Taylor & Francis
Taylor & Francis Group

Enterprise Information Systems

EMTERPRISE
REDORMETION SYSTEMS

ISSN: 1751-7575 (Print) 1751-7583 (Online) Journal homepage: https://www.tandfonline.com/loi/teis20

A methodology to rank enterprise application
integration platforms from a performance
perspective: an analytic hierarchy process-based
approach

Daniela L. Freire, Rafael Z. Frantz, Fabricia Roos-Frantz & Sandro Sawicki

To cite this article: Daniela L. Freire, Rafael Z. Frantz, Fabricia Roos-Frantz & Sandro Sawicki
(2019): A methodology to rank enterprise application integration platforms from a performance
perspective: an analytic hierarchy process-based approach, Enterprise Information Systems, DOI:
10.1080/17517575.2019.1633692

To link to this article: https://doi.org/10.1080/17517575.2019.1633692

@ Published online: 30 Jun 2019.

N
CJ/ Submit your article to this journal &

P

(&) View Crossmark data &

CrossMark

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=teis20


https://www.tandfonline.com/action/journalInformation?journalCode=teis20
https://www.tandfonline.com/loi/teis20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/17517575.2019.1633692
https://doi.org/10.1080/17517575.2019.1633692
https://www.tandfonline.com/action/authorSubmission?journalCode=teis20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=teis20&show=instructions
http://crossmark.crossref.org/dialog/?doi=10.1080/17517575.2019.1633692&domain=pdf&date_stamp=2019-06-30
http://crossmark.crossref.org/dialog/?doi=10.1080/17517575.2019.1633692&domain=pdf&date_stamp=2019-06-30

ENTERPRISE INFORMATION SYSTEMS IalyL(zl’ &franas
https://doi.org/10.1080/17517575.2019.1633692 aylor &Francis Group
ARTICLE TEMPLATE W

A methodology to rank enterprise application integration
platforms from a performance perspective: an analytic
hierarchy process-based approach

Daniela L. Freire, Rafael Z. Frantz (), Fabricia Roos-Frantz{® and Sandro Sawicki

Department of Exact Sciences and Engineering, Unijui University, ljui, Brazil

ABSTRACT ARTICLE HISTORY
Companies’ software ecosystems comprise applications that support Received 12 November 2018
their business processes. Frequently, these applications have been Accepted 16 June 2019
developed with different technologies and with no concern about

- . : - KEYWORDS
integration. Integration platforms are tools that facilitate the devel- Application integration;
opment and execution of integration solutions. In this article, we integration platform;

propose a methodology to support software engineers in the deci- integration patterns; analytic
sion-making process for an integration platform when performance hierarchy process; multiple
is a central requirement. The proposed methodology adds objective criteria decision-making;
criteria for performance assessment purposes and has been used to methodology

rank the five most popular integration platforms in order to prove its

feasibility.

1. Introduction

Software ecosystems (Manikas 2016) are formed over time by the incorporation of their own
applications or applications purchased from other companies. Recently, cloud computing
services have also been included (Varghese and Buyya 2018), making these ecosystems more
heterogeneous. Such applications are designed to operate locally and on embedded systems
or clusters of cloud computing, running on a number of processors and dealing with a large
volume, variety and velocity of data that characterises the big data scenario (Ritter, May, and
Rinderle-Ma 2017). Nevertheless, such applications are not designed to work together nor
collaborate on exchanging data and sharing functionality to support business processes.
Enterprise application integration is a research field that provides methodologies,
techniques and tools for the modelling and implementation of integration solutions
(Freire, Frantz, and Roos-Frantz, 2019). Such solutions promote the applications’ orches-
tration in order to keep data synchronised or to develop new functionality on top of
what currently exists, with minimal impact (Frantz, Corchuelo, and Roos-Frantz 2016).
Integration platforms are tools that allow for the design and execution of these solu-
tions. Such tools usually provide a domain-specific language, a development toolkit,
a run-time system and monitoring tools. The domain-specific language enables the
description of conceptual models for integration solutions. The development toolkit is
a set of software tools for the implementation of solutions, e.g., transforming

CONTACT Daniela L. Freire. @ dsellaro@unijui.edu.br @ Department of Exact Sciences and Engineering, Unijui
University, Brazil

