockupToME web page. Available at:
mockuptome_home.html>.

<prisma.cos.uftj.br/wct/projects/

Textual Paper Not

Requirements | Use Cases + Prototype Models!
® | = ‘Y—r @@
2
c
g* Conceptual UML 2

Model
CRUD UML
Use Cases Profile

- Product hatssancs Fom
Preliminary e | MockupToME
Mockup sawes . DSL
Model Detail ::aeegory
Model Refinement
T l Engine

o Refined MockupToME
% Mockup

‘n— Model —

<

M2M Execution
Engine

MVC-Based Several DSLs:
Application GUIDSLs
Models Action Profile
ORM Profile

Service Profile

- M2C Execution
d Engine

Prototype i .

Fig. 3. Model transformation lifecycle adopted in the automated design approach.

In the lifecycle of our proposal, the GUI Profile is implemented
through the metamodel illustrated in Fig. 4 (B) and belongs to a set
of representations called MVC-Based Application Models.
This DSL is included in the second level of representation for GUIs
called Concrete GUI metamodel, which in fact is generic and
built on top of other DSLs for platform dependent GUIs as follows:
(a) Web DSL metamodel is illustrated in Fig. 4 (C) and allows the
representation of details for components based on W3C/HTML 5%;
(b) Mobile DSL metamodel is illustrated in Fig. 4 (D), which is
based on the Java J2ME Components (Burke and Monson-Haefel,
2006) programmed in MIDP and CDC-AWT?; and (c) Desktop DSL
metamodel is illustrated in Fig. 4 (E) allows the representation
of details for components based on the Java J2SE/Swing compo-
nents (Burke and Monson-Haefel, 2006).

HTML properties such as css, class, background, etc., can
be represented in components from the Web DSL, which is not
possible to be specified in components that conforms to the Mock-
upToME DSL. The same is valid for Mobile and Desktop DSLs. To
focus on the methodology, this paper does not provide details on
such metamodels neither the conservatives UML extensions that
belong to our UML Profiles.

To assist the representation of such models, our methodology
includes tasks supported by (semi-) automated design techniques,
which speed-up the specification of the detailed MVC-based mod-
els, allowing the use of iterations lasting one to two weeks. Thus,
through an specification in conformity with MockupToME DSL, we

2 <https://www.w3.org/TR/html5/ >
3 <http://www.oracle.com/technetwork/java/index-jsp-138820.html >

https://www.w3.org/TR/html5/
http://www.oracle.com/technetwork/java/index-jsp-138820.html

616 EP. Basso et al./The Journal of Systems and Software 117 (2016) 612-637

A) MockupToME DSL model B) Concrete GUI Comp. DSL Metamodel

mockup v # concretegui
@ AlignAss © BackgroundHorizontalAlign
2 BorderType < BackgroundVerticalAlign

E WindowLayoutSpecification -> ScreenLayoutSpecification
B CascadeAction -> ActionSpecification
[] Listitem -> AbstractComponent, EntityMapping

2 PathMode
B ScreenArea -> AbstractScreenAres, DataType, [Event, Typ
£ ActionableComponent -> ScreenAreaComponent, [Even

%‘;bn T ; ‘;"’"“‘L s B ScreenAreaComponent -> ScreenArea
g S B R £ Button -> ActionableComponent

£} CheckBox -> ActionableComponent, EntityMapping

LayoutOption
8 LayoutOp! B Menultem -> ActionableComponent

] ElementReference -> Element

B MeckupC: > Abstracil o, £ [EditableComponent -> ScreenAreaComponent
B Formitem -> . TypedC H ImageComponent -> ScreenAreaComponent
g Templatel -> Abstractl £l DateChooser -> TextField

B TextField -> ActionableComponent, EntityMapping, Edit
£ DialogBox -> MockupPanel, ScreenlO

{ KeyStroke -> Element

[Label -> ScreenAreaComponent

[MenuBar -> ScreenAreaComponent, ScreenlO

£ Menu -> ScreenAreaComponent

] TemplatelnsertionPoint -> AbstractComponent
B Treel -> AbstractL

B Treeltem -> Mockupltem, ServiceMapping

1) InneiWindowSpecification -> Element

B TableL. > AbstractL

[Tableltem -> Mockupltem, ServiceMapping »

Bl Mockup -> AbstractScreenAres, MockupContainer __.-=~"" «

C) WEB DSL Metamodel D) Mobile DSL Metamodel

web @ midp
@ AlertType E Command -> Event
£ AlertBox -> MockupPanel, CssCompo] > [Form -> Canvas

E) Desktop DSL Metamodel

@ desktop
 MockupPanel -> Container, MockupCont
[CheckBoxMenultem -> Menultem, Check

o |] CreditCard
=
o | =] Perzon =I Rename the selected element

L. >
T '_4 Profle = Update project Start Templates
o =] Role 3 Open in a new tab _
o [Seller L. Edit

|_¢ Graphical User Interface »
Transformations " »

EJ Generate a CRUD form for the entity
[*] Generate a list screen / table to the entity

o J State
-3 Addrezz\
| UML Model I

DSL (MockupToME)
Model

Resources for model
transformations

A Refinement Template is
Associated with “Find”

¢ 1| Product Maitenance Form [org.v{~|
o g Assigned Stereotypez
¢ lim Product Baze DataPanel [pr i orm

v) ——

[|sm| ProductMai orm

‘%

File View Ci P T

2 FormMethod

B Form -> MockupPanel, CssComponef
£ Frame -> MockupPanel, CssCompong

B Alert -> ScreenArea
[List-> Canvas, FormComponent

F ComboBox -> ComboBox

£} TedBox -> Canvas, FormComponent

B¢ -> Element
£} Frame -> MockupPanel

name =| b 4
¢ [i] Category [org.wet.uml.ex = T Layout: [Tableless Layout | v] "

F WhaitScreen -> Canvas
© CommandType
[ChoiceGroup -> Canvas, FormCompo

[Link -> ScreenAres, ActionableCompd
£} PaddingPanel -> MockupPanel, CssC
B RichContainer -> MockupPanel, Css(]

g FileChooser -> Button
H InternalFrame -> MockupPanel
[} ImageChooser -> ActionableComponent,

& ToolTipDialog -> MockupPanel, CssC| B FormC [ListComponent -> List, EditableCompone
[TitledPane -> MockupPanel, CssCom) E Canvas -> NamedElement B ListModel -> Listitem
B CssComponent B Midp -> Package g = bleCompor

Fig. 4. DSLs for representation of the View layer in different abstraction levels.

DSL = UML (GUI Profile + Action Profile)

Model
Transformation
<<FunctionlScreenArea>> Engi
Client Maintenance Dialog ngine

Model
<<Menu>> <<Form=>>
CRUD O i Client Data Q
<<News> | <<Image>> <<Text>> | |_O Source
New Picture Name:
— —» Code

<<Save>> <<Text>> View
Save Email:

<<List>>
Preferences

<<Remove>>
Remove

Controller

Annotated Mockup Multi-Layered Architecture

Fig. 5. Illustration of an annotated mockup, manually designed in the Astah UML
modeling tool with stereotypes from the GUI Profile (Blankenhorn, 2004) and our
extensions from Action Profile, as part of the view layer of a multi-layered
architecture based on MVC.

Product Person <<enumeration=>
idint i int 0.1 CreditCardKind
- name : String - name : String - VISAint
- hirth : Date - GOLD_CARD :int
1 - category - MASTER_CARD : int
- preferences 1\3
Categol CreditCard
gorv. 0.* Client - creditCards

-id:int -id:int
- name : String - phone : String o » | -number: String
- freeText : String . - kind : CreditCardKind

Fig. 6. Conceptual model designed manually with the Astah UML tool. This is a
logical view of the Model layer, illustrated as part of the scenario associated with
the use case view shown in Fig. 2.

included (semi-) automatic transformations from mockup models
to other models in conformity with MVC-based architectures.

5.2. Lifecycle of model transformations

In the following we discuss some conceptual specificities used
in Fig. 3:

Preliminary specifications. Are textual use cases/user stories
and paper prototypes, the minimum input for our approach to au-
tomate the design in MDWE. These artefacts are not model spec-
ifications and serve as guide for the designer that works in a use
case, such as those illustrated in Fig. 2. In preliminary software de-

o @8 Assigned Stereotypes | 1 D i e
o @l Assigned Tags | |
:L L] L] B Product Maitenance Form
Stereotypes | 1 Name:
Mapping And Validation | Tags | category: [(|
1 | Base [Properties [Layout ‘ (7 ‘
l 23 New I [= saive l @ Remove ‘
G mapped prope: = B — - |
~
L_4 Product ° | a0 m =l
[=] #name o |

Fig. 7. Screen-shots of models and start templates.

velopment phases, a requirement engineer draws user interfaces
in a paper, based on use cases or user stories. The engineer is
free to select techniques and tools to perform these tasks, such as
use case augmentations (Ricca et al., 2010), inspections, and pre-
prototypes (Davis and Venkatesh, 2004).

Mockups are models. In the modelling of web information sys-
tems, a mockup is a GUI whose components are associated with
operations for CRUD, data filter and reports (Ricca et al., 2010). Fol-
lowing the motivating example, Fig. 7 (2) shows the simplest struc-
ture for CRUD available in our prototyping tool* for the design of a
mockup that implements the use case Maintain products. The
design in a mockup is semantically connected with one or more
layout structures, e.g., with a GUI template for CRUD, that are com-
monly used in the development of web information systems.

Annotated mockup. As illustrates Fig. 3, mockups are repre-
sented and refined in conformity with the MockupToME DSL. This
language allows the representation of annotated mockups, as illus-
trated in the left-side of Fig. 7 (2) through tags and stereotypes.
Through annotations, the proposed mockups own semantics for ac-
tion, as in the proposals by Ricca et al. (2010) and Rivero et al.
(2014). Mockup designs are annotated with semantics associated
with standard actions, which are expanded in new mockups that
implement the diverse scenarios of a use case. Thus, it is possible
to infer the user interaction in these type of functionality, allowing
to perform simulations in web browsers without the need to detail
flows between GUISs.

Assisted design of models. In previous experiences we always
looked for ways to speed-up the design of models, making them
less dependent from specialists. For example, the set of artefacts
found in our MVC-Based Application Models (see Fig. 3)
are divided in some layers represented with specific EMF-based
DSLs and UML Profiles. Fig. 5 illustrates some annotations based on
the GUI Profile (Blankenhorn, 2004), applied manually for the view
layer. However, several other layers and annotations from other

4 A demo from MockupToME tool is available at: <https://www.youtube.com/
watch?v=TrjuqlJMy8M >.

https://www.youtube.com/watch?v=TrjuqLJMy8M

EP. Basso et al./The Journal of Systems and Software 117 (2016) 612-637 617

A) ORM DSL + ORM Profile
v &
v # orm
© MaskType
@ TablelndexKind
© TableRelationType
¢ TableType
B TableColumn -> NamedElement
B PropertyMask -> Stereotype
[Table -> NamedElement
E Tablelndex -> NamedElement
E TableRelation -> NamedElement
[EntityRelationship
B Entity -> Package
E TableModel -> Model

e/org.wct. .ecore

B) Service DSL + Service Profile
v & p
v @ senvice
€ QueryKind
<« QueryClauseKind
[QueryTree -> Operation, QueryTreeNode
B QueryClause -> NamedElement, QueryTreeNode
E QueryReturn -> NamedElement, QueryTreeNode
H QueryTreeNode -> NamedElement
B Servicelayer -> Package
[ServiceOperation -> Operation
B SecurityConstraint -> NamedElement
@ SecurityDesignPrinciple
€ ValidationScope
H SecurityPackage -> Package

e/org.wct.servics ice.ecore

«© CommandType
B ActionEvent -> Event

[ActionSpecification -> NamedElement
[ActionHandler -> Classifier, DataType
E SimpleActionHandler -> ActionHandler
B MultiActionHandler -> ActionHandler

&) platform; e/orgufijuml 2.ecore &) platform e/org.ufij.umi2/model/uml2.ecore
C) Action DSL + Action Profile :
v @ e/orgwetacti del/actiondsl.ecore| A v

v # action v i

[Element -> XmiParser, lconifiable, Observable,
E TaggedValue -> NamedElement

[Stereotype -> NamedElement

B Comment -> Element

[Generalization -> DirectedRelationship

[Constraint -> PackageableElement

[ServiceMapping -> Element

[BehavioralMapping -> Element

B¢ ionHandler -> SimpleActior
[ScreenAreaMapping -> Element

B SystemAction -> ActionHandler

[} SystemActionEvent -> Event bl
B Controller -> Package 4
B Remote -> Package

[PersistentElement

[Expression -> ValueSpecification, Element
[TagDefinition -> NamedElement

[StereotypeDefinition -> Stereotype

& ElntArmay [int(]]

© EStringArray [java.lang.String(]]

© ECharArray [charfl]

D) UML Metamodel as a Core DSL

&) pl : &/org.wet. mo ore "
& p : e/org.ufrj.uml; 2.ecore

Fig. 8. Metamodels for the
Models.

representation of MVC-based Application

UML Profiles are necessary to represent the set of artefacts. This
requires a considerable time for design that should not be ignored
in software projects conducted with short iterations. Through the
execution of the overall automated design lifecycle illustrated in
Fig. 3, we can assist the representation of these model specifi-
cations, some generated automatically, refined by the designer in
each phase of prototyping.

Start templates. The difference between template-based devel-
opment and our approach is that templates are model transfor-
mations, thus not just as a source code facility. Likewise, we pro-
pose to use model transformations of type start templates to
generate preliminary mockups. A start template is a classification
of model-to-model transformations that allows the generation of
a Preliminary Mockup Model, such as the one illustrated in
Fig. 7 (2). Mockups embed the structure for one or more start tem-
plates. This is illustrated in Fig. 7 (1), which shows a start tem-
plate executed against input entity classes designed in a class dia-
gram shown in Fig. 6. This allows the automatic generation of the
mockup shown in Fig. 7 (2). Therefore, a start template follows the
same principles from GUI templates, but it is applied specifically
to generate a model in conformity with the MockupToME DSL.

Refinement templates. A refinement template is similar, al-
though strictly applicable to generate mockup structures for De-
tails in representations for use case scenarios. For example, a
Detail from the entity Product is Category. Considering the
success use case scenario for Maintain Products, refinement
templates are applicable to the entity Category in association
with Product, allowing the generation of a Refined Mockup
Model in the lifecycle. This is because a refinement template is
associated with the Find pattern (see the button just above the
Remove button in Fig. 7), which allows to generate automatically
other mockups for Search. The generated mockup can also be re-
fined in another specifications to Create a Category and so on.

MVC-based application models. An annotated mockup is an
input for model-to-model transformations, that allows the gen-
eration of other specifications in conformity with DSLs, as illus-
trates Fig. 8, used to represent MVC layers, as illustrated in Fig. 9.
Fig. 8 (A) illustrates the metamodel for the representation of Object
Relational Mappings (ORM) (Burke and Monson-Haefel, 2006), the

<<inerface>>
Service

PR . - + save(entity : Model) : void
pAN
Model pess==== yoTes 1
)I] Remote I |valklatlon | | DAO |
mobile View

Fig. 9. Structures for multi-layered application based on MVC.

DSL for the representation of business logic and database queries
is illustrated in Fig. 8(B) , and Fig. 8(C) illustrates the metamodel
for the representation of actions for the Controller layer. These DSLs
extend the UML metamodel shown in Fig. 8 (D), allowing the rep-
resentation of annotations such as tags and stereotypes in conser-
vative extensions. The Action DSL also extends the MockupToME
DSL, allowing the connection between mockups and MVC-based
Application Models.

Multi-layered MVC. Some companies promote the usage of
more layers for better structuring the source code than those
known in the MVC pattern (Allier et al., 2015). As illustrated in
the bottom-part of Fig. 3, MVC-based Application Models
are structured in multi-layers shown in Fig. 9 using some DSLs
shown in Fig. 8. Likewise, apart from the Model, the View, and
the Controller layers, our architectural models and the gener-
ated source code are divided in: (a) Remote layer - it is a UML
Class whose operations are annotated with tags and stereotypes
from the EDOC UML Profile (EDOC, 2014), used to integrate busi-
ness logic in a web server with client applications such as mobile
and desktop; (b) Validation layer - it is a UML Class whose
operations contain semantics for server-side logic to validate enti-
ties and properties, i.e., persistence constraints and regular expres-
sions represented with metaclasses such as PropertyMask and
MaskType shown in Fig. 8 (A); (c) the Data Access Object
(DAQ) layer - it is a UML Class whose operations are confor-
mity with ServiceOperation shown in Fig. 8 (B), which allows the
representation of semantics to apply database queries from CRUD-
related actions.

Functional prototype. A functional prototype is a fully imple-
mented prototype that can be tested in iteration cycles of ac-
ceptance with clients. In a multi-view design approach, a func-
tional prototype is obtained through the representation of mod-
els in a Platform-Specific Model (PSM) view (France and Bieman,
2001). Thus, our functional prototypes are generated after the ar-
chitectural prototyping phase, after mapping mockup designs for
an MVC-based model. A functional prototype is result from model-
to-model transformations, manual model refinements and genera-
tion of source code through model-to-code transformations.

WCTSample. This is a web framework that implements a multi-
layered architecture. The framework has 18 basic entity classes to
support access control, customizable CRUDs and filters, functional-
ities to handle files, and images that are common features in many
web information systems. This framework was used in the devel-
opment of the two systems reported in Section 9.