© 2019 Informa UK Limited, trading as Taylor & Francis Group


http://orcid.org/0000-0003-3740-7560
http://orcid.org/0000-0001-9514-6560
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/17517575.2019.1633692&domain=pdf&date_stamp=2019-06-30

2 (&) D.L FREIREET AL.

a conceptual model into executable code.The monitoring tools detect errors that may
occur during the execution of integration solutions. The run-time system is responsible
for running integration solutions, which makes its performance a critical issue
(Khoumbati, Themistocleos, and Irani 2006; Botta et al. 2016; Ebert, Weber, and Koruna
2017). It is commonplace for open-source integration platforms to adopt the conceptual
integration patterns, as documented by Hohpe and Woolf (2004), and the architectural
style of pipes and filters (Alexander, Ishikawa, and Silvertein 1977). The integration
patterns are guidelines for implementing tasks that help to solve recurrent problems
associated with integration application. In the pipe-and-filter architectural style, filters
implement tasks that provide an integration pattern, with the pipes implementing
communication channels through which the data flow wrapped in messages. Example
of open-source integration platforms are as follows: Spring Integration (Fisher et al.
2012), Camel (lbsen and Anstey 2010), Fuse (Russell and Cohn 2012), Petals (Surhone,
Timpledon, and Marseken 2010) and Guarand (Frantz, Corchuelo, and Molina-Jiménez
2012).

Enterprises have sought to optimise and integrate their business processes by
increasing the usage of software applications to support them. One alternative for
small and medium-sized enterprises has been to hire the integration platform as
a service (iPaaS), because such a service decreases concerns about maintenance costs
and operating integration platforms on their premises (Brahmi and Gharbi 2014).
However, these platforms need to meet modern demands, while their run-time systems
must be increasingly robust, resilient and flexible, thus allowing integrated applications
to provide response times in milliseconds and uptime availability (Harman et al. 2013;
Linthicum 2017; Ritter, May, and Rinderle-Ma 2017). Due to the existence of a large
number of alternatives for integration platforms in the market, choosing the best one is
not an easy task. We consider that the run-time system of an integration platform is
more effective if it consumes fewer computational resources and is able to process more
messages per unit of time. In our review of the literature, we have identified some
proposals that can help software engineers to compare integration platforms in terms of
performance. Most of them focus on certain market aspects such as company maturity,
customer relationships and innovation, alongside technology aspects such as the avail-
ability of connectors, security, monitoring and governance of integration solutions.

In this article, we introduce a multiple criteria decision-making methodology, based on the
analytic hierarchy process (AHP) method (Saaty 1990), which has been widely used in decision-
making processes when choosing applications (Vaidya and Kumar 2006). It makes use of
mathematical and psychological fundamentals: the former organise and analyse complex
decisions, the latter help to perform human judgements (Saaty 2008). There are three main
steps in the proposed methodology: (a) evaluating comparison properties, (b) ranking con-
struction, (c) data visualisation and interpretation. Step (a) for evaluating comparison proper-
ties defines the performance properties and their respective values, which comprise three
dimensions: message processing, hotspot detection and fairness execution-related properties.
Message processing aims to improve the efficiency of the run-time system in order to process
a message, while, in hotspot detection, the focus is on the detection of tasks that may
represent a bottleneck within an integration solution. In turn, fairness execution deals with
the minimisation of the average time that a message takes to be processed by a fair assign-
ment of computational resources. Step (b), which involves ranking construction, produces the



ENTERPRISE INFORMATION SYSTEMS ‘ 3

ranking for the integration platforms. It is divided into four activities: dimension relevance,
platform competence, score computation and pairwise comparison. Step (c), which comprises
data visualisation and interpretation, presents and discusses the results. The platforms are
evaluated by subjective and objective criteria. In the former case, this is carried out according
to experts’ judgements while the latter is carried out by the assignment of scores for
performance properties. The contribution of the values assigned to the objective criteria is
greater than the values attributed to the subjective criteria in the composition of the platform
score.

This methodology is the result of our experience, over a period of several years, of
developing integration projects in real-world software ecosystems where performance
is a key feature. Our goal is to help software engineers in their choice of an
integration platform based on performance. This methodology is applicable to the
evaluation and comparison of any other set of integration platforms (see Freire,
Frantz, and Roos-Frantz (2019) for an experience report on its application). The
methodology has practical implications for software engineers by ranking platforms
from the perspective of the performance of the run-time system in the execution of
an integration solution. Software engineers can take advantage of the respective set
of properties in order to evaluate the performance of integration platforms and base
their choice on objective criteria, in addition to their own knowledge as experts. The
proposed methodology is simple because it has only a few steps, complemented by
detailed descriptions and templates for data aggregation and presentation. It is
a flexible methodology because it allows for the prioritisation of dimensions based
on the company’s interests. It can also be applied to other platforms and supports the
use of any support tools. Additionally, its basis on the AHP method ensures consistent
results. This article is organised as follows. Section 2 discusses related works on
methodologies to evaluate and compare integration platforms. Section 3 introduces
our methodology, as well as describes its steps and related activities. Section 4
demonstrates this methodology in action by evaluating, comparing and ranking five
well-known open-source integration platforms. Lastly, Section 5 presents our conclu-
sions regarding the methodology and its application.

2. Related work

In this section, we discuss related works that present methodology or approach subjects
that intersect the research about performance analysis, comparison or ranking of inte-
gration platforms.

Kawaguchi and Yamada (2005) proposed a simulation method to evaluate the perfor-
mance of application integration based on a timeout control scheme. They approached
factors that can affect the integration, such as network, application traffic, and workflow
layer models. The method measured the total service completion time and the individual
application response time as performance measures. In their work, they used a simulation
tool, called OPNET, and their contribution was the improvement of the tool, whereas this
article provides a methodology that approaches the performance of integration platforms
and our contribution is to provide well-defined steps and templates to support the decision-
making in the choice of the best platform by software engineers.



4 (&) D.L FREIRE ET AL.

Corchuelo, Frantz, and Gonzalez (2008) analysed integration platforms regarding
platform independence, usability, ease of programming, and maintainability. They
divided the properties into three groups: scope of the tool, modelling capabilities, and
technical features. The scope of the tool deals with properties that the authors consider
as essential. The modelling capabilities deals with important properties but not essential;
according to the authors, the absence of such properties makes integration modelling
more complex and less intuitive. The technical features address properties that affect the
ease of programming, performance, or management of integration solutions. In their
work, they compared five integration platforms: Camel, Mule, ServiceMix, Spring
Integration, and BizTalk. Their work differs from ours, mainly because their proposal
focuses on general properties, whereas our proposal provides a decision-making
method to compare integration platforms regarding performance.

Santos, Sarriegi, and Serrano (2008) proposed a methodology of integrated information
systems design to help enterprises to align management applications with their business
processes and to define the integration of the information systems of enterprises. The
methodology has two main steps. First step defines a functional reference model of the
company and the second applies a generic functional model, which covers only the main
processes. Their work presents a methodology to help enterprises to represent their core
processes and applications involved in these processes, whereas this article provides
a methodology to help them to evaluate tools to integrate their applications.

Aldin and de Cesare (2011) proposed a methodology to discover process patterns
from diverse enterprises assets and to model such patterns in order to reuse them in the
design or redesign of organisational processes. The literature surveyed and the themes
that can be drawn from their work aimed to define a methodology for systematically
discovering and using generalised patterns of business processes; whereas, in this
article, we present a decision-making methodology for integration platforms regarding
performance aiming improvements for the enterprises’ business process.

Tan et al. (2011) analysed the design of integration solutions that make use of the
Environment-based Design methodology, in which a design problem is implied in
a product system. Their methodology is composed of three parts: the environment of
the product project, the requirements on product structure, and the requirements on the
performance of the product project. Their methodology aims to generate and to refine the
design specifications and design solutions, following three steps that are carried out
progressively and simultaneously: environment analysis, conflict identification, and solu-
tion generation. The «environment analysis» identifies the key environment components
and the relationships amongst them. The «conflict identification» identifies conflicts within
the environment components relationships. The «solution generation» solves environment
conflicts, proposing a design solution. Their work used a methodology to eliminate
conflicts in designs of integration solutions, whereas we propose a methodology to
evaluate the performance of execution of integration solutions.