5.3. Final remarks

Although we focused and exemplified the design for a complex
use case scenario associated with Maintain products, it is
also possible to generate CRUDs for simpler scenarios (Basso et al.,
2015). For example, to persist a Category, the resultant mockup
could be as simple as the one illustrated in Fig. 7 without any
information of Detail. Thus, the designer uses a start template
and ignores the refinement templates. Moreover, for the design
of simple mockups, some tasks included in our methodology

618 EP. Basso et al./The Journal of Systems and Software 117 (2016) 612-637

Requirement Engineering Phase
Part |

@ Requirement Engineer
N
0 '
=
%g’g', paper
prototype

g —

Use case models, —
user story, glossary, [[l—
supplementry req.

Evolutionary Prototyping Phase

Part Il 8 "
Mockup {74\ 8 = Conceptual Model el
Designer Q2% = T sescsssssssssssssssssssens len

\/ S ' G Interaction 2
) :o’ (for the Worst
Annotated [epprannnned * Start and Refinement ; Case Scenario)
Mockup Serene,, . GuI ‘nansformations
Modal M = ocscsssescessessesses
Architectural Prototyping Phase Functional Imple-
Prototyping -
T L mentation
Part Il N : M2M Phase
% Transformations
Lo Part IV
MVC Working
Designer P'i‘;e
34l r
Y "ﬂ Functional Prototype g Application
MVC-basea) o @
Application =l o
Models) & . P
2 e |
p : : Client
Client : M2Cc Interaction 4
Interaction 3 T"a"5f°"m°t'°"5 (Acceptance)

Fig. 10. Overview of steps proposed for rapid application prototyping in four inter-
actions with client in the MockupToME Method.

can be ignored or partially used. Besides, it is always possible to
represent components in mockups manually, detailing use case
scenarios with annotations that are not supported in MockupToME
tool. Thus, our contribution for automated design of mock-
ups is complementary to manual design techniques introduced
by Brambilla and Fraternali (2014),Rivero et al. (2014), and Ricca
et al. (2010).

6. MockupToME method

Models are represented in different abstraction levels following
a multi-view lifecycle in the MDWE scenario shown in Fig. 3. This
approach is discussed from the perspective of stakeholders inter-
acting with the MockupToME Method, as illustrated in Fig. 10.

Our methodology allows to work with four abstraction levels of
artefacts associated with user interfaces: paper prototype, mockup
model, concrete GUI models (platform specific), and functional
prototype. Because we use more than one DSL in our approach,
its systematization requires the following four different phases for
prototyping:

1. Paper prototyping, which is executed in a requirement engi-
neering discipline and represents the first view from the client
about a functionality to be developed.

2. Evolutionary prototyping (Sommerville, 2010), which considers
the worst-case scenario about the uncertainty of requirements
as those found in start-up contexts (Giardino et al., 2014). This
phase targets the exploratory development (Schwaber, 1995) of
mockups with different options for clients to evaluate and de-
cide which ones have to be used in his/her applications.

3. Architectural prototyping (Allier et al., 2015), which explores
models that represent the MVC layers besides the View such
as business logic, object relational mapping, and property
validators.

T TextL;aI Use Template Preliminary
: il Catalogue Mockup
story 5
Paper .
prototype
A) Find "Master’ BB] Use a Start C) Refine the
Entities Template ‘Details’
— ==]
Browser .« = . Accepted
Prototype . : Mockup
"2" 5 | Conceptual : : %
c | = . =
E | 5| ™% [pselecttne & © cenerate - [_‘)F
e a) Generate
F] & oreer 1 Strategy for Mockup Source MVC Layers
3 D ‘Details’ Code T
Refined : J
Mockup N N S LELEEE T T T T I "
Concrete GUlcomporjents .
c
g =
i B
& G) Detail the H) Apply UML = I) Generate complete
business Logic Profiles source code
f . g
44[_1 5 o .
LML § :
Structural and: Funttional 2
Behavioural . ST Prototype NTTTTTTTTTITTT kil
-g Diagrams : . Working
i) .) i application
% fen, o : piece
Q
J) Implement Developer 5
[Tests Kl Implement Solution

Fig. 11. MockupToME Method with tasks assisted by tool, allowing the generation
of models in different abstraction levels.

4. Functional prototyping (Sommerville, 2010), which is the im-
plementation of the source code for a functional prototype in
which clients can perform acceptance tests.

Not all tasks presented in this methodology are mandatory.
Thus, the software engineer must decide in each task about op-
tional elements, such as the representation of alternative mock-
ups for the implementation of a given use case scenario. The de-
sign of mockups for some use case scenarios associated with CRUD
can be complex, involving a set of specifications for GUIs, actions
and entities that should be represented in synchrony. For example,
the use case Maintain products illustrated in Fig. 2 includes
at least two scenarios that should be implemented: Find and
Select a Category, or Create a Category. These seman-
tics for actions are commonly found in use case scenarios for the
development of CRUDs and present a standard workflow. Likewise,
we found interesting to assist the design and refinement of these
scenarios through automated design techniques.

Fig. 11 presents our methodology in BPMN. It is used in ev-
ery iteration by a designer and developer to perform many cycles
of validation, allowing iterative and incremental steps towards the
development of working pieces of application. The designer, which
is a specialist in mockup and MVC, refines a generated mockup
model choosing mutually exclusive mockup structures from Tasks
A to D.

Tasks A and B are fully executed independently of the complex-
ity of the use case. Considering the worst-case scenario for use
cases, Tasks C and D are fully executed. In these tasks, different
structures of GUI components can support alternative implementa-
tion strategies, for example, different components, layouts and GUI
templates for the same use case scenario. Finally, mockups are re-
fined to support new suggestions.

A first executable prototype is obtained in Task E: Generate
Mockup Source Code. The generated prototype is evaluated by
clients to ensure that GUI flows and forms are in conformance

EP. Basso et al./The Journal of Systems and Software 117 (2016) 612-637 619

CollectionPanel

Ut Teaka | [Carar | [(e | [@ Pasava Gaacied

Figura 1: Imagem de Umma tela CRUD ¢ List Gerada pela WCT
1 - Manutencio de Projeto (CRUD) o 2t

Esterestipos da Aba
Formdction

Extercotipo: soz Botte: =

Unndoesion, Cancelderion. % Drrotr
Tag: nos Bot

e
Entitylid Formid [raria

Tags nos Campos o
Figura 2: Tela de Uma Estrasegia de Azociagio 1~

Extereotipo: do Painel 1
OnLoaddetion. DiplayobieLocation

irgetDetailCollectionPanel

LayoutStrasegy (TublearDestiCollectionPanel,

i :
Amcadui Presol Bt [v rogeams presare

Estereotipe: Ne: Botbes

c -
DemachFrominniydcion. ReporAction e cionados
Tags nes Botbes Frajms sasaciages o

Enttryid, Properdd
Tag: 2a Tabela :
£ d=val2 TableModelidval3} T Lia 2

Lisryid {Associan

Fig. 12. Template catalogue, used as a guidance for execution of an assisted design
approach through the MockupToME tool.

with the expected behavior to a given functionality specified in
a textual use case scenario. Task F starts the Architectural
Prototyping Phase, including the generation of models anno-
tated with tags and stereotypes for business logic. An accepted
mockup model is transformed into a concrete GUI model that is
composed of DSL components supported by specific web technolo-
gies and APIs, e.g., an image chooser component. Concrete GUI
components are refined in multiple views for each target platform.

A functional prototype with is generated from Tasks F to I
shown in Fig. 11. The source code is changed to adjust details, and
usability tests are executed by clients. Differently from the first
executable prototype that supports only the simulation of flow
screens, the functional prototype is fully implemented in MVC
layers.

Tasks J and K, performed by the developer, are discussed in
Section 7 and 8.

6.1. Part I: requirement engineering phase

Use cases and paper prototypes are elicited in late phase of
the software development process and are used as input to decide
whether and how the MockupToME tool should be used to auto-
mate the design of mockups. Our methodology starts, in fact, with
a planning performed by a requirement engineer after the first client
feedback from the designed paper prototype and use case.

In case of acceptance from these initial requirements, the re-
quirement engineer will decide if the inputs are target for our au-
tomated design approach. This is possible due to a catalogue of
templates that give instructions for design of some structures for
CRUDs, List, Filters, and Reports named Template catalogue.
This catalogue is illustrated in Fig. 12 and presents screen-shots of
GUI structures for each classification of use case patterns together
with annotations for Master/Detail. A template catalogue is used
by designers to decide which start and refinement templates must
be used for the assisted design of a mockup model. The design is
performed considering a paper prototype, making a semantic as-
sociation among these three artefacts: template catalogue, paper
prototype, and mockup model. The mockup is the unique model
from these artefacts, thus this association is not physically estab-
lished among them.

The generation of a preliminary mockup occurs by means of
Start templates. In this task the engineer semantically links
use cases with start templates. Differently from the previous case,
this link is physically established through a property of metaclass

Mockup, available in the MockupToME metamodel illustrated in
Fig. 4. This allows the connection of representations in conformity
with MockuptoME DSL and UML, as shown in Fig. 8 (D).

6.2. Part II: evolutionary prototyping phase

In this section, we include a systematization of the usage of
MockupToME tool in our methodology, by describing the interac-
tions of the client/product owner with the designed mockups and
its construction.

Fig. 11 illustrates the methodology that automates the tasks be-
tween requirement analysis and source code generation, and this
section systematizes such tasks. To perform these tasks, end-users
are assisted by tutorials and supported by tools discussed along
the next sections, in which each task is detailed with: (a) artefacts
represented as input and output; (b) a description of the associ-
ated model-based tool for design, refinement or transformation; (c)
client interactions with the artefacts; and, (d) exemplifications.

6.2.1. Task A: find master entities

Input: Textual use case, Use case diagram, Class diagram, Paper
prototype, Template catalogue.

Output: Master entities are included in textual use cases and
related with a use case diagram using a tag. This is required to
keep traces between artefacts.

Description: After a textual use case is elaborated, the designer
analyses the domain classes looking for those that are character-
ized as master entities by the domain-driven design (Evans, 2004)
and the object oriented method (Molina et al., 2002). Based on the
paper prototype, the designer selects the Master entity from a class
diagram shown in Fig. 6, for each use case to be developed from
the use case diagram shown in Fig. 2.

Exemplification: After identifying the Master entity, the de-
signer accesses inputs from Task A to identify which of the tem-
plates from the Template Catalogue is more adequate to start
a design of GUI form. In order to automatically generate a mockup
of type form, MockupToME takes as input a domain class dia-
gram and, optionally, use cases. Forms are automatically gener-
ated through Start templates, selected in conformity with the use
case scenario selected for development. For example, use cases
shown in Fig. 2 stereotyped with ((FilterBy)), ((SimpleCRUD)), and
((CRUDWithDetail)) are target for start templates, described in the
artefact Template Catalogue. Use cases are not mandatory for
the generation of a mockup because they are used only to instruct
and document, differently from the Master entity. Thus, to design
the solution for the use case Maintain product, the designer
will use the start template Generate CRUD form, activated on
the entity Product, as shown in Fig. 6. The execution of this task
is illustrated in Fig. 7 (1).

6.2.2. Task B: use a start template

Input: Textual use case, Use case diagram, Class diagram, Paper
prototype, Template catalogue.

Qutput: Preliminary mockup.

Description: As in some web frameworks, many templates are
available as a facility for codification of CRUDs: some are used to
generate a mockup based on forms, other ones for list and fil-
ters, others for reports, between other structures. Instead of code
facility, a start template is facility for the generation of pre-
liminary mockup models. The artefact Template catalogue il-
lustrates for the designer possible structures for generation of
a Preliminary mockup. Likewise, this task aims at deciding
which start template is directed for the generation of a
mockup that must be developed in each iteration of the soft-
ware development process. Thus, the designer choose the start

620

CRUD : ProductMaintenanceForm ~ = S|

Select the associated use cases

L)
Steps.
1. Select the associated use cases |
2. Selectthe Details' [selectall @ | 1. 8electthe associated use cases
3. 8pecify the strategy 2. Select the ‘Details"

4. Specify mockup properties | 3. Specify the strategy.
| 4. Specify mockup properties

A
Steps

CRUD : ProductMaintenanceform = &
Select the ‘Details’

[] selectall

— - category : Category [1..1]

v

U0 Maintain account
U0) Add preferences
i© Maintain products

->

[T

<Prev ‘ Next> [Finisn \‘ Cancel

o

‘ Next> Einish Cancel |

->

EP. Basso et al./The Journal of Systems and Software 117 (2016) 612-637

Fig. 13. Wizard executed by start templates.

template that best meets the structures drawn in the Paper
prototype.

Exemplification: The activation of start templates will display
the wizard illustrated in Fig. 13: (1) the execution of the first step
named Select the associated use cases establishes au-
tomatically a link between the mockup with the selected use case.
Note that it was selected the use case Maintain products; (2)
The second step is to select the associations of the master class
Product that will be included in the preliminary version of the
mockup, i.e., the Details that will be included into the preliminary
mockup. It was selected the association with Category; (3) The
third step is to configure for each selected association a Layout
Strategy. A layout strategy is a template for Details, and it is in-
dependent from start templates and is used to provide a particular
layout that will handle the selected association, thus implementing
the relationship between Master and Detail. It is important to note
that, as long as the paper prototype represents exactly what the
client needs, this step is effective because the selection of a lay-
out strategy will generate the mockup with the structure as repre-
sented in the paper prototype. However, the effectiveness of step 3
is not always true, which imply in some cases in which the client
will request another layout strategy. MockupToME is ready for this
situation, allowing changes after the execution of start templates
through refinement templates (see Task C); (4) The last step is to
specify some properties of the mockup that will be generated after
the mockup designer activate the button Finish.

Considerations: For the generation of a mockup without de-
tails, the designer should not select associations in the step 2. The
non selection of at least one association will make the step 3 un-
necessary. The result is a Preliminary Mockup Model with or
without details.

6.2.3. Task C: refine the details

Input: Preliminary mockup, Master and Details, Textual use
case, Paper prototype.

Output: Refined mockup.

Description: The refinement of the preliminary mockup is ex-
emplified in Fig. 14. The goal is to reach the representation of
a Paper prototype in a mockup specification through refine-
ments. This can happen if the designer selects wrongly the strategy
for a Detail in the screen (3) from the wizard shown in Fig. 13 or
due to changes requested by the client/product owner. Likewise,
after the generation of a preliminary mockup, the designer can
change, if needed, the structure used to persist the Detail = Cat-
egory inside a CRUD for the Master entity (Product), using other
alternative structures for Master/Detail. In case these changes of
structures are not necessary, then the designer apply adjustments
in the mockup specification and follows to Task E. In the worst-
case scenarios, where the designer is not 100% sure about the ac-
ceptance of preliminary requirements represented in textual use
case and paper prototypes, this task may introduce alternatives for
implementation of a use case scenario. Thus, the goal in this task
is, in the worst-case of a software project that presents some un-

L&f CRUD : ProductMaintenanceorm ~ = HEM |
Steps. Specify mockup properties
L&) CRUD : ProductMaintenanceForm = & 1. Selectthe associated use cases
. . Name: Productiainten|
Steps Specity the strategy o el
3. Specify the strategy Instance name: |producthlockup
1. Selectthe associated use cases 4. 'CRUD ‘V
jroetec Association Layout Strategy)
o e - Design stage: |INITIAL ‘v
4. Specify mockup properties I X Y
Position:
_e E £ Width | Height
‘ e e
Documentation:
u [<erev || wext> |[pmsn || cancer |
Preliminar -
Master = Product Y Detail = Category

Mockup

Product own datal category] Product own data| category

] [Productname]
\aLaL@l:l\

Name: Name:

FreeText: | |

Changing strategies of the association »

Embedded Form
Find and Attach
Select and Attach

, Position
I Up position
| Down position

Master = Product
Product Maintenance Form

Name: § §
Category
Search l

Properties from Category:
l name

[~][@]

Mapped Property to the Field:

product.category

| -]
Detail = Category

(B LB e [R]

Refined
Annotated
Mockup

Changing strategies of the association »
+,* Position

1 Up position

1 Down position

| [copy

© Independent Form
© Embedded Form
@ Find and Attach
O Select and Attach

Fig. 14. Steps to refine annotated mockups: changing refinement strategies to han-
dle associations.

certainty on the preliminary requirements, the generation of alter-
native structures to support the same master/detail relationship.
Exemplification: In the current format, a product and its cat-
egory are persisted in different transactions, each one having its
own Form and Save button, as illustrated in the top-part of
Fig. 14. This structure should be changed by the one illustrated in
the bottom-part. Our tool facilitate the application of this refine-
ment. The transformation of one structure into another is an easy
task since model transformations are available in pop-up menus
executed over each of the elements of designed mockup shown
in Fig. 14 (1). Using the drawing area one can undo transforma-
tions to decide what strategy best fits to express a specific part
of functionality. Assume that the mockup designer selects the op-
tion Find and Attach in the second step and that panel titled
Category with a component to Find something is automatically
generated and configured. In this example, a refinement generated
two mutually exclusive Layout Strategies i.e., Fig. 14 (1) and (2).
Strategies to refine details in associations of type (0..1): The
use of different strategies to handle the same master/detail re-
lationship are shown in Fig. 15. Given that compositions be-

EP. Basso et al./The Journal of Systems and Software 117 (2016) 612-637 621

e Select Single and Attatch e
[Product Base Data |

Embedded Form

(Product Base Data |
Category Category
‘Name: Select: ‘ - ‘
[FreeText:

jName:

i | Category [CONTAINER,true]

i | Category [CONTAINER true] ¢ @l Assigned Tage

9 [Assigned Tage {}L oy val lectSingleFromDetail

{ } GetByld value=Propertyld=1lon-ce Entityld

{ } Propertyld value=llon-ce MMl Azcigned Stereotypes
< > OnLoadAction

<> DisplayableLocation

Name: ‘]

{ } LayoutStrategy value=
EMBEDDED_FORM_PANEL
¢ |om| categoryPanel
PaddingLayout
¢ [o| Select: [COMBO_BOX true]

{ } Propertyld value=1lon-ce5
{ } AszociationEntityld value=36d-ce3

Find and Attach o — - category : Category [1..1]
H; b vl HEl Byld=:
Product Base Data € Qu value=#El 3n
i | Category [CONTAINER true]
Category 9 9 Aszigned Tage

{ } LayoutStrategy value=FIND_SINGLE_FROM_DETAIL

Find:)
Name:

{)} Propertyld value=1lon-ce5cef936c1523013a505db2529138d:

Fig. 15. Layout strategies for 0..1 relationships.

tween master and detail, entities can be implemented with differ-
ent structures as well as using different GUI components. Tem-
plates for Detail are called refinement templates and sup-
port flexible mockup constructions. Fig. 15 (1) shows the structure
generated using a refinement template called Embedded Form,
Fig. 15 (2) shows the structure generated using another called
Select Single and Attach and the third is called Find
and Attach. The original strategy illustrated in Fig. 14 (1), whose
template is called Independent Form, will persist data from
Product and Category in different database transactions. The
strategy used in Fig. 15 (1) owns semantics for actions (i.e., an-
notations) that dictates that, when the Save button is pressed,
then the data from the Detail = Category is persisted in the same
transaction as the data from the Master = Product. The Select
Single and Attach, shown in Fig. 15 (2), owns semantics that
dictates that all the Details = instances of Category will be loaded
from the database, inserted into the combo-box, and the selected
one is merged with the Master after the button Save is pressed.
The last, shown Fig. 15 (1), owns semantics that allow the user to
specify a filter for the Detail, merging the detail into the master.
These annotations and the associated UML Profiles are discussed
in Section 10.

Success Scenario: Assuming that in the Paper prototype
the drawing is similar to the strategy shown in Fig. 15 (3), the de-
signer must now detail the actions from end-users derived from
this mockup. Thus, the use case Maintain products presents
the success scenario namely Find and Select a Category
that must be detailed. Task C is useful for detailing this success
scenario for such a use case, as illustrated Fig. 16. This is because
through the refinement templates we can assist designers in the
modelling of the sequent mockup, designed for the implementa-
tion of another associated mockup that Find and Select the cat-
egory, required for inclusion in a product. In this example, the
mockup shown on the right side of Fig. 16 (A) is automatically gen-
erated through a refinement template associated with the button
Find.

Alternative scenario: Task C is important for detailing alterna-
tive scenarios too. The use case Maintain products presents
an alternative scenario for the case when the category is not
found through the the mockup shown on the right side of
Fig. 16 (A). Thus, the category must be created so that the end-
user re-execute the success scenario. Assuming that the paper
prototype presents a GUI similar to the one shown on the right
side of Fig. 16 (B), the left side of this figure shows the popup
menu from MockupToME tool that allows the execution of the ap-

A) Implementation of the Success Scenario

Filter Category

By name:
Master = Product —
:
Product Maintenance Form :
Name: § 3 Categories
Category Id Name FreeText 1
Search l | 6 -
Detail = Category

B) Implementation of the Alternative Scenario

& Attach Selected With Product .

¢ li| Add Category [BUTTON,true]
< > EditEntityAction

g |<] Add Catim i

=l Modify the text
Y1 Rename the variable i Name:
[7J Ungroup]
“Z Reload vision

ponent Add Category

Category Cadastre

——

‘v (23 New L [= save L @ Remove J

Free Text:

w Hide the component

L.j Options ... i
[} GUI refinement templates »| Specify GUI Flow
Layout transformations | b| Generate CRUD and List. || [Category Fitter
*. Position Generate CRUD i| | Pro Keyword: |
I Up position Category name:
}l Down position ——
L) Copy 1
@ Cut Category List
R st : Name | Free Text I
@ Delete

Fig. 16. Implementation of scenarios for the use case Maintain Products.

propriate refinement template. This is possible because the de-
signer add a new button on the form for Filter. This button is
stereotyped as ((EditEntityAction)), which allows for our tool to
associate and recommend refinement templates for detailing the
action in a new mockup.

6.2.4. Task D: select the strategy for details
Our tool support is important for the execution of a creative
and incremental design process in MDWE, allowing for designers
to explore use case scenarios. This is important when some func-
tionalities present uncertainty on the requirements. For example,
the case that the client changed his idea about the implementa-
tion of a scenario developed in a previous iteration and also along
the same iteration. This is a little bit common in start-up con-
texts (Giardino et al., 2014). In this case, the designer should con-
sider changes before starting the design of models associated with
new use cases or the architectural models, discussed in the Archi-
tectural Prototyping Phase. When this worst-case scenario occurs,
then it is important to apply the changes in models, starting by
modifications in mockup specifications. Thus, Task D is defined in
MockupToME Method for designers to deal with this situation.
Input: Refined mockup (i.e., with different GUI structures).
Output: Refined mockup (i.e., with selected components).
Description: This task is executed only if the designer includes
in Task C options for Master and Detail that should be re-validated
by the client, otherwise, the designer should skip it and perform
Task E. Task D is useful for the worst-case scenario, when textual
use cases and the paper prototype present uncertainty from the
point of view of client. The designer may alternate between strate-
gies used to structure each association owned by the Master entity.
Then, options available for the designed mockups are accorded be-
tween client and designer in a second cycle of validation. Besides,
considering the worst-case when requirements change with fre-
quency among iterations, thus needing to change models designed
in previous iterations. It possible to undo a refinement performed
in Task C and also to select which strategy better meets to the re-
quested change in a new iteration.

622 EP. Basso et al./The Journal of Systems and Software 117 (2016) 612-637

“Master” o Mockup 1
Master = Product
Product Maintenance Form

Filter Category |

o Gl]
By name: 1| BE Assigned Stereotypes o Service 2

- o Aszzigned Tags
l = Filter ... 9w T flterCategoryByName(:String):Category[0..*]

¢ EB@ Ascigned Stereotypez

name Name: § q Categories : <> LBy
— - category :Category [1.. Category 1d Name FreeToq_ ¢ # arg0:String
Search 2 : ¢ Assigned Tags
{ I L o Mockup 2 . N { } PropertyldRef value=8q3-ceScef
Detail = Category . N { } QueryKind value=Like

‘_ _ & Attach Selected With Product

o Controller 1 : View 1
{7 ProductMultiActionContraller " ? Product Baze Data :
o [l Assigned Tage o s nameTEXT_FIELDProduct .
% B showProductMaintegeiceForm A/ nameLabel :
- alveproﬂuct_-lcﬁnn‘
¢ Ea Azeigner]Ste'!eotypee o Service 1
<> SaveOrUpdateEntityAction RS e
¢l Assigned Tage <> Service :
{ } Formld value=IFSim2Mr5] .+? i +ssveAndMerge(:Product.:Category):Product
= Product R 9 <> SaveOrUpdateAndMerse
©— ProductService ¢ -+ product:Product
i+ 2aveOrUpdate(product:Product {) SaveMaster value=true
[] Event zaveProductAction ¢ + category:Category
¢ DEFAULT_VIEW : DEFAULT_VIEV {)} Propertyld value=1lon-ce5cef
E7] ProductMaintenanceForm ¢ > EmbeddedEntity

9 Controller 2 2 o View 2

{7 CategoryMultiActionController - Filter Category

¢ wm flterCategoryByName_CategoryFilterAttatchToPr PaddingLayout
] Category ¢ [1es nameTEXT_FIELDCategory
©— CategoryService ¢ [Aseigned Tage

{)} OperationParameterId value=9bLB4:P3;i

name : String

el + HlterCategoryByName(:String)-Category[0..*]
[] EventfiterCategoryByName ~ +v..... 4
o DEFAULT_VIEW : DEFAULT_VIEW : A/ nameLabel

[3 managerauth ? filterField AndSearchButtonPanel
[T, customerauth : Flow Layout

i 9 [] zearchButton
Authorify, | Actor | Vis...| Edi...[Ena..|Logg... B R [7] Event filterCategoryByName

0|managerAuth - M| v [v | v L
1jcustomerauth [C.[bl [[T [[T [[

Fig. 17. Design elements represented through the methodology in support for the use case Maintain Products.

Exemplification: Tasks C and D allow the execution of an itera-
tive and incremental design approach, always updating previously
designed models and keeping them synchronized along the execu-
tion of iterations. Consider the mutually exclusive layout strategies
shown in Fig. 14 (3). Each menu item will select one of the layouts
shown in Fig. 15, which may occur in worst-case scenarios. Tag
LayoutStrategy=xyz shown in Fig. 15 (1-3) provides seman-
tics that links to the adopted refinement template. Note that, af-
ter the selection of a strategy for each Detail relationship, mockup
components are not removed, but deactivated. These elements al-
low to group and select strategies for Master and Detail. In case a
sequent refinement is needed after a selection, than the mockup
designer will detail the sequent actions, starting a new instance
of the proposed methodology. For example, if the selected strategy
is the one illustrated in Fig. 17 (2), the warning icon associated
with the button decorated with the Find icon suggests that this
component needs refinement. In this case, a new mockup anno-
tated with ((FilterBy)) must be specified and associated with the
Find button. This is a very similar situation to the use case List
products by preferences, shown in Fig. 2. MockupToME as-
sists the designer in the representation of the sequential refine-
ments, allowing the automatic generation of new mockup shown
in Fig. 17 (3) and the specification of the Filter operation shown in
Fig. 17 (4) with the help of a wizard.

Client evaluation: Through the popup menu items shown in
Fig. 14 (3), and together with the mockup designer, the client can
interact/simulate with the mockup before the source code is gen-
erated, deciding the best structure for a mockup. In the case of
non-acceptance or corrections in mockups, previous tasks are ex-
ecuted again until the client decide for a specific structure. In the
case of acceptance, the next task is executed. Thus, following the
motivating example, assume that the client has selected the option
Find and Attach, resulting in an accepted mockup as illustrated in
Fig. 14 (2).

Final steps: After client acceptance, GUI components are more
detailed, components are standardized in size, position, font, etc.

6.2.5. Task E: generate mockup source code

A choice made by the client about strategies in mockups will
allow the mockup designer to generate the source code. This code
is used to apply the first test of a runnable prototype (a Browser

prototype generated directly from a mockup). Thus, associated
with the previous tasks, only active mockup components are con-
sidered during the source code generation.

Input: Refined mockup (i.e., with different structures).

Output: Browser prototype, accepted mockup.

Description: The execution of Task E implies in the use of a
model-to-code transformation that generates source code for HTML
5 directly from mockup. This transformation is simpler than others
performed in Task F, which includes model-to-model transforma-
tions from mockup to multi-layered model elements named UML
Structural and Behavioural Diagrams. In this case, only
the view layer is generated as source code. In the next phase it
is also possible, using model-to-model transformations, to gener-
ate what we call Concrete GUI Components, characterized by
other models in conformity with three other DSLs for GUI (Desk-
top, Web and Mobile). Both transformations enable the simulation
of GUI's flows and user interactions in a web browser. Thus, the
client evaluate the Browser prototype and, in case of accep-
tance, the next prototyping phase is executed.

6.3. Part Ill: architectural prototyping phase

Tasks A to E are used to generate the first compiled proto-
type based only on mockups. Tasks F to H aim at generating other
model specifications that connect GUI DSLs and business layers
implemented with MVC-based models. Therefore, instead of using
only the MockupToME DSL and entity classes/use cases discussed
in the previous phase, the architectural prototyping phase includes
model specifications considering heterogeneous DSLs.

In this section, we introduce the underlying architecture that
implements the MVC pattern. We separate the business logic from
the controller layer to better modularize the source code. Thus, the
semantics for business logic is placed in a UML interface stereo-
typed as ((Service)). This interface is implemented by other layers
such as: (a) Remote; (b) Validation; and, (c) DAO.

The architectural prototyping phase represents the transition
from mockup specifications illustrated in Fig. 17 (2 and 3) to other
MVC-based layers illustrated in Fig. 17 (4-9) which, follows the
structures of a multi-layered MVC. In this phase, models in (4-9)
are generated and refined, e.g., detailing properties of GUI com-
ponents that are not possible to be represented in mockups. In

EP. Basso et al./The Journal of Systems and Software 117 (2016) 612-637 623

our first MDWE approach dating back 2008 (Basso et al., 2007) we
used to represent these models manually. Due to the introduction
of evolutionary prototyping, these models are now automatically
generated. Besides, in this stage, the client has already accepted
the designed mockups. Thus, this is the correct moment to detail
elements associated with the MVC.

6.3.1. Task F: generate MVC layers

In this task, mockups are transformed into MVC-based model
application layers as follows.

Input: Accepted mockup.

Output: Concrete GUI components, controllers and services,
UML structural and behavioral diagrams.

Description: Once the mockup model is validated and a struc-
ture for a mockup is decided, the process towards generating a
functional prototype can be executed. This implies in generating
all web information systems layers considering the selected do-
main features. Fig. 17 presents the generation of other layers of
the MVC from mockups. Some of these layers are represented with
UML Profiles (Entity and Service) and others with DSLs that ex-
tends the UML metamodel (Controller and View). The execution of
this task outputs the following artefacts:

Concrete GUI components. MockupToME DSL have few prop-
erties to set GUI components, thus in a high-level of abstraction
than target platforms, e.g., Mobile, Desktop, and Web. To repre-
sent a GUI in a target platform, mockups must be transformed by
means of specialized DSLs. Thus, three DSLs for GUI can be used
and are supported in our set of model-to-model transformations:
(1) the Web DSL; (2) the Desktop DSL; and, (3) the Mobile DSL.
Fig. 17 (6 and 9) shows the elements generated from mockups (2
and 3) conforms to the Web DSL.

Controllers and services. The buttons specified in mockups
own semantics for actions. For example, the Save button allows to
persist entities and the button Filter allows to query a database.
These buttons allow us to infer the flow between the user inter-
faces. For example, MockupToME keeps a trace/flow that connects
the mockups shown in Fig. 17 (2 and 3). Another example of infer-
ence is the button Save, that for the success view will show the
List Form and for the error view will show the Crud Form.
Based on these inferences, Controllers (see Fig. 17 - 5 and 8) and
Service interfaces (see Fig. 17 7) are automatically generated. Con-
trollers are in conformity with the Action Profile, a DSL that ex-
tends the UML we have developed to handle actions commonly
associated with the Spring Framework, e.g., simple form controller,
multi-action controller, command controller. Service interfaces are
in conformity with the Service Profile, a DSL that extends the UML
to represent database query semantics.

UML structural and behavioral diagrams. Each application
layer derived from the Service or Controller models belongs
either to validation, or to persistence, or to remote operation
calls, and are generated only when Desktop and Mobile DSLs
are used. Fig. 18 shows three layers derived from the interface
ProductService represented in a UML sequence diagram.
This diagram is optionally represented for use cases that are
automated through our methodology, because the model, view,
controller and service layers are already linked during the trans-
formation from a mockup (see Fig. 17 - 5, 6 and 7). For manually
designed functionalities, the messages between these layers
must be manually annotated. The exemplified messages define
flow and business logic operations related to entity Product:
(ProductRemote or ProductMultiActionController)
+ ProductServiceValidator + ProductServiceDAQO
Hibernate.

Generation of platform-specific models for GUI. The GUI com-
ponents represented in a mockup model are conform to the Mock-
upToME DSL, and must be transformed to one or more platform-

: ProductServiceRemote | I : ProductServiceValidator | | ProductServiceDAOHibernate

:Ulser : Desktop View
| 1: save() | I
L

|

L L |
s 5 ge() ;void

A |

1.1.1: saveAndMerge() : void |

>

T
|
|
|
|
|

GRE ge() : void

Persistency Exception
ke Y P

Validation + Persistency Efception

Remoting + Validatibn + P Exception |
|

1.2: [excepfion] doProcessUserFriendlyMgssage()
| |

Fig. 18. Message call to process the action saveAndMerge in the underlying
multi-layered architecture.

specific models for GUI. For example, if requested by the client,
the designer must select a mockup model and execute a specific
model-to-model transformation to generate a specification in con-
formity with the Web DSL. Thus, the designer can transform a
mockup to one or more DSLs for GUI: Web DSL, Mobile DSL
and Desktop DSL. Each platform-specific model for GUI must be
manually enriched with details from each DSL. If transformations
for desktop and/or mobile platforms are executed, then the gen-
eration and refinement of a class from the Remote Layer is re-
quired (Basso et al., 2014c), which allows to apply remote connec-
tions between devices and the web server. Therefore, this approach
allows for designers to represent details from each platform sup-
ported in the underlying implementation framework.

Exemplification. For applications that run in a desktop plat-
form, the designer generates a model in conformity with the Desk-
top DSL, used in the end of our model transformation lifecycle
to generate source code mapped into the Java Swing APL The
multi-layered architecture allows remote connections from client
platform (Desktop) with the server platform. In case of platform-
specific models for GUI in conformity with the Mobile DSL, the
architecture works in the same way. We have already tested
it through remote http connections, linking mobile devices pro-
grammed with J2ME API and the web server with remote calls, as
exemplified in Section 7.3. Thus, the Remote layer delegates op-
erations to a validation layer which is hosted by the web server.
In the case of exchange of View platforms in the client side, e.g.,
instead of GUI developed for Desktop use GUIs developed for Mo-
bile devices, at least the validation layer and persistence layer are
reused.