Traore et al. (2012) introduced a model-driven process that assists in performance
analysis throughout the software development life-cycle, allowing designing models for
the performance analysis of distributed software systems, based on the Unified Modelling
Language profile for schedulability, performance and time. Their methodology provided an
outline of system performance models, metrics, and a case study of a business system. Their



ENTERPRISE INFORMATION SYSTEMS ‘ 5

work presented a methodology for the evaluation of distributed systems, whereas we
propose a methodology to the comparison of integration platforms.

More and Bartere (2013) analysed features that impact the productivity, scalability,
elasticity, cycle time and incorporated in quality of IT teams, reporting their experiences
about the use of the Amazon SQS and Boomi integration platforms. These authors
pointed out the pros and cons of each platforms, suggesting the Boomi platform for
projects of lower costs and when there is a lack of seasoned software engineers. They
analysed and compared only two integration platforms and did not describe the steps
followed, so that the procedure can not be repeated, while we describe in detail the
steps of the methodology to evaluate integration platforms.

Roos-Frantz et al. (2015) proposed simulation like an evaluation method of the quality
of conceptual models of integration solutions. They used Petri nets to simulate integra-
tion solutions conceptual models designed with Guarana platform (Frantz, Corchuelo,
and Molina-Jiménez 2012). The authors claim that this method allows cost reduction,
risk, and time because this approach precedes the construction of the real solution,
avoiding future fails. Their work presents a method to evaluate the conceptual models of
integration solutions, whereas this article provides a methodology to evaluate live
integration platforms with the focus in performance of the execution of integration
solutions. Reports published by consulting and marketing trends companies often
review and compare integration platforms.

Ebert and Weber (2016) analysed and evaluated integration platforms by a taxonomy,
and applied it to the following platforms: Boomi, Informatica, Mule, and SAP. They used
two groups of criteria: functional and non-functional. The functional criteria were
processed execution, number of operators, connectivity, administration, and develop-
ment. The non-functional criteria studied were: price, service contract, trustworthiness,
technology, safety, and service management. Their work had a general purpose
approach, whereas this article has specific purposes for a decision-making method to
rank integration platforms.

The reports by Gartner (Guttridge et al. 2017) and Ovum (Sharma 2017) focus on proper-
ties related with market aspects, such as provider company maturity, customer relationship,
or innovation, and others related with technology, such as the availability of connectors,
security, monitoring, and governance of integration solutions. These reports provide a view
of the integration platforms in terms of the market, whereas this article focuses on properties
that have an impact on the performance of the run-time system and indicate a decision-
making method to choose an integration platform, focusing on the performance.

Pfaff and Krcmar (2018) proposed a web-based system architecture for data integration
that allows numerous external data sources to be linked with the domain ontology. Their
research suggested to structure, standardise and normalise IT service catalogues. Their work
proposed an architecture to integrate data, whereas our proposal is to evaluate integration
platforms. The related works are summarised in Table 1, specifying the kind of methodology
used, the kind of approach, and the analysed properties.

3. The ranking methodology

This section presents our methodology for decision-making by comparing and ranking
enterprise application integration platforms and focusing on the performance of their run-



‘uoipelisqe 4o [9A31-yBiy ul paydeoidde sem dUBWIONY

19]]043u0d BulIoIy} pue ‘Ad1jod BulNPaYdS ‘|SPOW UOIINIAXS ‘UOIIEILIIUSPI

usoned ‘|9A3| uondesysge ‘abels uodlap ‘abelols abessaw ‘uoneinbyuod pue uoleasd jood pealyl wisAs awn-uni |opow |esodoud unQ
DIAISS ]| JO sI[esousb pue Isipiepuels ‘ain1dnils uonesBajul elep  ainAYdIe (8107) Jewniy pue yeyq
uonnjos uoiieibalul Jo duewsanob pue ‘bBunonuow ‘A1INdS ‘s10109UU0d JO Alljiqe|iene tEotm_o_ uoneibayul e/u (£107) ewueys
uoneaouu Jo ‘diysuoiejas Jawoisnd ‘“Ayunjew Auedwod sspiroid | wiopied uonelbalul e/u (£107) "[e 12 abpunny
Juawabeuew 331AI3s pue ‘A1ajes ‘ABojouydady ‘sSaUIYLOMISNIY ‘1oe1u0d
921M9s ‘9d1d “JuswidojaAsp ‘uonelsiulwpe ‘AIAIDAULO) ‘5101e13d0 JO JBQUINU ‘U0IINIAXS passadold  wiuoseld uoneibaul Awouoxey (9107) 4299M pue g3
sjopow |enidaduod jo Aijenb uolinjos uonelbajul uofie|nwis ($102) ‘| 1® Zyuei4-sooy
Ayjenb ur payeq pue awiy 3pAd ‘Audnsed ‘Aijigejeds ‘Auanonpoid weay || e/u (£107) 2131eg pue oy
sdais 9)pAd-3)1]  ssad0id Juswdojansp |opow (Z107) ‘|e 3 2J0e1)
19foid 1dnpoud ay) Jo JUSWUOIIAUS  SsuofINnjos uoneibalul |lopow (LL0Z) "[e 32 ue]
suianed ssaxoud  ssad0id |euoniesiuebio |opow (1107) 2Jesa) ap pue uip|y
suonedijdde juswabeuew ssacoud jeuopesiuebio |]spow (8007) oueusss pue ‘IbaliIeS ‘sojues
Aypigeureiuiew pue ‘buiwwelboid jo ssauises ‘Ayljigesn ‘@duspuadapul wiope|d uonesbaul e/u (8007) z9|eZUOD pue ‘Zluel4 ‘O[aNYDI0D)
s|9pow Jake| mopiom pue ‘dyjely uopnedidde “yiomiau  uonesbalul uonedidde uonenwis (S007) epewej pue iyonbemey
saipadold pashjeuy yoeoiddy Kbojopoyray sjesodoud

6 (&) D.L. FREIRE ET AL.

"SHIOM paieas 3y ul saydeoidde usamiaq uosuedwo) *| 3|qel



ENTERPRISE INFORMATION SYSTEMS ‘ 7

time systems. The following steps constitute this methodology: evaluating comparison
properties, ranking construction, and data visualisation and interpretation, cf. Figure 1.

The «evaluating comparison properties» step deals with the study of the run-time
system and results in a set of values assigned to the properties, which can have an
impact on performance. Such properties are grouped according to three dimensions,
which will be described later. The «ranking construction» step deals with the production
of the ranking of integration platforms and is divided into the following activities: (a)
dimension relevance, (b) platform competence, (c) score computation and (d) pairwise
comparison. The (a) dimension relevance activity consists of determining the relevance
level of each dimension in the context of integration platform usage. The (b) platform
competence activity consists of determining the capacity of the integration platform to
find the properties of each dimension, using objective and subjective criteria. The (c)
score computation activity calculates the scores for integration platforms based on the
results of previous activities. The (d) pairwise comparison activity is used to evaluate to
what extent one integration platform is better than another regarding each dimension.
Finally, the «data visualisation and verification» step focuses on the analysis and pre-
sentation of the results. Our methodology uses the TransparentChoice' software as
a support tool whose graphic interface helps in the prioritisation of dimensions and in
the process by which software engineers make judgements and carry out consistency
tests for evaluation. We chose this tool because it offers a free version and because there
was knowledge about its use amongst the researchers. However, there are several AHP
tools in the market, such as Expert Choice,” SuperDecisions,> AHP-0S,* Decisor’ czekster
et al. 2019, and PriEsT.° Further, this methodology allows software engineers to adopt
the tool that suits them best, because there is no dependency on any of them.

integration input Criteria output,_Performance
platform Definition > raw data

Compute Ranking

Weight R Rating R Pairwise
. I Assignment i Scales ”| Comparison I @
A 4

Data Visualisation
and Interpretation

Figure 1. Overview of the proposed methodology.



8 (&) D.L. FREIRE ET AL.

3.1. Evaluating comparison properties

In this step, the integration platforms are carefully studied, so that their run-time systems are
evaluated regarding properties that can affect performance. These properties represent the
evaluation criteria in our methodology and are organised in three dimensions: (i) message
processing, (ii) hotspot detection and (iii) fairness execution. The (i) message processing
dimension pursues efficient message processing within an integration solution. The (ii)
hotspot detection dimension aims to discover the hotspot within an integration solution,
in which the message processing time breaches the software quality requirements of the
company in question. The (jii) fairness execution dimension seeks to distribute the computa-
tional resources in a balanced way during message processing dimension within an integra-
tion solution. In this article, we refer to threads as computational resources for executing
integration solution task in message processing. A thread is the basic unit of processing, i.e.,
the smallest sequence of programmed instructions that can be managed by the run-time
system. We introduced the dimensions and their corresponding properties and provided
candidate values to each property, so that software engineers can assign the appropriate
value to the property of the integration platform analysed.