Client evaluation. Two model elements generated in this phase
are important for client evaluations. (A) the concrete GUI
components which, for the reported experiences in the next sec-
tions, uses the Web DSL. The model associated with the artefact
concrete GUI components is, therefore, a DSL in a platform-
dependent model view for GUI in a lower abstraction level than
a mockup, which is a platform-independent model for GUI. This
model owns a unique structure, does not have deactivated com-
ponents neither master/detail properties, and its components are
able to store specific properties that the mockup does not sup-
port, such as events, layout, and appearance properties. (B) the
controller layer, in which action/event components are defined also
as a domain-specific models. Thus, with these two generated ele-
ments and considering only the use of Web DSL, a second browser
simulation can be performed by clients considering the View and
Controller layers.

6.3.2. Task G: detail the business logic
Input: Concrete GUI components, controller, master and detail
entities.

624 EP. Basso et al./The Journal of Systems and Software 117 (2016) 612-637

= ©- € > entity

Select The Primary Key b B AvigasdTop
{)} InheritanceType value=TablePerConcreteClazy
{ } Serializable value=true

{)} TableName value=TB_CATEG_DS

[_] Auto Incremental
["] Auto Incremental

Defina as restrigdes nas colunas que possam ser (inur.,.

ExapeHy Inde x| s TErimary K S Un ue i {) TdClassld value=UUpGOTCEn0FgedSymjeU6J
freeText] [m] [m] o
id [m] v [m] ¢ ML
name [m] v] 2] 9 BB Assigned Stereotypes

<> PrimaryKey
o @ Assigned Tags

{ } AutoIncrement value=falze

Q Generated Id Class
(=Y CategoryPK
¢ BB Assigned Stereotypes
<> IdClazs

¢ #id:int

? # name : String
9 KM Assigned Stereotypes
<> UniqueKey
<> PrimaryKey
o @l Aszigned Tage

{ } AutoIncrement value=falze

9 BB Assigned Stereotypes
< > PrimaryKey
? # name : String)
- # freeText : String
¢ @8 Assigned Stereotypes
N «— - client : Client
< > PrimaryKey

«— - product : Product

Fig. 19. Entity layer annotated with the ORM Profile with the help of a wizard.

Output: Controller and GUI components with authority map-
pings, service UML interface.

Description: This task intends to generate other specific model
layers that are mostly mapped into the DAO layer, to constraint
controller layer access, and to constraint GUI fields with secu-
rity details. The bottom-part of Fig. 17 shows a piece of the wiz-
ard to annotate the Controller model responsible to represent ac-
cess constraints. For an example related with the controller opera-
tion, assume that functionality = elements 4, 8, and
9 from Fig. 17. This example shows that the actor Manager has
full access to the functionality Filter Category, while the ac-
tor Customer can only visualize it.

6.3.3. Task H: apply UML profiles

This task is assisted by wizards such as the one exemplified in
Fig. 19.

Input: Domain-Specific Models (Concrete GUI components and
Controller layer), Elements Annotated With UML Profiles (Model
layer and Service Interface).

Output: Input elements with more annotations to allow the ex-
ecution of platform-independent model to platform-specific model
transformations.

Description: This task is optional, since one can be interested
in transform domain-specific input models into UML models. Be-
sides, aiming at generating a more complete source code, the de-
signer can specify some details such as annotations, not generated
by previous transformations. To represent annotations for ORM,
it is used a wizard to decorate entities. This is exemplified in
Fig. 19 (1), where a wizard allows the generation of an Id Class
in Fig. 19 (2) followed by a guided annotation, resulting in the an-
notated entity named Category as illustrated in Fig. 19 (3).

Source code generation: Model-to-code transformations are
applied against the input elements to map them to the Java ar-
chitecture used by the development team. This transformation en-
ables the generation of a functional prototype, since all layers are
generated as source code. Afterwards, source code is refined by
programmers and then tested. For example, ORM annotations are
used to generate Java classes decorated with the JPA (Burke and
Monson-Haefel, 2006), as exemplified in Section 7.

Client evaluation: Finally, the client performs his/her forth in-
teraction for the acceptance test. Then, improvements and correc-
tions are made in the generated functional prototype, delivering a
working piece of application, the last software artefact as shown in
Figu. 11.

@ ORM Wizard [~ @ Category Annotated With the ORM Profile —— — - —
Client-Side Application Server-Side Application
=] Category
(" Mapping from class to table I \ttributes OR ¢ EE Aszigned Stereotypes Web GUIs &] Web Controllers &

Pr

Validator Classes &]
™ Service

=

EDOC UML Profile

Desktop GUIs & Remoting Classes &]

ProductServiceDAOHibernate

Mobile/MIDP GUIs & Limited Remoting & DAO Classes 8]

Fig. 20. Component diagram describing the architecture.

6.4. Part IV: functional prototyping phase

A fully executable piece of software is obtained in this phase,
where generated prototypes are target for acceptance tests. These
artefacts are then detailed and used by a development team. Using
model-to-code transformations it is possible to generate functional
prototypes, which can be tested by clients in web browsers. There-
fore, a functional prototype is a fully implemented functionality,
e.g., considering the implementation of database transactions and
queries, which must be tested by clients in a real-world scenario.

6.4.1. Task I: generate complete source code

Input: All aforementioned models.

Output: Source code for MVC-based layers.

Description: The result is a fully testable platform-independent
model prototype. This is achieved after the usage of a platform-
independent model to generate platform-specific model transfor-
mations. This means that all strategies used in annotated mock-
ups imply on the use of different transformations from platform-
independent models to platform-specific models. Currently, model
transformations enable the generation of source code for the fol-
lowing layers:

1. Model-Entity layer with support of object-relational mapping
details.

2. Controller-Business layer with support for transactions involv-
ing the service/business layer and calls for a remote access
layer.

3. Controller-Persistence layer with the layer for handling the data
access object.

4. Controller-Actions layer to handle GUI events.

5. View layer in the client side application.

Fig. 20 illustrates components that, except for the Model-
Entity, implement aforementioned layers of a functional proto-
type. Thus, as part important of the Functional Prototyping phase,
Section 7 provides information about the implementation of these
components.

6.5. Final remarks

It is important to mention that the usage of model transform-
ers to refine mockups is a practice that can also be used by other
MDWE proposals. Thus, the concepts introduced in MockupToME
for semi-automated refinement of mockups are general and useful
for researchers and practitioners of MDWE.

7. Implementation

The aforementioned automated design tasks were used in the
development of real-world web information systems. In this sec-
tion, we present implementation details, including artefacts gener-
ated in the Functional Prototyping Phase.

EP. Basso et al./The Journal of Systems and Software 117 (2016) 612-637 625

Mobile/MIDP GUIs g7

Product Maintenance Form
Q ORACLE -
Product Maintenance Form Name:
Name: Category
m ’— Search i
Category
save [5

Menu

1<4Qwerty

2 Save

This is a generateds: 3 New

Exit

Limited Remoting E|| | Web Controllers &]

Fig. 21. Resultant GUIs executed in a mobile emulator and in a web browser.

7.1. Underlying architecture

Following the motivating example, this section exemplifies the
classes that are generated from the models represented in the
Architectural Prototyping Phase. These classes are connected in a
logic flow illustrated in Fig. 18 as a UML sequence diagram. For
GUIs developed for Desktop or Web platforms, these method calls
are similar. Both GUIs will delegate the processing of business
rules for a Validator class hosted in the web server which, in
turn, delegates the task of persistence for the persistence layer.
This flow between layers is performed/injected by Spring Frame-
work. When one need to change something in the application
regarding the business layer, it will be made in the control
layer xxxMultiActionController, and/or in the validation
layer xxxServiceValidation, and/or in the persistence layer
xxxServideDAOHibernate, where xxx is the name of the as-
sociated entity. Actions found in screen flows will be handled in
the controller, or in action listeners developed for Swing or in com-
mands developed for J2ME/MIDP.

The generated source code includes the GUI layer for Mo-
bile, Desktop and Web platforms, data access layer, entity layer,
integration/remote layer, xml configuration files, text files, Java
classes, data base scripts, models, etc. The following configuration
of technologies from the underlying target platform are used in
WCTSample, the pre-configured MVC framework for web develop-
ment used in our experiences, which is composed by: Hibernate,
JPA, jQuery, JSTL, Swing, PostgreSql, Apache Commons Validation,
and Spring Framework. This architecture is flexible and supports
changes through the FOMDA Approach (Basso et al., 2013). For ex-
ample, the following technologies were changed in the underlying
implementation of WCTSample across software projects: (1) first,
software projects dating back 2008 used HBM files to apply Hi-
bernate mappings (ORM) and in recent projects JPA was used; (2)
the first software project was developed at Adapit adopting Dojo-
toolkit API as web technology to write rich GUIs, and in the second
project we used jQuery.

7.2. Generated source code

Fig. 21 shows the resultant GUI from the overall methodology.
This GUI is executed in a web browser and represents the func-
tional prototype for the use case Maintain products. Behind
this simple GUI, several application layers based on the MVC con-
nects GUI components, action and flow handling, field validation
and database persistence. These layers are presented in the follow-
ing.

The source code generated for the entity Product is illustrated
at the center of Fig. 22. Note that a dashed line includes the map-
ping from tags and stereotypes from our UML Profile for ORM to
the JPA representation. Besides, XDoclet comments such as the op-
eration getName are also mapped into the Apache Commons Val-
idator API, which automatically validate GUI form fields. As long
as the MVC designer specifies ORM annotations using the wizard
shown in the right side of Fig. 22, the source code generated for
Entities will not require manual changes.

Fig. 23 exemplifies the source code generated for the Validation
layer located in the server-side. Each action/button specified in a
mockup that semantically submits a form, e.g., ((SaveOrUpdate))
and ((FilterBy)), also presents an implemented operation into
the xxxValidator class. The implementation of the opera-
tion saveAndMerge delegates for the Spring Framework API the
checking if the data from the instance of Product are valid. In the
case it is valid, then the operation delegates the task to persist the
instances of Product and Category to the DAO Layer (injected
into the property productService). In case of invalidity, then
an exception is thrown to be handled in the client-side, where a
GUI will presents a user friendly message. The developer is free to
include a specific validation in source code if he/she needs. Thus,
this operation do not require changes to work in a functional pro-
totype.

Fig. 24 shows the implementation of the DAO layer with
the Hibernate. Soon after opening a database transaction, the
instance of entity Category is set to a persistent state:
session.refresh(category). This clean any information
owned into the parameter category except the primary key. This
is due to the stereotype ((EmbeddedEntity)) assigned by the pa-
rameter illustrated in the top of Fig. 24, automatically generated
along the transformation from a mockup to the Service UML Inter-
face. This operation do not require changes to work in a functional
prototype.

Fig. 25 shows the source code required to handle the action
saveProductAction. This action is mapped to the button Save
from the JSP source code presented in Fig. 26. The operation
saveProductAction first binds the request parameters into the
properties of the entities represented in the mockup, then it prop-
agates the validation and persistence for the other layers. The last
part of the source code is dedicated to process exceptions that
came from the Validator and DAO layers. Note that the validation
is delegated to the Validator layer, which is injected into the prop-
erty productService. This controller has a considerable amount
of source code because it was generated based on the Multi-Action
controller from the Spring Framework, which have several opera-
tions.

The source code for JSP (Burke and Monson-Haefel, 2006)
is shown in Fig. 26. The top-part of Fig. 26 (A) shows the
header information included in all root JSPs, e.g., the ones di-
rectly associated with a mockup, with the information neces-
sary to use the access control functionality from the WCTSam-
ple framework. The bottom part of Fig. 26 (A) shows the source
code that maps the properties from entity Product, e.g., id and
name. Fig. 26 (B) shows the source code for pane Category
which associates the action of button Find to the controller
CategoryMultiActionController.

7.3. Implementation for mobile

These source code illustrate the minimum artefacts generated
by our approach in the development of a functionality for web in-
formation systems. However, other devices can connect with these
functionalities available on the web server. For instance, the web
server can provide access to external components, such as GUIs
developed to run in mobile devices and in desktop applications.

626 EP. Basso et al./The Journal of Systems and Software 117 (2016) 612-637
itance (strategy = InheritanceType.JOINED) ORM Wizard
ORM Profile avax.persistence.SequenceGenerator (mappings
name = "PRODUCT_GEN", allocationSize = 1,
initialValue = 1, sequenceName = "PRODUCT_Seq") Istructons —Eatiy Magping — D generator
b 5] Product public class Product implements Serializable { O Transient ® Sequence
Assigned S e e ol Table
(o | signed Stereotypea & 1 Used By Entities
o ¢ > entity Lt eratedValue (strategy = GenerationType.SEQUENCE, | [l "**-..,.
X K L ..*'generator = "pRODUCT_GEN®) || @ Ttveee.
9 8 Assigned Tage " private Integer id; [o el
{) InheritanceType value=TahlePerConcreteClass ,.-*" : b N AT T) Seraizabe
g _ @Column (name = "PRODUCT_NAME") Single Table (Large Table)
{) Serislizable value=true » private String name; ® Creates a new Table to Each Subclass
[#id:int 3 Creates a new Table With Constraints to Each Subclass
. Nl @ManyToOne (targetEntity = Category.class
& . . Select The Prima
[A“lgmdsm‘o'wf'i_,c S private Category category; o) Auto Incremental
<> PisiasiyKayis" 3 Preferred Table Ma... TE_PRODUCT_0S — =
o i i as restngoes nas colunas sam sef (ind...
¢ B Assigned Tags) public String geclianse() Defina as restrig me os (in
- 7 return name; JPA Propery | Index |IsPrimaryK.| Unique
{)} AutoIncrement value=true:" & } id T N O Z O w
. . s name v
¢ # name : String : -
3 Azzigned Stereotypes * gspr - N —
<> UniqueKey ettt A Mapping from class to table ~ Attributes ORmappings | Association Or mappings MaryKeys
<> Validation-++--*"" """’ public void setName (String name) { et S e Cn amdon
o [l Assigned Tage this.name = name;] Is Transient
3
¢ — - category:Category : Category [1..1]] ¥] Uses Validation? Validation Rule: Min Size: Max Size:
Assigned Tage s } : . r :
TR dipalieg s ¥ s Required EMAL v A A
{ } RelationalAzzociationMapping value=SingleOneToOnex =] = =
¢ Properly Is Required lin Soe MaxSge | ValidatonRule |
i itance (strategy=InheritanceType.JOINED) d | | | !] _
‘., public class Category implements Serializable{ name | Y | i -TEMAL |
@OneToMany (targetEntity=Product.class, IPA
mappedBy="product") L Convert o association J
private Collection<Product> products;| ~
Colermn Coasiraints | Columa Name Cusiomizaion | Colemma Deiake |
3
Fig. 22. Generated source code for the Model layer implemented with JPA (2.0).
e
an id="productServiceValidator" singleton="true"
‘ b = pring.b id="productServiceDACHibernate" singleton="true"

=/

public class ProductServiceValidator implements ProductService {

private ProductService productService;
private BeanValidator validator;

[x5

Yy ref="productServiceDAOHibernate” singleton=

public ProductService getProductService(){
return productService;
}
@0verride
public Product saveAndMerge (Product product, Category category)
throws FieldMsgValidationException, ValidationException,
NonUniqueObjectException, ConstraintViolationException,
DataException, Exception{
//Automatic validatio;
BindException errorsl = new BindException (product,

wons validator'
"product") ;

validator.validate (product, errorsl);

//for custom validations, then t
if (errorsl.hasErrors()) {
throw errorsl:
}
//case is

return this.productService.saveAndMerge (product,category):

valid, call the DAO layver to persist product and category

Fig. 23. Generated source code for the Validation layer implemented with
Springframework and Commons Validator.

Thus, our model transformation lifecycle supports the generation
of GUIs programmed with J2ME and, for desktop applications, pro-
grammed with J2SE. Thus, two other DSLs are important besides
Web DSL: the Mobile and Desktop DSLs.

We demonstrate the worst-case scenario on the refinement of
a model in conformity with Mobile DSL. The connection between
MockupToME DSL and Mobile DSL is through transformations, as il-
lustrates Fig. 27. The first DSL holds richer types of GUI compo-
nents than those available in the Mobile DSL. If a GUI for mobile
platform is needed, then the designer executes a transformation
from a model 1, which is in conformity with MockupToME DSL,
to another model 2, which in conformity with the Mobile DSL.
This transformation is illustrated in Fig. 27 (1) and shows a piece
of a model-to-model transformation. The result is the model 2
shown in Fig. 27 (2).

public class ProductServiceDACHibernate
extends HibernateDaoSuport implements ProductService {

@Autowired
private SessionFactory sessionFactory;

public List listByCategory(String categoryName)
throws DatafccessException {
String name2 = "%" + categoryName + "I";
return openSession() .createQuery(
"from Product product " +
"where product.ctegory.name like 2?")
.getParameter (0, name2).list();

public Product saveAndMerge (Product product, Category category)

throws FieldMsgValidationException, ValidationException,

NonUniqueObjectException,
ConstraintViolationException,

DataException, Exception{

org.hibernate.Session session = openSession():;

try{
session.beginTransaction();
session.refresh(category):;
product.setCategory (category);
session.saveOrUpdate (product) ;
session.merge (category);
session.merge (product) ;
session.getTransaction() .commit ()
return product;

}catch (Exception ex){
ex.printStackTrace ()
session.getTransaction () .rollback();
throw ex;
}finally{

if(session != null && session.isOpen()) session.close():

Fig. 24. Generated source code for the DAO layer implemented with Hibernate in
HQL.