Software engineers summarise the evaluation results concerning integration plat-
forms in the template shown in Table 2. In this table, the columns represent the
integration platforms, the lines represent the properties of each of the dimensions
and the cells represent the qualitative values of the properties.

3.1.1. Message processing

This dimension addresses improvements to the run-time system'’s efficiency when
processing a message. It can also be seen as an increase in the number of processed
messages per unit of time. It comprises properties that reduce the real time demanded
by the integration solutions to process a message completely. These properties are:

3.1.1.1. Thread pool creation. This property indicates how the run-time system makes
the thread pools available, in order to execute the integration solutions, by allowing for
the creation of one or more thread pools (Ibsen and Anstey 2010). It may assume the
following values, in ascending order of preference: global or local. The global value
indicates that a single thread pool executes every task in an integration solution. The

Table 2. Template for summarising the values of comparison properties.
Integration Platforms

Dimension Property Platform 1 Platform n
Thread pool creation * *
Message Processing Message store * cee *
Thread pool configuration * *
Abstraction level * *
Hotspot Detection Detection stage * e *
Pattern identification * *
Execution model * *
Fairness Execution Scheduling policy * *

Throttling controller * . *




ENTERPRISE INFORMATION SYSTEMS ‘ 9

local value indicates that the run-time system is able to configure the local thread pools
in order to execute a task or a task group for an integration solution.

3.1.1.2. Message storage. This property indicates how the run-time system deals with
the storage of messages during the execution of an integration solution. In-memory
storage of messages is faster (Balko and Barros 2015), but can be more expensive.
Messages that contain big amounts of data have an impact on the amount of memory
required for their processing inside the integration solutions. In such cases, rather than
only in-memory storage of messages, the run-time system can store them on disk. It may
assume the following values, in ascending order of preference: in-memory or hybrid. The
in-memory value indicates that the run-time system only performs the in-memory
storage of messages. The hybrid value indicates that the run-time system adopts
different strategies for storing messages, in addition to in-memory storage.

3.1.1.3. Thread pool configuration. This property indicates how the run-time system
tunes the thread pool size to deal with different message workloads. The run-time system
allows for the configuration and management of thread pools for an integration solution. It
may assume the following values, in ascending order of preference: static or dynamic. The
static value indicates that the thread pool is configured with a fixed number of threads, as
defined at the design stage by the software engineer. The dynamic value indicates that,
during run-time, the run-time system dynamically tunes the number of threads in the pool,
whether increasing or decreasing, according to the demand of the workload within a range
of values established at the design stage (Gleyzer and Howes 2017).

3.1.2. Hotspot detection

This dimension addresses the hotspot detection within the integration solutions according to
the run-time system. A hotspot is part of an integration solution where there is a bottleneck;
therefore, messages are not processed in an acceptable time. They are characterised by the
task’s work overload and indicate whether threads are lacking for that point in the integration
solutions. This can lead to an increase in the actual time required to process a message.
Hotspot detection can help the run-time system allocate threads more efficiently to tasks in
the integration solutions. The following properties can contribute to hotspot detection:

3.1.2.1. Detection stage. This indicates the stage at which it is possible to determine
the existence of hotspots in the integration solutions (Ahmad 2016). This property
may assume the following values, in ascending order of preference: design time, run-
time. If the detection stage assumes the design time value, this means that software
engineers must use their domain knowledge and modelling experience to forecast
hotspots during the design stage, whereas run-time means that the run-time system
is endowed with intelligence needed to detect hotspots during the execution of the
integration solutions.

3.1.2.2. Abstraction level. This property indicates the level of decomposition at which
the integration solutions can be broken in order to detect hotspots. Hotspot detection
can be carried out by dividing the integration solution into pieces, which are either
chained tasks groups or single tasks. This property may assume the following values, in



10 (&) D.L FREIRE ET AL.

ascending order of preference: per group, per task. The per group value means that the
piece of the integration solution being analysed equals a group of tasks. The per task
value means that the piece of the integration solution being analysed equals a single
task. This last value allows for a finer-grained control (Sudarsanam, Srinivasan, and
Panchanathan 2004).

3.1.2.3. Pattern identification. This property indicates whether the run-time system
can detect patterns (Ritter, May, and Rinderle-Ma 2017) that can lead to hotspots. Such
patterns may determine: (i) known behaviours that occur during execution, increasing
the average waiting time of the tasks that are ready to be executed; (ii) a particular
combination of tasks identified in the design of the integration solutions. This property
may assume the following values, in ascending order of preference: no or yes. The yes
value indicates that the run-time system can detect patterns that might cause hotspots
when the integration solution is divided into pieces; in cases where it does not have this
ability, the value is no.

3.1.3. Fairness execution

This dimension addresses the balanced assignment of threads to tasks, in order to
minimise the average time that a message takes to be processed in an integration
solution. The following properties contribute to the fair execution of tasks:

3.1.3.1. Execution model. This property refers to the execution model implemented
by the run-time system. It deals with the level of execution of an integration solution. It
is possible to classify these models into process-based and task-based models. In the
former case, the run-time system controls process instances as a whole, i.e,, it cannot
interact with internal tasks. In the latter case, the run-time system can control both
process instances and their internal tasks. The literature reports that the task-based
model offers better performance with a steady stream of data input and lower perfor-
mance when the input rate increases (Frantz, Corchuelo, and Arjona 2011). This model is
also more complex to provide transaction and fault-tolerance support (Frantz,
Corchuelo, and Molina-Jiménez 2012). This property may assume the following values,
in ascending order of preference: process-based, task-based or hybrid. The process-
based value indicates that the run-time system adopts a process-based model. The task-
based value indicates that the run-time system adopts a task-based model. The hybrid
value indicates that the run-time system will adopt the model which best fits the
execution profile in terms of predefined parameters, such as the message input rate,
the number of processors or the average message size.

3.1.3.2. Scheduling policy. This property refers to the policy followed by the run-time
system in order to schedule the task execution in an integration solution using computa-
tional resources. Usually, the tasks stay in a queue until there are available threads to
execute them. In cloud environments, the scheduling of an integration solution becomes
challenging, because its performance must result in scheduling overhead reductions, mini-
mised costs and maximised resource utilisation, while still meeting the specified deadlines
(Anwar and Deng 2018). However, cloud environments can lead to computing overheads
that negatively affect the overall performance and the execution costs (Chen and Deelman



ENTERPRISE INFORMATION SYSTEMS 1

2011). This property can assume following values, in ascending order of preference: fifo,
priority or mapping. The fifo value means that the run-time system follows a first-in-first-out
policy, in which the oldest (first-in) task in the queue is firstly executed. The priority value
means that the run-time system allows tasks to have an associated priority, so that a task
with a high priority is firstly executed. The mapping value means that the run-time system
invokes a mapping procedure that involves a mathematical model or optimisation method,
which helps in finding an optimal scheduling policy for task execution, based on a previous
evaluation of the integration solution.

3.1.3.3. Throttling controller. This property indicates whether the run-time system can
control the rate of incoming messages in an integration solution, so that when this rate
exceeds a previously determined limit, the run-time system can adopt suitable policies to
preserve the execution of the integration solution. Such intervention policies may involve: (i)
refusing new messages; (ii) buffering at input the incoming messages or maintaining them
in a repository. This property may assume the following values, in ascending order of
preference: no or yes. The yes value indicates that the run-time system can control the
incoming message rate, i.e., it has a throttling controller; in cases where it does not have
a throttling controller (Hohpe and Woolf 2004), the value will be no.

3.2. Ranking construction

This step aims to produce the results that lead to the ranking of the integration
platforms. It consists of determining the relevance level of each dimension by rating
the integration platforms’ capacity in relation to their properties, merging the criteria to
calculate the scores for the integration platforms, and performing a pairwise comparison
of the integration platforms. This step is composed of the following activities: relevance
assignment, competence rating, score computation and pairwise comparison.

Our methodology structures the problem at successive levels, which enable the formula-
tion of a complex decision in a hierarchical structure in the form of an inverted tree, cf.
Figure 2. The highest level is the main goal, i.e., choosing the integration platform with the
best performance. At the second level are the criteria for decision-making, i.e., the dimen-
sions. At the bottom level are the alternatives, i.e,, the integration platforms.