Mobile DSL represents the J2ME profile named CLDC, thus for
a limited GUI API. Because model 2 owns less representative GUI
components than the Mobile DSL, there is lost of information about
layout from transformation from model 1 to model 2. For ex-

EP. Basso et al./The Journal of Systems and Software 117 (2016) 612-637 627

@Controller
public class ProductMultilActionController
extends MultiActionController{

@Resource (name="productServiceValidator")
private ProductService productService;

public Product bindProduct (HttpServletRequest regquest)
throws Exception{
Product product = new Product():;
product.setld(java.lang.Integer.parselnt(
request.getParameter ("product.id”))):

product.setName (request.getParameter ("product.name")) ;
return product;

}

public Category bindCategory (HttpServletRequest request)
throws Exception{
Category category = new Category():
category.setld(java.lang.Integer.parselnt(
request.getParameter ("product.category.id")));
return category;

@RequestMapping ("/saveProductAction.html")
public ModelAndView saveProductAction(
HttpServletRequest request,
HttpServletResponse response) {
tryd
//bind form attributes into the entities
Product product=bindProduct (request);
Category category=bindCategory (request):
product.setCategory (category);
//call the validation to process the action saveAndMerqge
productService.saveAndMerge (product, category) ;
//Handle the user friendly message
DialogKind kind = DialogKind.SucessDialog:
request.setAttribute ("msg", "SucessDialogMessage");
request.setAttribute ("kind", kind):
request.setAttribute ("title”, "SucessDialogTitle");
hat contains <<FormList>>

//In success, s the GUI
return showListAllProductsView(request, response);
} catch (FieldMsgValidationException exl){
doProcessUserFriendlyMessage (request,exl);
¥ catch (ValidationException ex2){

Fig. 25. Generated source code for the Controller layer implemented with
Springframework (2.5).

ample, the transformation illustrated in Fig. 27 (1) show that a
component instance of ScreenLayoutSpecification (in con-
formity with MockupToME DSL) is transformed to another compo-
nent instance of Form, which is in conformity with Mobile DSL for
CLDC. While the first supports layout managers such as a flow lay-
out, used to centralize components such as the button Save illus-
trated in Fig. 21, the second does not support layout manager. This
component in model 1 in conformity with MockupToME DSL is
of type Button, while for the model 2 it is instance of Command
in conformity with Mobile DSL, as illustrates Fig. 27 (4).

The best-case scenario for mobile is also supported. Thus, al-
though the information about the flow layout is lost in the sec-
ond model, this is a constraint from the Mobile platform, not a
limitation in the MockupToME Method. For example, for richer
GUI components that can run in other mobile devices, it is possi-
ble to include in the model transformation lifecycle another pack-
age for Mobile DSL. This package allows the designer to represent
GUI components mapped for the CDC profile, which allows the
representation of GUIs programmed with Java AWT. Likewise, for
desktop platform we include the Desktop DSL, which is mapped
for source code developed with Java Swing. For CDC platforms, a
transformation from MockupToME DSL to Mobile DSL will not im-
ply in lost of layout information.

For the design of Mobile GUIs, we prefer the use of Matisse De-
signer®, as shown in Fig. 27 (4), instead of the EMF editor shown
in Fig. 27 (2). This means that, differently from the other DSLs in-

5 Matisse
matisse/ >

Designer - <https://netbeans.org/community/magazine/html/03/

A) Content of the Master “Product™ in JSP Source Code
<%
UsuarioDTO userDTO =(UsuarioDTO) session.getAttribute ("user");
LocalUserService localUserService = LocalUserService.getInstance():

>
<% 1if("null".equals(request.getSession().getAttribute("login"))
11 null == request.getSession().getAttribute ("login")) {%>
<script>
jgueryCpen ('showLoginInformationForm.html', 'general');
</script>
<% }%>
<%@page import="entities.Product"%>
<% Product product = (Product) request.getAttribute ("product"); %>
<% if(product == null) product = new Product():;%>
<%fpage import="entities.Category"%>
<% Category category= (Category)request.getlAttribute ("category"”); 3>

<form class="default form" method="post" id="productForm'">
<input name="product.id" id="product.id" type="hidden"
value='"<jst value='${product.id}"'/>"/>
<input name="product.name" id="product.name"

value="<jstl:out value='${product.name}'/>"/>

B) Content of the Strategy Find and Attach in Association with the Detail “Category”

<div id="findPanel">
class="ui-ti-text"><binder:me ge code="Category"/>

<input name="product.category.id" id="product.category.id"

type="hidden"

value="<jstl:out value='${product.category.id}'/>"/>

 <1i>
<%if (product!=null && product.getCategory() !=null
&& product.getCategory().getId() '=null

&& product.getCategory().getName () !=null){ %>
<label for="category.find">Find:</label>
<inp

type="text" id="category.find" name="category.find"
value="<jstl:out value='S${product.category.name}'/>"/>

<%} >
<button onClick="jquerydoPost ('productForm’,
'findCategoryAction. html ?product. id=<i=product.getId() %>',
‘content'); return false:" >

Fig. 26. Generated source code for the View layer in JSP.

cluded in our lifecycle, the refinement of a GUI for mobile is per-
formed with an external tool. Because Matisse exports and imports
the design in XML, this external tool is integrated with our sup-
porting tool through operations of type import/export. This means
that the model 2 is transformed for the XML in conformity with
the Matisse Designer, resulting in model 2’. As illustrates the
piece of source code in Fig. 27 (3), we also developed a model-
based operation of type text-to-model that reverses data from XML
(model 2’) to the representation in model 2, which is in con-
formity with Mobile DSL.

The limitation in user interactions from the CLDC profile have
no effect the model elements represented on the web server. How-
ever, as illustrated in Fig. 20, for establishing the connection of the
mobile device with the business logic available on the server side,
it is needed to use an API that deals with limited remote connec-
tions in the client-side of the application. The design and imple-
mentation of such connection are discussed in the next subsection.

7.4. Remote connection

As illustrates the component diagram in Fig. 20, devices on the
client-side are connected with the business logic available on the
server-side through remote connections. Likewise, any DSL added
for the View layer, i.e.,, which will not executes inside the web
server, demands a new layer in the MVC structure to handle the
remote connection between the device and the web server. This
allows that the whole source code for application logic remains
isolated on the web server, a good approach for modularity and
maintenance of source code (Allier et al., 2015).

As illustrated in the top-part of Fig. 28, a class named
RemoteProductService is mapped for the Remote layer, thus

https://netbeans.org/community/magazine/html/03/matisse/

628 EP. Basso et al./The Journal of Systems and Software 117 (2016) 612-637

€] MockupToMidp.atl 2 o Harme:

module MockupToMidp:
create OUT : Midp from IN :

MockupToME;

= rule MockupContainer2Form {
from
mockup: MockupToME!ScreenLayoutSpecification

class ScreenLayoutSpecification extends
to MockupToME!AbstractLayoutSpecification|
form: Midp!Form (
name <- mockup.name + 'Midp’ L

&l platform:/resource/Modelos/product.midp model 2

v 4 Midp [Product Maintenance Form Model]
v < Form [Product Maintenance FormMidp]
4 Label [Name:]
4 Text Box [nameTextField]
4 Label [Category:]
4 Text Box [categoryNameTextField]
< Command [Find]
v <> Farm [bul‘tonsPaneIMldw:]
¢ ‘Command [New]

loss of information
of layout

4 Command [Save]

D ScreenAreaComponentimpl java 22 m]

4 17 » % src » [orgwctuml.ext.concreteguiimpl » Cg ScreenAreaComponentimpl P

public void importForm(Node element) {
NodeList nll = element.getChildNodes();
for (int i = 0; i < nll.getlength(); i++) {
e Node nodel = nll.item(i):;
String tagName = nodel.getNodeName () ;
if (tagName.equalsIgnoreCase ("Properties”)) {
NodeList nl2 = nodel.getChildNodes():
for (int j = 0; j < nl2.getlength(); j++) {
Node node2 = nl2.item(j): v

o model 2°

Assigned Resources

[;\;Z ProductMaintenanceFormMIDlet.java X]

Source Screen Flow Analyzer

Device Screen

Assigned Commands

This is a generated GUI
Product Maintenance Form
Name:

A newCommand

A saveCommand
| | A exitCommand |

Category:
product.category.name
Assigned Item Commands

A findCommand [stringltem] ‘

Fig. 27. Generated models for the View layer on a mobile device dependent from
the CLDC platform: the source code in (1) allows the generation of a model con-
forms to Mobile DSL shown in (2) and; the source code in (3) allows to im-
port/export such model for the XML file associated with the Matisse (Mobile De-
signer) shown in (4).

a piece of a multi-layered MVC structure. This new class is gen-
erated from the representation of the ProductService inter-
face. It holds semantics for connection in conformity with annota-
tions from the EDOC UML Profile, such as ((EJBImplementation))
and ((EJBRemoteMethod)). Such specification is transformed
into the source code illustrated in Fig. 28 (2). The class
RemoteProductService is also considered for the generation
of the source code shown in Fig. 28 (3), which is used by the Ma-
tisse plug-in for simulation of GUIs for mobile devices.

7.5. Final remarks

The example shown in Fig. 27 illustrates the flexibility pro-
moted by a multi-layered architecture. In case the designer needs
to include a representation for an external mobile GUI, such as a
DSL mapped to Android SDK®, it would be enough to: (1) develop a
model-to-model transformation from model 1 in conformity with

6 Android SDK - <http://developer.android.com >

©— ProductService

< > Service ¢ | =] RemoteProductService EDOC
? wam +2aveAndMerge(:Product,:Category): Product <> HrtpRemote UM_L
: Profile

9 <> SaveOrUpdateAndMerge
¢ # product:Product

<> EJBImplemgntation
? s+ 2aveAndMerge(:Product.:Category):P

<> EJBRembteMethod
+ proﬂuct Product

{ } SaveMaster value=true
¢ # category:Category
{ } Propertyld value=1lon-ce5cef

“+ cp’(evvr} enev«m
< 3 EmbeddedEntity S

12 public class RemoteProductService implement_s" ProductService { o

private ProductService productService;
private static RemoteProductService jnstan:e

private RemoteProductService() { K
XmlBeanFactory beanFactory = Sw1ngConcexc getI‘nstance(]
.getBeanFactory():
productService = (PrcdactSe’:vlce] beaq?ac‘;q;y i
gecSean("rerroceProd.zctServucé-IccpI'wokerProx T
) S

public static Remo:ePrndqcc"Serv:Lce getInstance () {
if (instance == null) { instance = new RemoteProductService():}

return instance;

ide
public Product savaAndMerge(Prndacr. product, Category category) {
return productService.saveAndMerge (product, category):;

32 }

b2 — Generated Code
Source Screen Flow Analyzer ‘ for M atisse e
116
117 ;rite post-action user code here
118 } else if (command == saveButton) {
119 Product product = bindProduct():;
120 gRemﬂteFroductServica. getInstance()
121 .saveAndMerge (product, category
122 i
178 Shows or failure
124 reverseBind (producc) 7
125 }

Fig. 28. Generated source code for the Remote layer in HTTP Remote.

MockupToME DSL into a model 2 in conformity with the hypo-
thetical Android DSL; and (2) develop a model-to-code transforma-
tion from model 2 to the underlying implementation associated
with this APL

Each inclusion of a DSL in the lifecycle of model transforma-
tion implies in a set of new models and refinements. This is be-
cause MockupToME DSL is defined in a high-level of abstraction
than these platform specific DSLs for GUIL The inclusion of the hy-
pothetical Android DSL would not imply in change for the Evolu-
tionary Prototyping Phase. However, it would imply in inclusion of
such new DSL into the Architectural Prototyping Phase. For example,
in this phase the use of CDC requires a different package from the
Mobile DSL and also a different model-to-model transformation in
the lifecycle illustrated in Fig. 27.

Through the FOMDA Approach (Basso et al., 2013) we add flex-
ibility for the methodology in the implementation level. Although
we consider that this approach for MDE as Service is not easy nei-
ther cheap, it is very flexible to include new DSLs and model trans-
formations as requested by software factories. Thus, it is possible
to evolve the presented methodology in terms of new DSLs, new
MVC layers, underlying implementation frameworks and APIs. The
generation of source code, strictly from what is designed, is pos-
sible due to the development of some DSLs and the integration
of several concepts considered in the literature of the area. Other
DSLs are not included in our lifecycle for model transformations
and methodology, which means that the reader should consider
this as a limitation of our proposal. Despite this limitation, we pro-
vided an interesting set of tools in support for automated design of
web information systems.

http://developer.android.com

EP. Basso et al./The Journal of Systems and Software 117 (2016) 612-637 629

@RequestMapping ("/generateBilletAction.html")
public ModelAndView generateBilletAction(
HttpServletRequest regquest,
HttpServletResponse response) {
try {
JBoletoBean jBoletoBean = new JBoletoBean():
ShoppingKart sk = new ShoppingKart():
sk.setId(request.getParameter ("id_shoppingkart"));

List<Product> products = productService
.listProductsByShoppingKartId(sk);

Vector<String> items = new Vector<String>():
float total = 0.0f;
for (Product prod : products) {
String item = "Item:" + prod.getName() + "-"
+ prod.getCategory().getName() + ™ R§ "
+ prod.getValue();
items.add(item);
total += prod.getValue():
}
jBoletoBean.setDescricoes (items) ;
jBoletoBean.setValorBoleto (total);
jBoletoBean.setDataVencimento (NEXT_ MONTH) ;
return generatePDF (jBoletoBean);

Fig. 29. Manual implementation of Generate Billet in the controller layer.

8. After source code generation

This section describes activities recommended to execute after
the functional prototyping phase.

8.1. Round-trip engineering

Full source code generation is achieved in our experiences. By
full we mean from the perspective of what is designed, not the
overall application. Thus, the full generation is for few use case
patterns. This practice have a drawback: for non generated func-
tionalities, which are programmed without the use of model trans-
formations, round-trip engineering can be necessary. This would
imply in an overhead to synchronize source code and models.
For example, when functionalities developed without MockupToME
require the developers to change manually an already generated
source code. Round-trip engineering is necessary to ensure that re-
generated source code is correct.

To exemplify how this issue is tackled in our approach, con-
sider that, after the source code generation discussed previously,
the use case Generate Billet has to be manually developed.
We acknowledge that such use case is possible to be abstracted in
a model, demanding only an increment in a DSL discussed previ-
ously. However, assume that this is not the case and the developer
must develop it manually.

In the worst-case scenario, the implementation of the controller
layer follows as is illustrated in Fig. 29. It is composed of the fol-
lowing other implementations: (1) assume that the developer has
added the operation generateBilletAction inside the previ-
ously generated class shown in Fig. 25, representing the controller
layer; (2) line 152 shows a call for the DAO layer illustrated in
Fig. 24, which contains a manually implemented operation to list
products from a web shop kart; (3) line 167 shows an operation
that generates the PDF file with information for payment, also de-
veloped manually inside the controller.

In this case, two previously generated classes where changed
manually, requiring the execution of a manual round-trip engineer-
ing. As consequence, the developer or designer needs to update the
model elements (5) and (7) shown in Fig. 17. They need to specify
manually one operation in each model element with a tag Body-
Code, whose internal source code is represented as a string. This
is an issue when developers or designers are inexperienced. Thus,

v i reverseengineering © addExcludedOperations(Collection<String>) : void
v [J) JavaReflectionUtiljava 717 © addExcludedOperations(String[]) : void
v @ JavaReflectionUtil 717 22/0 © addExcludedProperty(Collection<String>) : void
9 CARD_MANY © addExcludedProperty(String[]) : void
% CARD_ONE @ getDepth(): int
o instance @ getScope(int) : ScopeKind
9F MESSAGE_PART_CLASS getTypeofGeneric(Type, String, String) : Class
9 MESSAGE_PART_CONTAINS_A_GENERIC_TYPE o getVisibility(int) : VisibilityKind

> isCollection(Class) : boo
isEnumeration(Class<?>)
isExcludeGettersAndSetters()
isLoaded(Class) : boolean
isReferencePurposeClass(Class) : boolean
isReverseExceptions() : b
isReverseOperations() ,
parseAttribute(Class, Model, int, Class) : void
parseClass(Class, Model) : Class
parseClass(Class, Model, int)
parseEnum(Class, Model) : Enur
parseEnum(Class, Model, int) : En t
parseGenericinterfaces(Class, Model, int, Class) : void
parseGenericSuperclass(Class, Model, int, Class) : void
parselnterface(Class, Model) : Interface
parselnterface(Class, Model, int) : Interface
parseOperation(Class, Model, int, Class) : void
parsePackage(Class, Model) : Package
processTypedElement(TypedElement, Class<?>, boolean,
Model, int, String, Class<?>) : DataType
setDepth(int) : void
setExcludeGettersAndSetters(boolean) : void
setReverseExceptions(boolean) : void
setReverseOperations(boolean) : void

i MESSAGE_PART_FIELD

% MESSAGE_PART_GETTING_TP_CLASS

' MESSAGE_PART_IS_A_NORMAL_CLASS

' MESSAGE_PART_IS_A_PARAMETERIZED_TYPE

3 MESSAGE_REVERSE_ENGINEERING_ATTRIBUTES

% MESSAGE_REVERSE_ENGINEERING_FROM_CLASS

% MESSAGE_REVERSE_ENGINEERING_FROM_ENUM

9 MESSAGE_REVERSE_ENGINEERING_FROM_INTERFACE
4F STEREOTYPE_ENUMERATION

f STEREOTYPE_FROZE

& getlnstance()
isMap(Type) : bo
depth
excludedNamespaces

excludedOperations

excludedProperties

excludeGettersAndSetters

excludeOverride

o parsedClasses

reverseExceptions

reverseOperations

JavaReflectionUtil()
addExcludedNamespaces(Collection<String>) : voic
addExcludedNamespaces(String(]) : void

L)

"

ionUtil

cocommEO0OOOE OO

cooooae,

0B, 00
[N]

Fig. 30. The class developed for automatic reverse engineering.

whenever possible, this reverse and manual round-trip engineering
should be avoided.

Our recommendation to mitigate the need for reverse manual
round-trip is simple and also well-known in the literature (Kelly
and Tolvanen, 2008; Whittle et al., 2013). Developers should not
develop new features inside the generated source code, thus
developing new classes and, preferably, locate it in a separate
package. Instead of adopting an approach that leads to the worst-
case scenario, we recommend that the developers: (1) create
a new package; (2) manually develop another class for con-
troller, e.g., ManualCodeMultiActionProductController;
and, (3) manually develop another class for DAO, e.g.,
ManualCodeProductDAOHibernate.

These recommendations will keep isolated the generated
classes from the manually coded ones, reducing the chances
for the execution of manual round-trip engineering from code
to model. The generation of source code must obey the same
rules. Of course, there are always exceptions to these rules.
In our experiences, we observed that entities, in the Model
layer, are the unique source codes were conflicts between
manual and generated source code occurs, independently from
the aforementioned recommendation. This is because entities
are the centralizer source code in a DDD approach. While
other layers accept the development of several classes, the
Model layer is more rigid. For example, we can develop two
classes for the DAO layer, namely ProductDAOHibernate and
ManualCodeProductDAOHibernate, but they both refer a
unique entity class Product.

Changes in entities require round-trip engineering. However,
this is not a big deal. We are not giving too much credit in regard
to process overhead when it is necessary to apply specific changes
in entity classes, e.g., into the model element shown in the left
side of Fig. 22. That is because the wizard illustrated in the right
side of Fig. 22 helps in the execution of these manual round-trips.
Moreover, as illustrates Fig. 30, we also developed a feature for au-
tomatically reverse Java source code to model. This feature is part
of our tool support integrated with the Java platform. It is con-
nected with adaptive test cases and model transformations, allow-
ing the execution of operations of type code-to-model (Basso et al.,
2014a).

It is important to mention that our tool support for automatic
reverse round-trip is limited and it is not applicable to the View
layer (JSP source code). For the worst-case scenario, whose changes

630 EP. Basso et al./The Journal of Systems and Software 117 (2016) 612-637

are not supported by wizards neither by automatic reverse engi-
neering, the software engineer must plan whether the execution
of a manual round-trip engineering is needed and when it should
be made. Manual round-trip engineering is not a mandatory task
for each iteration. For example, the software engineer should plan
whether its execution takes place in the current iteration or in the
next or only in the end of the project (Basso et al., 2015). This
decision depends on the ability of the teams to perform manual
round-trip.

For those frequent changes observed along iterations, another
possibility to avoid manual round-trip is to introduce them into
model transformations. Likewise, our tool allows extensions in
model transformation components, made on the fly, through spe-
cialization points (Basso et al., 2014c). Preferable, these extensions
should be added before the beginning of software project, when
these components are adapted in the pre-game phase (Basso et al.,
2015). However, they can also be introduced along the execution of
a software project. To reach benefits and drawbacks that this ap-
proach introduces for a software project, a future work will discuss
how a team received increments in components for source code
generation along the execution of iterations.

It is also good to remember that a version control system helps
developers to compare versions of the generated source code. De-
velopers trace overwritten artefacts in a new source code genera-
tion (forward round-trip), making punctual manual adjustments in
source code when needed. Artefact that is not fully generated im-
plies on a big effort for developers to apply adjustments. We are
able to generate full source code, which mean that, when source
code generators are calibrated and without errors, developers do
not spent a big effort in making adjustments. Therefore, even con-
sidering the worst-case scenario, developers are capable to make
punctual adjustments in source code, which is also not considered
in our experiences as a big issue that hampers the execution of
iterations.

8.2. Acceptance tests

From the generation of functional prototypes, acceptance tests
are conducted in iteration cycles following the selected reference
model for software development process. Thus, it is important to
test in a web browser or in a mobile emulator, together with the
client, each use case scenario developed or not with the assistance
of our tool support.

For a general guidance on the execution of acceptance tests,
we found very interesting the Acceptance Test-Driven Development
(ATDD) (Gartner, 2012). It includes some practices for the execu-
tion of acceptance test cases, which can be performed manually
or automatically with the framework JBehave’. After the develop-
ment of the new use cases, automated test cases in JBehave can
quickly detect whether functionalities, developed in previous iter-
ations, fails in the new iteration due to the introduction of new
source code. For this reason, acceptance tests are complementary
to the tests/validations with clients performed in the Evolutionary
and Architectural Prototyping Phases, which consider only features
developed in the current iteration.

We have no clear position about whether these tests should
be developed in conditions of worst-case scenarios, when require-
ments changes with many frequency such as in start-ups (Giardino
et al,, 2014).

8.3. Final remarks

Worst-case scenarios, such as those found in start-ups, need
the execution of iterations considering features for innova-

7]Behave - <http://jbehave.org/ >

tion (Giardino et al., 2014). Authors state that this can imply in re-
quirements that change very fast. This is an issue when performing
time-scales planned for one month or more (Whittle et al., 2013).
Thus, other authors suggested the execution of tasks for discov-
ery and invention (Schwaber, 1995), which is a characteristic from
rapid application prototyping few understood in research and prac-
tice of MDWE.

For these reasons, we recommend the execution of Tasks C-E
in the MockupToME Method. In our approach, designers are free
to explore alternatives for implementation of one or more use
cases/user stories. We believe that this possibility influences posi-
tively the use of activities performed after the source code gener-
ation. In this point, we have some lessons and open questions, as
discussed in the next section.

9. Experience report

This section reports on an industrial innovation effort devel-
oped in collaboration with the Brazilian start-up company Adapit.
Five applications were developed using the automated design ap-
proach for MDWE (integrally or partially) to the following do-
mains: agribusiness management, online auction, trainee manage-
ment, quality management, and financial management. We se-
lected two software projects, presenting a summary about the ap-
plication of these techniques in each one. Table 1 presents the
team configuration associated with the design and source code
generation tasks, where “SP! is a software project for i in 1-2":

SP1-ERP and CRM for online auction. This is a web/desktop
application to apply online auction with support for Enterprise
Resource Planning (ERP) and Customer Relationship Management
(CRM). It was developed between 2007 and 2008 by Adapit us-
ing AMDA as framework for software process (Basso and Oliveira,
2007). The team configuration that was allocated to this project is
shown in Table 1 and includes a developer and a designer. SP! was
conducted only with the Architectural Prototyping and Functional
Prototyping phases because at the time we had not developed the
MockupToME nor tasks associated with Evolutionary Prototyping
Phase.

SP2-ERP for financial management. It is a web application to
manage financial support for innovation projects. The latter appli-
cation has been developed between 2010 and 2011 by Company
A. This project was supervised by the Adapit’s team. As shown in
Table 1, to perform the activities discussed previously, Company A
allocated in SP? a team with low design and development experi-
ence. The team in SP? adopted integrally the tasks and tool support
discussed in this paper.

In the following we discuss: (1) the experience that justifies
the advent of MockupToME Method and tool support; (2) discrep-
ancies of these software projects that suggest improvements from
our current approach in comparison to our previous initiative; (3)
lessons learnt from these projects; and, (4) open questions derived
from these experiences.

9.1. Justification

In 2007, the development of wizards in support to MDWE was
part of services added in a business plan proposed by Adapit, in-
cubated at RAIAR-TECNOPUC-Brazil between 2007 and 2011. The
execution of SP! was far to be considered as productive, leading to
the conclusion that this business plan failed due to difficulties to
execute our first approach for MDWE in start-up contexts. For ex-
ample, in SP! we observed issues associated with round-trip engi-
neering, which leaded to some good practices discussed previously.
Our worst-case scenario in SP! occurred when we performed an it-
eration lasting two months. After five weeks, the client changed
his idea about the requirement in the first cycle of validation.

http://jbehave.org/

EP. Basso et al./The Journal of Systems and Software 117 (2016) 612-637 631

Table 1
Attributes of the teams used in each software project.

Attributes of the team used in SP!

Num. Stakeholder Experience Education level Exp. in UML Exp. in MDE Exp. in J2EE Exp. in MVC
1 Designer Senior Master degree Advanced Advanced Basic Advanced
1 Programmer Senior Master degree Advanced Advanced Advanced Advanced
Attributes of the team used in SP?
Num. Stakeholder Experience Educationlevel Exp. in UML Exp. in MDE Exp. in J2EE Exp. in MVC
1 Designer Trainee Graduate Basic None Basic Basic
1 Programmer Trainee Undergraduate Basic None Basic Basic
This required the re-execution of the phases Architectural Proto- Table 2
typing and Functional Prototyping, resulting in changes in source MVC-based layers used in each software project.
code and model. Because we had no tool support for reverse engi- Application layers Sp! Sp2
neering, this experience in SP! suggested that round-trip engineer- — -
ing should be executed manually. It was executed before restart Entities and enumerations 64 1344% 50 25.25%
N N N N Validation on the server side 20 4.20% 35 17,68%
the Architectural Prototyping phase, re-generating source code in Web controllers 1 2.31% 22 1.11%
Functional Prototyping phase and making manual adjustments in Data Access Object (DAO) 16 3.36% 35 17,68%
source Code. JSP [web view layer] 190 39.91% 56 28,28%
We concluded that manual design of MVC-based application Java swing [fOT”(;S/ta'fjl,esl] 3&2 2:;'2‘:’;4 g g:/’
models is very tiring and expensive to the point that, in 2008, Eg;g:;lﬁgye[rm ow/dialeg] 2 4:62£ 0 0;:
Adapit considered the possibility to lgave the MDWE approach. We Lines of code (LOC) op! op2
agreed that MDWE was not productive for the company context:
start-up and small company, with few money and new in the mar- Entities and enumerations 4947 4.38% 5477 14.95%
. . . Validation on the server side 2919 2.58% 4152 11.33%
ket. However, it was decided to give for MDWE one more chance. Web controllers 6283 5 56 11652 3181%
Likewise, issues observed in SP! leaded to the development of the Data Access Object (DAO) 11310 10.02% 5441 14.85%
MockupToME Method. This allowed professionals from Adapit to JSP [web view layer] 17249 15.28% 7266 19.83%
adopt a new perspective for implementation of MDE as Service Java swing [forms/tables] 60876 53.92% 0 0%
based on automated design. Java swing [window/dialog] 6524 5.78% 0 0%
. . . . Remote layer 2781 2.46% 0 0%
From the point of view of research and practice, these experi-
ences allowed a better understanding of contexts of start-ups and
issues for the MDE adoption. To improve our design practices for Table 3
the next software projects, we looked for prototyping tools used Data from application in software projects.
in agile methods. We concluded that designers should work in a Where automated design helped? spt Sp2
high-level of abstraction than MVC-based application models. More
importantly, in order to reduce risks of producing wrong features, Total weeks to conclude each software project 58 44
the method should also consider design tasks for discovery and in- Q‘e's:ag:rfz fn‘ggﬁﬁ ;gftd]:;?\gm was used ;g N ;Oh
vention (tasks C and D). Thus, these are the justifications for the A\,erapge of time-scales in %terations > 4 weeks 1-2 weeks
introduction of the Evolutionary Prototyping phase in our method- Generated source code 64% 82%

ology for MDWE.

Experiences such as the one in SP! provided the reasons
why we included many interactions with clients in the process.
For the worst-case scenarios that present uncertainty in require-
ments, besides the acceptance tests after the Functional Prototyp-
ing phase, we introduced in MockupToME Method two validations
with clients that are associated with design tasks. In our position,
it is a common mistake to assume that interactions with clients
will ever “delay something” in the software development. In fact,
the opposite was observed in practice, with books suggesting that
frequent validations with clients is good for shortening time-scales
in worst-case scenarios (Schwaber, 2004; Shore and Warden, 2008;
Sommerville, 2010). Besides, frequent validations reduce the risks
of producing wrong features and, in consequence, reducing rework
in iteration cycles and also among iterations. Thus, considering
worst-case scenarios that we have experienced, our methodology
was also conceived to allows client interaction in three phases of
prototyping, each one aiming at reducing the risk of producing
wrong features for the next.

9.2. Discrepancies in software projects

These software projects present similar MVC layers, as illus-
trated by the data in Table 2. Table 3 shows some statistical data

about each software project. SP! is a little bit more complex than
SP2 due to the development of some more complex use cases, such
as Generate billet, not supported by source code generators.
Besides, Table 2 suggests that SP! is more complex due to the fol-
lowing reasons: (1) it is larger and includes the support for CRM
besides functionalities for ERP that contextualizes the type of sys-
tem in SP2; (2) SP! includes a second DSL for the View layer, the
Desktop DSL that is implemented in Java Swing, besides JSP that
implements the Web DSL used also in SP?; (3) SP' owns many
Lines-Of-Code (LOC) associated with the Desktop view and less
source code for Controller and JSP from the Web view than in SP%;
(4) SP! includes source code for the Remote layer, not included in
SPZ; and, (5) In SP!, the MVC-based architectural models were de-
signed mostly manually with the help of wizards and in SP? these
models were automatically generated after the execution of the
Evolutionary Prototyping Phase.

Table 3 also shows that MDWE was used in 22 weeks for SP!,
while it was used in 20 weeks for SP2. This only means that
MDWE is used in less than a half of the time of the overall soft-
ware projects that consumed a total of 57 weeks in SP! and 44
in SP2. Although not comparable due to differences in underlying
implementation technologies and processes, they have the follow-

632 EP. Basso et al./The Journal of Systems and Software 117 (2016) 612-637

ing similarities: (1) they were conducted with MDWE, allowing the
generation of many functionalities of type CRUD, and (2) they used
the Architectural Prototyping and Functional Prototyping phases,
with few differences in source code generators (Basso et al., 2013).

We acknowledge that we cannot compare these two software
projects. However, as suggests the data shown in Table 3, these
software projects presented different time-scales adopted in each
one when compared with the team skills shown in Table 1. In
this regard, discrepancies between time-scales are clear. Company
A successfully executed SP? with iterations planned for one to two
weeks, with the best performance for modelling reported as eight
hours in the last iterations, i.e., after a learning curve period (Basso
et al,, 2015). With our first approach for MDWE our best perfor-
mance for design was 27 h. It demanded in SP! an experienced de-
signer and developer, while Company A used only non experienced
stakeholders. Based on such information, one could expect that, in
SP2, the MDWE approach would present a worst performance than
in SP!. However, the opposite was observed. Other discrepancy is
in regard to the activities performed after the source code genera-
tion. Company A did not reported issues associated with round-trip
engineering. These are benefits/effects that we have not a clear un-
derstanding about the causes, as discussed in the next subsection.

9.3. Lessons learnt

Round-trip engineering is still a challenge in regard to tool
support (Mussbacher et al., 2014). However, from our newest ex-
perience, we confirm that it is not a big issue, as suggested
by Hutchinson et al. (2011). We have learned that a multi-layered
architecture associated with the good practice of separating what
is generated from manual coding mitigates this overhead. Kelly and
Tolvanen (2008) make these recommendations too. Besides, based
on an industrial survey, Whittle et al. (2013) agrees in this re-
spect. They have not considered this as an “Achilles heel” for the
MDE adoption. Thus, through the assimilation of good practices
for the development of manual code, Company A did not consider
the round-trip engineering a big issue for the execution of our
methodology.

Another important good practice is discussed in the literature
by Kelly and Tolvanen (2008): generate 100% of the overall appli-
cation is difficult, if not impossible; instead, teams should focus
on full source code generation, i.e., generate 100% of what is de-
signed. They suggest that lifecycles for model transformations will
always present a delimited scope of DSLs and a delimited scope
for source code generation. These limitations are not considered as
reasons for a non adoption, which means that software factories
can benefit from MDE without the generation of 100% of final ap-
plication (Whittle et al., 2013).

These experiences allowed us to observe some benefits pro-
moted by this methodology as follows.

1. To reduce the risks of producing wrong features between itera-
tions, Schwaber (1995) suggests to acquire feedback about what
is being produced in cycles of validation. Thus, short time-
scales for iterations are preferred to quickly get feedback from
clients, as the ones allowed in our approach.

2. A rich set of CRUD templates to generate diverse GUI structures,
besides allowing non-experienced modelers to be included in
MDWE-based processes, also allows the design of annotated
mockups with action semantics that, for some use case pat-
terns, allowed producing working pieces of software that did
not required adjustments in source code.

3. Mockups are helpful to get feedback from clients of require-
ments in the Evolutionary Design phase and, similarly as Rivero
et al. (2014), we also noticed that clients feel more comfort-
able to opine about requirements when experimenting mock-

ups than visualizng UML diagrams representing MVC-based
models.

Because our proposal requires the use of transformation tem-
plates to generate and refine mockups, there are some drawbacks
as follows.

1. Model transformations can fail, meaning that the proposed
methodology is only effective if transformation templates are
perfectly working.

2. Client can request CRUD structures, or other use case scenarios,
not yet developed as transformation templates.

(a) This would require a manual design of annotated mock-
ups, implying in the development of the use case without
the automated design techniques introduce in the Evolu-
tionary Prototyping phase.

(b) This could also imply in issues for execution of MDWE,
such as those observed in SP!, instead of benefits ob-
served in SP2.

3. This methodology is only effective if enough transformation
templates are available and if they meet the client needs. Oth-
erwise, it became a manual design approach for MDWE, which
we did not considered interesting for start-up contexts.

9.4. Open questions

In a previous work we reported some issues and open ques-
tions to implement MDE as Service considering the pragmatical
aspect of combination of MDWE and Scrum (Basso et al., 2015),
summarized as follows: (1) The literature of the area lacks infor-
mation on how to introduce MDE in specific contexts; (2) Some
authors claim UML-based MDWE approaches are “counter agility”,
but are they really?; (3) The “good” and “bad” on the combina-
tion of MDE and Agile should be associated with a context; (4)
There is no requirement for “agile tools”; (5) There is no empiri-
cal information in the literature on incompatibilities between MDE
and Agile Methods/Principles; and (6) Which are the suitable MDE
techniques for dealing with round-trip?

The last open question is discussed in this paper with the tech-
niques that we considered interesting. In the following we comple-
ment the aforementioned work with research gaps for technical-
level issues. For example, the execution of SP? presents some ben-
efits not observed in SP! such as short time-scales and the mitiga-
tion of reverse engineering. For instance, we concluded that such
benefits are associated with our methodology for automated de-
sign and tool support when executed integrally. However, the rea-
sons for such benefits are not totally clear, thus raising the follow-
ing open questions:

Is full source code generation the unique reason for mitiga-
tion of issues associated with reverse round-trip engineering in
SP2? In our tool support, full source code generation allow to per-
form changes from model to code following an iterative and incre-
mental process. This is possible only for specific types of use case
patterns for web information systems: CRUD, List, Filter, and Re-
port. Since the execution of SP?2 we concluded that, for this type of
functionalities, changes performed along iterations would not re-
quire the execution of manual round-trip engineering, since they
are changed in models and re-generated. Besides, Company A did
not considered round-trip engineering as an issue. Currently, we
are asking ourselves whether the full source code generation is the
unique reason why round-trip engineering is not an issue.

Is our approach good for improve the quality, modulariza-
tion, and maintenance of source code? Related works present
such benefits as promoted by their approaches (Martinez et al.,
2011; 2013; Brambilla and Fraternali, 2014; Rivero et al.,, 2014).
Analysing the data shown in Table 2, we conclude that the intro-
duction of tool support in Evolutionary Prototyping phase, adopted

EP. Basso et al./The Journal of Systems and Software 117 (2016) 612-637 633

in SP2, may have influenced the generation of more elements
in the MVC layers than in SP!, thus resulting in more modular
and maintainable source code. Paradoxically, this would mean that
the automated design techniques, introduced on the top of our
method, could lead inexperienced stakeholder to produce an ap-
plication with more quality than the produced by the two first au-
thors of this article, which are “experts”. This question needs fur-
ther investigation.

Is the multi-layered architecture good to mitigate round-trip
engineering? In our approach, developers commit changes quickly
from models to the implementation without overriding the manual
work made in previous iterations. Allier et al. (2015) state that a
design directed to the MVC-based architecture helps on the modu-
larization and organization of the source code. The regeneration of
source code includes as input model elements designed conforms
to MVC-based application layers. Based on principles of modular-
ity, we recommended that manual coding must be allocated in iso-
lated modules from the generated source code. In this sense, this
recommendation associated with a multi-layered design may be
responsible for the non existence of big issues for round-trip in
Company A. However, although not prepared with good practices
discussed above, with the same multi-layered architecture we ob-
served round-trip issues in SP!. Thus, this is a paradox that must
be investigated.

Is our approach good for requirement discovery and valida-
tion? One of the reasons for the development of a new approach
for MDWE was our incapacity to perform validations of models
in short time-scales in SP!. Our clients feel comfortable to opine
about requirements represented in paper prototypes, but they have
many difficulties to understand and opine about the UML models.
Besides, they wanted to click in buttons from real prototypes be-
fore provide a feedback of “100% sure” about validity of paper pro-
totypes. We could not do this in SP'. The Evolutionary Prototyp-
ing Phase was introduced to bridge the requirement engineering
and the representation of models associated with MVC layers. In
Adapit we observed this as a benefit for the requirement discovery
and validation promoted by MockupToME Method. However, Com-
pany A reported that they have not experienced a case where re-
quirements changed radically, as occurred within SP'. We consider
observations made internally in Adapit few to answer the afore-
mentioned question, mainly because there is a tendency to con-
sider this important. Thus, an open question is whether and where
tasks associated with discover and invention (C-E) help designers
in this transition from the Requirement Engineering Phase to the
Evolutionary Prototyping Phase in other software projects.

When developers should not automate acceptance test
cases? This question is relevant because we consider that in worst-
case scenarios the automation of acceptance test cases may add
overhead to the iterations. Likewise, due to frequent changes on
some requirements from the worst-case scenarios observed in SP!,
the development of automated acceptance test cases may be non
effective. Anyway, assuming that requirements changed, that mod-
els must be changed, that the source code must be regenerated,
acceptance tests need to be re-executed in a new cycle of accep-
tance. Our doubt is whether developers should automate the ac-
ceptance test cases for this cases. The automation would imply also
on the redevelopment of the algorithm for behavior and, as con-
sequence, adding overhead for the execution of iterations in short
time-scales. Thus, we are investigating whether these tests can also
be generated.

10. Limitations
Limited to some use case patterns. This methodology and tool

support are limited for use case patterns of type CRUD, List, Filter
and Report. Examples of what we have not yet considered in the

automated design includes: top-level layouts for web sites, features
from HCI (rich menus, navigation, flows, responsive design), inte-
gration with web services, enterprise application integration, and
others. Although our work is limited in this regard, several DSLs
have been proposed in the literature to represent such abstrac-
tions. Thus, they may be included in this methodology conform
requests.

No silver bullet. Although MDE is not new, i.e., an MDWE ap-
proach dates 2000 (Brambilla et al., 2008), putting it into prac-
tice remains a challenge. Mussbacher et al. (2014) have pointed
out issues that would be fixed only in the next thirty years from
2014. MDE can work on certain conditions and contexts (Martinez
et al,, 2011; 2013), such as for the contexts of the reported software
projects. However, any MDE approach presents several “Achilles
heel” that should be explored in research and practice (Torchiano
et al., 2013; Agner et al., 2013; Whittle et al.,, 2013; Mussbacher
et al., 2014). For example, this work is limited for some use case
patterns supported by the presented automated design techniques,
which means that it is ineffective for other types of use cases.
Therefore, this work should never be considered as a silver bullet
for software development, needing investigation of feasibility for
each context.

11. Related work

We present the related works with the methodology and tool
support, considering three phases for prototyping: (1) Evolution-
ary Prototyping, which is classified as an approach for exploratory
design; (2) Architectural Prototyping, which is classified as a
modelling phase dedicated to represent models with more de-
tails and in conformity with layers of the MVC; and, (3) Func-
tional Prototyping, which is characterized by the generation of full
source code for all the layers of the adopted underlying architec-
ture.

The evolutionary prototyping is dedicated to the design of
mockups. Balsamic Mockups Company (2015) provides a software
tool to represent sketches, without the support for annotations
that embed business logic. Blankenhorn (2004); Vanderdonckt
(2005) and Kavaldjian (2007) provide similar tools to support
the design of mockups with UML Profiles, also without embed-
ding the business logic into GUI components. WebML (Brambilla
et al,, 2008) and its commercial implementation named WebRa-
tio (Brambilla and Fraternali, 2014) also presents contributions for
this phase, allowing the transformation from BPMN flows repre-
senting the business model of the application into GUI mockups
represented with the WebML. Other DSLs are closer to the Mock-
upToME DSL, such as those provided by Rivero et al. (2014) and
Forward et al. (2012), which use annotations in mockups to
represent the semantics for business logic. In this sense, Stary
(2000) suggests that transformations started from mockup are the
key to improve client feedback in preliminary phases of a software
process, since they verify acceptance of a given requirement using
paper prototypes. Our differential is the introduction of techniques
for automated design that speed-up the design of annotated mock-
ups.

To visualise and modify intermediate specifications between
mockups and executable prototypes for GUI, Molina et al
(2012) propose an interesting tool namely CIAT-GUI that allows
to test information system models in different abstraction layers
of application. CIAT-GUI can also be classified as implementing
these three phases of prototyping. The differences are that their
approach uses a unique DSL while ours use many (e.g., Mock-
upToME DSL, Web DSL, Desktop DSL, Mobile DSL). Although we
have not yet tested other DSLs in our tool support than those dis-
cussed in this paper, we hope that this feature will enable us to
explore/include other possibilities for DSLs and design tools in iso-

634 EP. Basso et al./The Journal of Systems and Software 117 (2016) 612-637

lated phases of prototyping. On the other hand, the use of a unique
DSL simplifies the execution of the three phases of prototyping,
connecting elements based on the same metamodel.

Our methodology also includes resources for model transforma-
tion to help designers in the transition from the evolutionary to
the architectural prototyping phase. Rivero et al. (2014) present a
similar proposal to ours, since that annotated mockups are used as
input to generate other application layers. The differences are: (1)
we applied the generation of a mockup using start transformation
templates, while these authors suggest to manually design mock-
ups; (2) we included a richer support for the execution of auto-
mated design techniques; and, (3) we used mockups in the evolu-
tionary phase to explore different possibilities of implementation,
while the authors considered a static structure for mockups with-
out options for selection.

Related with the architectural prototyping phase, some works
proposes DSLs for the design of web information systems based on
the MVC. Souza et al. (2007) presents an approach for MDWE us-
ing UML interfaces very similar to those used in our methodology
to represent the business logic. Nunes and Schwabe (2006) pro-
pose the HyperDE, an environment to produce web information
systems by specifying models and transforming them into func-
tional prototypes, starting by a domain model. Similarly, Vara
and Marcos (2012) propose a framework composed of a set of
model transformations that allows to develop information systems
through DSLs. An experience report with the WebRatio (Brambilla
and Fraternali, 2014) also presents positive results associated
with the source code generation based on architectural mod-
els manually specified: a small difference is that WebRatio uses
as input a conceptual model representing the data-model for a
database while we use a class diagram. Thus, as a small con-
tribution to the practice, our methodology includes wizards that
help the designer on the representation of details for MVC-based
models.

All these works allows the generation of prototypes. However,
only those that are classified as part of the architectural prototyp-
ing can also generate fully implemented prototypes.

Yulkeidi, Martinez, Rivero and Brambilla concluded that, in a
comparison of MDWE with manual coding, a model-based pro-
cess improves the productivity and software quality through mod-
ularization and maintenance of source code (Martinez et al., 2011;
2013; Rivero et al., 2014; Brambilla and Fraternali, 2014). We have
not yet reached these benefits through our analytical studies, more
related with the execution of approaches for MDE as Service than
specificities of results from MDWE.

Finally, other type of proposal aims at starting prototyping with
the specification of many web information systems details with
textual DSLs. It is the case for Forward et al. (2012), whose ap-
proach is similar to modern frameworks to develop web applica-
tions such as Ruby on Rails. These frameworks are used on devel-
opment phase, not in the evolutionary prototyping. Our method-
ology is different from theirs since it implements three phases of
prototyping based on MDWE, while Forward et al. (2012) used a
more direct approach for prototyping. To the best of our knowl-
edge, there is no experimental evidences that suggests that the use
of textual DSLs in preliminary software phases is a better solution
to perform a requirement analysis than using architectural designs.
Thus, this is also an open question that should be investigated in
empirical studies.

Rossi (2013) discusses on existing web DSLs, highlighting the
importance of a new standard proposed by OMG to design web
applications: the Interaction Flow Modeling Language (IFML). IFML
standardises several of the representations included by the afore-
mentioned DSLs. This language, as well as WebML and WebRatio,
are complementary to MockupToME and overlaps some represen-
tations used in the UML Profiles from the Architectural Prototyping

phase. A future work will explore this complementarity, presenting
our profiles with appropriate comparisons with the state-of-art in
MDWE.

Our contribution complements the literature of the area with
an integrated approach by methodology and tool support for
MDWE. In addition, the reported experiences suggest that the im-
plemented automated design techniques can promote the intro-
duction of MDWE in contexts that present issues for adoption.
Thus, we present improvements in practices and tools with fully
assisted design tasks for web information systems, which is only
partially explored by related works.

12. Conclusions and future work

This paper presents a new MDWE methodology to automate the
design of multi-layered web information systems called Mockup-
ToME Method. Along the development of some web information
systems, we noticed that, for the worst-case scenarios on the re-
quirement engineering (i.e., in start-up contexts), paper prototypes
themselves do not ensure the validity about requirements along
software process iterations. These specifications change along the
iterations, which makes difficult the execution of a MDWE ap-
proach. To deal with these chaotic scenarios, we concluded that
short duration iterations should be adopted. However, the manual
design of MVC-based application models hampers the execution
of short time-scales. Thus, we proposed the automation of design
tasks.

The MockupToME Method suggests the execution of design
tasks and client evaluations about the designed models in three
phases: Evolutionary Prototyping, Architectural Prototyping and
Functional Prototyping. This execution includes the following fea-
tures for rapid application prototyping that we consider as benefits
for the state-of-practice in MDWE: (1) designers specify annotated
mockups with semantics for actions in the Evolutionary Prototyp-
ing with the assistance of automated design techniques, supported
by model transformations and refinements allowed in a mockup
drawing tool; (2) the adoption of concepts such as Master/Detail,
DDD, Multi-view, and other, allows the development of different
templates for construction and refinement of models represented
in different abstractions levels, thus allowing the use by non ex-
perienced designer; (3) these techniques are limited for use case
patterns of type CRUD, List, Filter and Report; (4) for the worst-
case scenarios regarding requirements uncertainty, client and de-
signer interact in tasks for discovery and invention, e.g., while con-
structing and updating a model specification, they are allowed to
visualize different implementation options for a use case to de-
cide which of them fits best to the needs of the iteration; (5) the
discovery and invention is considered as important for clients to
reach more necessities, which is good in MDWE, allowing design-
ers to quickly change designed models before execute the Architec-
tural Prototyping and Functional Prototyping phases; and, (6) these
features, added to other elements such as source code generation
and practices discussed in this paper, allowed for the execution of
iterations lasting one week.

We summarized two industrial experiences in the development
of web information system using our proposal in piece and inte-
gral. In the first experience, which adopted mostly a manual de-
sign approach, we observed many issues for execution of the soft-
ware project including the long time invested in manual represen-
tation of models, issues in source code generation and bad prac-
tices for manual coding. Moreover, changes in requirements, mo-
tivated by misunderstanding or simply because the client decided
to adopt other features for innovation, consumed too much time
from the overall software project. We concluded that MDWE is-
sues associated with these changes such as round-trip engineering
and rework in two levels of abstractions (models and code) could

EP. Basso et al./The Journal of Systems and Software 117 (2016) 612-637 635

be related with the execution of iterations, planned and executed
with more than one month. However, due to the incapacity in our
tool support and practices adopted in 2007, we could not perform
shorter iterations than a month.

The need for execution of shorter time-scales is the main rea-
son for the development of the proposed methodology. Likewise,
the most recent experience presented promising results promoted
by our proposal, such as the possibility of execution of iterations
lasting one to two weeks. The reasons for such a benefit are not
totally clear for us. However, automated design techniques are
clearly related. Other features that can be related include our rec-
ommendations for manual coding, client validations executed in
three phases of prototyping, full source code generation, modular-
ity promoted by a multi-layered MVC structure, the introduction
of a phase for discovery and invention and the context of the de-
veloped system. Thus, we also addressed these features as open
questions relevant for the theory and practice of MDWE.

To have a clear notion about the reasons why MockupToME
Method is capable for execution of short duration sprints, we will
conduct new works as follows:

e Conduct a study in retrospective considering projects executed
with different approaches for MDWE. Accordingly, we will mine
repositories from five software projects that used partially and
integrally the tasks and tools associated with the MockupToME
Method. We believe that, by mining these repositories, we can
find answers for our open questions.

o Execute a second study for evaluation of the quality attribute

“productivity” in agile teams. In a previous study that aimed

at compare the productivity of two agile teams (Basso et al.,

2014d), one adopting our methodology and tool support and
the other developing the software without MDWE, we could
not reach strong conclusions. This is because the study pre-
sented confounding factors such as differences on the under-
lying implementation framework and lacks of quantitative data.

Thus, a future work will apply this methodology in another ag-

ile context to measure this quality attribute.

Highlight our technical contributions, presenting details of as-

sociated scripts for model transformations and metamodels. So

far, our contributions discusses only aspects associated with
the management and reuse of model transformation compo-
nents (Basso et al., 2013). Our long-term goal for future works
is to discuss particularities from our metamodels and tool sup-
port, thus presenting some contributions for the state-of-art in
MDWE.

Acknowledgments

The research work on which we report in this paper is sup-
ported by CNPQ and Capes-Brazil (first three authors), and by the
internal Research Programme 2012/13 at UNIJUI University (fourth
and fifth authors).

Supplementary material

Supplementary material associated with this article can be
found, in the online version, at 10.1016/].jss.2016.04.060.

References

Agner, LT.W., Soares, .W., Stadzisz, P.C., Simao,].M., 2013. A brazilian survey on uml
and model-driven practices for embedded software development. J. Syst. Softw.
86 (4).

Allier, S., Barais, O., Baudry, B., Bourcier,]., Daubert, E., Fleurey, F., Monperrus, M.,
Hui, S., Tricoire, M., 2015. Multitier diversification in web-based software appli-
cations. Softw., IEEE 32 (1), 83-90.

Ambler, SW.,, 2015. A Roadmap for Agile MDA. Technical Report. Agile Model-
ing.Available at: http://www.agilemodeling.com/essays/agileMDA.htm

Balsamic Mockups Company, 2015. Balsamiq Mockups Company URL: https://
balsamiq.com/products/mockups/.

Basso, EP., Becker, L.B., Oliveira, T.C., 2007. Uma solu¢do para reuso e manuten¢ao
de transformadores de modelos usando a abordagem fomda. In: Simpdsio
Brasileiro de Engenharia de Software. Anais do 210 Simpésio Brasileiro de En-
genharia de Software, pp. 130-146.

Basso, E.P, Oliveira, T.C., 2007. WorkCASE Toolkit: Uma Ferramenta de Suporte para
Agile Model Driven Architecture. Technical Report. Adapit Solucdes em TI.

Basso, F.P, Oliveira, T.C., Farias, K., 2014a. Extending junit 4 with java annotations
and reflection to test variant model transformation assets. In: Proceedings of
the 29th Symposium On Applied Computing, pp. 1601-1608.

Basso, EP, Pillat, R.M., Frantz, R.Z,, Rooz-Frantz, F., 2014b. Assisted tasks to generate
pre-prototypes for web information systems. In: Proceedings of the 16th Inter-
national Conference on Enterprise Information Systems, pp. 14-25.

Basso, EP, Pillat, R.M., Oliveira, T.C.,, Becker, L.B., 2013. Supporting large scale model
transformation reuse. In: Proceedings of thel2th International Conference on
Generative Programming: Concepts & Experiences, pp. 169-178.

Basso, FE.P, Pillat, R.M., Oliveira, T.C., Fabro, M.D.D., 2014c. Generative adaptation of
model transformation assets: experiences, lessons and drawbacks. In: Proceed-
ings of the 29th Symposium On Applied Computing, pp. 1027-1034.

Basso, E.P, Pillat, R.M., Roos-Frantz, F., Frantz, R.Z., 2015. Combining mde and scrum
on the rapid prototyping of web information systems. Int.]. Web Eng. Technol.
10 (3), 214-244.

Basso, F.P, Pillat, R M., Rooz-Frantz, F.,, Frantz, R.Z., 2014d. Study on combining mod-
el-driven engineering and scrum to produce web information systems. In: Pro-
ceedings of the 16th International Conference on Enterprise Information Sys-
tems, pp. 137-144.

Batory, D., Latimer, E., Azanza, M., 2013. Teaching model driven engineering from a
relational database perspective. In: Proceedings of the 16th International Con-
ference on Model Driven Engineering Languages and Systems, pp. 121-137.

Blankenhorn, K., 2004. A UML Profile for GUI Layout. University of Applied Sci-
ences Furtwangen. Department of Digital Media Master’s thesis. URL: http:
//www.bitfolge.de/pubs/thesis/.

Booch, G., Rumbaugh, J., Jacobson, I, 2005. The Unified Modeling Language User
Guide (2nd Edition). Addison-Wesley.

Bosch, J., 2013. Achieving simplicity with the three-layer product model. IEEE Com-
put. 46 (11), 34-39.

Brambilla, M., Fraternali, P., 2014. Large-scale model-driven engineering of web user
interaction: the webml and webratio experience. Sci. Comput. Program. 89, Part
B (0), 71-87.

Brambilla, M., Fraternali, P, Tisi, M., 2008. A metamodel transformation framework
for the migration of webml models to mda. In: CEUR-WS Proceedings of the
4th International Workshop on Model-Driven Web Engineering (MDWE 2008).
volume 389, Tolouse, France., pp. 91-105.

Burke, B., Monson-Haefel, R., 2006. Enterprise JavaBeans 3.0: Developing Enterprise
Java Components. O'Reilly.

Davis, F, Venkatesh, V., 2004. Toward preprototype user acceptance testing of new
information systems: implications for software project management. IEEE Trans.
Eng. Manag. 51 (1), 31-46.

EDOC, 2014. UML Profile For Enterprise Distributed Object Computing (EDOC) URL:
http://www.omg.org/spec/EDOC]/.

Evans, E., 2004. Domain-DrivenDesign: Tackling Complexity in the Heart of Soft-
ware. Addison Wesley.

Forward, A., Badreddin, O., Lethbridge, T., Solano, J., 2012. Model-driven rapid pro-
totyping with umple. Softw.: Pract. Exp. 42 (7), 781-797.

France, R.B., Bieman, J.M., 2001. Multi-view software evolution: a UML-based frame-
work for evolving object-oriented software. In: ICSM, pp. 386-395.

Gdrtner, M., 2012. ATDD by Example: A Practical Guide to Acceptance Test-Driven
Development. Addison-Wesley Signature Series (Beck) 1st Edition.

Giardino, C., Unterkalmsteiner, M., Paternoster, N., Gorschek, T., Abrahamsson, P.,
2014. What do we know about software development in startups? Softw. IEEE
31 (5), 28-32.

Han, H., Liu, B, 2010. Problems, solutions and new opportunities: using
pagelet-based templates in development of flexible and extensible web appli-
cations. In: Proceedings of the 12th iiWAS’10, pp. 679-682.

Hutchinson,]., Whittle, J., Rouncefield, M., Kristoffersen, S., 2011. Empirical assess-
ment of MDE in industry. In: Proceedings of the 33rd International Conference
on Software Engineering, pp. 471-480.

Kavaldjian, S., 2007. A model-driven approach to generating user interfaces. In: Pro-
ceedings of the 6th Joint Meeting on European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of Software Engineering:
Companion Papers, pp. 603-606.

Kelly, S., Tolvanen,].-P., 2008. Domain Specific Modeling: Enabling Full Code Gener-
ation. IEEE Computer Society - John Wiley & Sons.

Kent, S., 2002. Model driven engineering. In: Integrated Formal Methods,
pp. 286-298.

Kulkarni, V., Barat, S., Ramteerthkar, U., 2011. Early experience with agile methodol-
ogy in a model-driven approach. In: Proceedings of the 14th International Con-
ference on Model-Driven Engineering Languages and Systems, pp. 578-590.

Landre, E., Wesenberg, H., Olmheim,]., 2007. Agile enterprise software development
using domain-driven design and test first. In: Companion to the 22nd ACM SIG-
PLAN Conference on Object-Oriented Programming Systems and Applications
Companion, pp. 983-993.

Linington, P.F, 2005. Automating support for e-business contracts. Int. J. Cooperative
Inf. Syst. 14 (2-3), 77-98.

Martinez, Y., Cachero, C., Matera, M., Abrahao, S., Lujan, S., 2011. Impact of mde ap-

http://dx.doi.org/10.1016/j.jss.2016.04.060
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0002
http://www.agilemodeling.com/essays/agileMDA.htm
https://balsamiq.com/products/mockups/
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0005
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0005
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0005
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0010
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0010
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0010
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0010
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0010
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0012
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0012
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0012
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0012
http://www.bitfolge.de/pubs/thesis/
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0014
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0014
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0014
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0014
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0015
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0015
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0018
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0018
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0018
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0019
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0019
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0019
http://www.omg.org/spec/EDOC/
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0021
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0021
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0021
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0021
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0021
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0022
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0022
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0022
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0023
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0023
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0024
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0024
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0024
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0024
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0024
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0024
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0025
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0025
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0025
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0026
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0026
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0026
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0026
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0026
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0027
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0027
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0028
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0028
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0028
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0029
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0029
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0030
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0030
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0030
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0030
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0031
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0031
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0031
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0031
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0032
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0032
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0033
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0033
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0033
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0033
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0033
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0033

636 EP. Basso et al./The Journal of Systems and Software 117 (2016) 612-637

proaches on the maintainability of web applications: an experimental evalua-
tion. In: Conceptual Modeling - ER 2011. In: Lecture Notes in Computer Science,
Vol. 6998. Springer Berlin Heidelberg, pp. 233-246.

Martinez, Y., Cachero, C., Melia, S., 2013. MDD vs. traditional software devel-
opment: a practitioner’s subjective perspective. Inf. Softw. Technol. 55 (2),
189-200.Special Section: Component-Based Software Engineering (CBSE), 2011

Moe, N.B., Dingsoyr, T., Dyba, T., 2010. A teamwork model for understanding an agile
team: a case study of a scrum project. Inf. Softw. Technol. 52 (5), 480-491.

Molina, A.lL, Giraldo, WJ., Gallardo,]J., Redondo, M.A., Ortega, M., Garcia, G., 2012.
Ciat-gui: a mde-compliant environment for developing graphical user interfaces
of information systems. Adv. Eng. Softw. 52, 10-29.

Molina, PJ., Melig, S., Pastor, O., 2002. Just-ui: A user interface specification model.
In: Computer-Aided Design of User Interfaces III, pp. 63-74.

Mussbacher, G., Amyot, D., Breu, R., Bruel,].-M., Cheng, B.H., Collet, P., Combe-
male, B., France, R.B., Heldal, R, Hill, J., Kienzle, J., Schéttle, M., Steimann, F.,
Stikkolorum, D., Whittle, J., 2014. The relevance of model-driven engineering
thirty years from now. In: Model-Driven Engineering Languages and Systems,
pp. 183-200.

Nunes, D.A., Schwabe, D., 2006. Rapid prototyping of web applications combining
domain specific languages and model driven design. In: Proceedings of the 6th
International Conference on Web Engineering, pp. 153-160.

Parnas, D., 1994. Software aging. In: Proceedings of the 16th International Confer-
ence on Software Engineering, pp. 279-287.

Pillat, R.M., Oliveira, T.C., Alencar, P.S., Cowan, D.D., 2015. BPMNt: a BPMN extension
for specifying software process tailoring. Inf. Softw. Technol. 57 (0), 95-115.
Ricca, F, Scanniello, G., Torchiano, M., Reggio, G., Astesiano, E., 2010. On the effort of
augmenting use cases with screen mockups: results from a preliminary empir-
ical study. In: Proceedings of the 2010 ACM-IEEE International Symposium on

Empirical Software Engineering and Measurement, pp. 40:1-40:4.

Rivero, .M., Grigera,]., Rossi, G., Luna, E.R., Montero, F., Gaedke, M., 2014. Mockup-
driven development: providing agile support for model-driven web engineering.
Inf. Softw. Technol. 56 (6), 670-687.

Rossi, G., 2013. Web modeling languages strike back. Internet Comput., I[EEE 17 (4),
4-6.

Schmidt, D.C., 2006. Guest editor’s introduction: model-driven engineering. IEEE
Comput. 39 (2), 25-31.

Schwaber, K., 1995. Scrum development process. In: Workshop on Business Ob-
ject Design and Implementation, OOPSLA'95, pp. 1-23. URL: http://agilix.nl/
resources/scrum_OOPSLA_95.pdf

Schwaber, K., 2004. Agile Project Management with Scrum (Microsoft Professional).
Microsoft Press.

Shore, J., Warden, S., 2008. The Art of Agile Development. O'Reilly.

Sommerville, I., 2010. Software Engineering (9th Edition). Addison-Wesley.

Souza, V.ES., Falbo, R.D.A., Guizzardi, G., 2007. A UML profile for modeling frame-
work-based web information systems. In: Proceedings of the 12th International
Workshop on Exploring Modelling Methods in Systems Analysis and Design
EMMSAD '2007, pp. 153-162.

Stary, C., 2000. Contextual prototyping of user interfaces. In: Proceedings of the 3rd
Conference on Designing Interactive Systems: Processes, Practices, Methods, and
Techniques, pp. 388-395.

Torchiano, M., Tomassetti, F., Ricca, F, Tiso, A., Reggio, G., 2013. Relevance, benefits,
and problems of software modelling and model driven techniques-a survey in
the italian industry. J. Syst. Softw. 86 (8), 2110-2126.

Vanderdonckt, J., 2005. A MDA-compliant environment for developing user inter-
faces of information systems. In: Proceedings of the 17th International Confer-
ence on Advanced Information Systems Engineering, pp. 16-31.

Vara, J.M., Marcos, E., 2012. A framework for model-driven development of infor-
mation systems: technical decisions and lessons learned.]. Syst. Softw. 85 (10),
2368-2384.

Voelter, M., 2009. Best practices for dsls and model-driven development.]. Object
Technol. 8 (6), 79-102.

Whittle,]., Hutchinson, J., Rouncefield, M., Burden, H., Heldal, R., 2013. Industrial
adoption of model-driven engineering: are the tools really the problem? In:
Proceedings of the 16th International Conference on Model Driven Engineering
Languages and Systems, pp. 1-17.

Zhang, Y., Patel, S., 2011. Agile model-driven development in practice. Softw. IEEE
28 (2), 84-91.

http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0033
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0034
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0034
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0034
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0034
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0035
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0035
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0035
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0035
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0036
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0036
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0036
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0036
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0036
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0036
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0036
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0037
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0037
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0037
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0037
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0039
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0039
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0039
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0040
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0040
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0041
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0041
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0041
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0041
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0041
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0042
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0042
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0042
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0042
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0042
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0042
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0043
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0043
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0043
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0043
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0043
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0043
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0043
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0044
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0044
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0045
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0045
http://agilix.nl/resources/scrum_OOPSLA_95.pdf
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0047
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0047
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0048
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0048
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0048
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0049
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0049
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0050
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0050
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0050
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0050
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0051
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0051
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0052
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0052
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0052
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0052
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0052
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0052
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0053
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0053
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0054
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0054
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0054
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0055
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0055
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0056
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0056
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0056
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0056
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0056
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0056
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0057
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0057
http://refhub.elsevier.com/S0164-1212(16)30035-8/sbref0057

EP. Basso et al./The Journal of Systems and Software 117 (2016) 612-637 637

Fabio Paulo Basso is currently a PhD student at Federal University of Rio de Janeiro (COPPE/UFR]), Brazil. His effort is on the technical feasibility of Model-Driven Engineering
applied as Service in startup contexts, including topics such as Domain Specific Languages and adaptive support for Model Transformation Chains.

Raquel Mainardi Pillat is currently a PhD student in Software Engineering at Federal University of Rio de Janeiro (COPPE/UFR]), Brazil. Her research interests include software
processes, Model-Driven Engineering and tailoring of models represented with the BPMN.

Toacy Oliveira is currently an Assistant Professor at Federal University of Rio de Janeiro (COPPE/UFR]), Brazil. He is also Adjunct Professor with the David R. Cheriton School
of Computer Science at the University of Waterloo, Canada. He received his education at Pontifical Catholic University of Rio de Janeiro, Brazil (Electrical Engineering -1992,
MSc-1997, PhD - 2001) and spent 3 years at University of Waterloo as a posdoc. His current research interests are under the software engineering umbrella, including software
processes and software reuse. Toacy focuses on the use notations, models, processes and tools to improve the way software systems are developed. He has published over
50 refereed publications, and has been a member of program committees of numerous highly-regarded conferences and workshops. He has also been a leading investigator
in national projects supported by CAPES and CNPq.

Fabricia Roos-Frantz is an Associate Professor who is with the Department of Exact Sciences and Engineering of the UNIJUI University, Brazil. She received her PhD in
Software Engineering from the University of Seville, Spain. Her current research interests include software product lines and search-based software engineering.

Rafael Z. Frantz is an Associate Professor who is with the Department of Exact Sciences and Engineering of the Unijui University, Brazil, and leads the Applied Computing
Research Group since 2013. He was awarded a PhD degree in Software Engineering by the University of Seville, Spain. His current research interests focus on the integration
of enterprise applications and search-based software engineering.

	Automated design of multi-layered web information systems
	1 Introduction
	2 Concepts
	3 Motivation and context
	4 Running example
	5 Approach
	5.1 Tool support for the design
	5.2 Lifecycle of model transformations
	5.3 Final remarks

	6 MockupToME method
	6.1 Part I: requirement engineering phase
	6.2 Part II: evolutionary prototyping phase
	6.2.1 Task A: find master entities
	6.2.2 Task B: use a start template
	6.2.3 Task C: refine the details
	6.2.4 Task D: select the strategy for details
	6.2.5 Task E: generate mockup source code

	6.3 Part III: architectural prototyping phase
	6.3.1 Task F: generate MVC layers
	6.3.2 Task G: detail the business logic
	6.3.3 Task H: apply UML profiles

	6.4 Part IV: functional prototyping phase
	6.4.1 Task I: generate complete source code

	6.5 Final remarks

	7 Implementation
	7.1 Underlying architecture
	7.2 Generated source code
	7.3 Implementation for mobile
	7.4 Remote connection
	7.5 Final remarks

	8 After source code generation
	8.1 Round-trip engineering
	8.2 Acceptance tests
	8.3 Final remarks

	9 Experience report
	9.1 Justification
	9.2 Discrepancies in software projects
	9.3 Lessons learnt
	9.4 Open questions

	10 Limitations
	11 Related work
	12 Conclusions and future work
	 Acknowledgments
	 Supplementary material
	 References