3.2.1. Dimension relevance

This activity determines the relevance level of each dimension. The hierarchical structuring
of the problem facilitates the judgement of a dimension regarding its priority in relation to
the other dimensions. This prioritisation is performed by collecting the opinions of software
engineers regarding the relevance of each dimension in the performance of the integration
platforms. An opinion is represented by the assignment of a weight (w) to each dimension,
which determines the relevance level of the dimension and provides a consistency measure
and quality indicator of the chosen integration platform. Table 3 sets out the weights that
can be assigned to a dimension.

When properties of a dimension are fundamental to achieving good performance,
they must be highly considered in the choice of integration platform. Thus, the rele-
vance of this dimension is set at the essential level and assumes a weight equal to 3. If
the dimension improves the performance, but it is not essential, then the relevance level



12 (&) D. L FREIRE ET AL.

The best performance

|

Dimensions Message Processing Hotspot Detection Fairness Execuction

Goal of the decision

Platforms Platform1 Platform 2 Platform n

Figure 2. Hierarchical structure for the decision problem.

Table 3. Relevance levels for dimensions.

Weight (w) Relevance Description
3 Essential The dimension is essential to meet the goal.
2 Important The dimension is important to meet the goal.
1 Desirable The dimension contributes to the goal as an additional element.

of this dimension will be set to important, which assumes a weight equal to 2. If the
dimension adds positive features, but its absence does not significantly affect the
performance, then the relevance level of this dimension will be set to desirable, which
assumes a weight equal to 1. Table 4 presents a template that can be used to organise
the assigned relevance levels to each dimension.

3.2.2. Platform competence

This activity quantifies the integration platforms’ capacity based on their properties and
involves subjective or objective evaluations. At the end of this activity, each integration
platform receives numeric values that correspond to the score for the competence level
in each dimension, in order to realise good performance in the integration solution’s
execution.

Subjective evaluation follows a scale proposed by Saaty Saaty (1990), where values
relating to the competence of the integration platforms vary from a minimum value of 0
to a maximum value of 9. This scale is widely used in decision-making methods and
based on psychological observations on passing judgements (Franek and Kresta 2014).
A minimal value equal to 0 indicates that the platform does not meet any of the
properties of the evaluated dimension. A maximal value equal to 9 indicates that the
platform has found all properties of the evaluated dimension. Values from 1 to 8 indicate
that the platform has partially found properties of the evaluated dimension.

Table 4. Table template to summarise dimension relevance.

Dimension Essential Important Desirable
Message Processing * * *
Hotspot Detection * * *

Fairness Execution * * *




ENTERPRISE INFORMATION SYSTEMS 13

The template shown in Table 5 can be used by software engineers to register the values
of competences for the integration platforms, as obtained by the subjective evaluation. This
table must be populated after software engineers reach a consensus about these values in
each dimension. If there are different opinions amongst these software engineers, the final
value assigned must be the average of the values assigned in the individual judgement.

The objective evaluation converts the qualitative values of the properties added to
Table 1 into quantitative values, according to Table 6. In the course of evaluating
comparison properties, the description of each property indicates the order of prefer-
ence for qualitative values. Thus, a quantitative value equal to 1 corresponds to a lower
qualitative value in the order of preference. The highest qualitative value in the order of
preference has a quantitative value equal to 10 when there are two qualitative values for
the property, and a quantitative value equal to 100 when there are three. In our case,
these quantitative values, whether equal to 10 or 100, were intentionally attributed, so
that the objective criteria prevailed over the subjective criteria.

Table 5. Template for evaluating the competence degree.

Integration Platforms

Dimension Platform 1 Platform n
Message Processing * .. *
Hotspot Detection * . *
Fairness Execution * *

Table 6. Correspondence of qualitative and quantitative values.

Value
Dimension Property Qualitative Quantitative
Thread pool creation global !
local 10
in- 1
Message Processing Message store ih-memory
hybrid 10
Thread pool configuration static !
dynamic 10
Detection stage design time !
run-time 10
Hotspot Detection Abstraction level per group !
per task 10
1
Pattern identification no
yes 10
process-based 1
Execution model task-based 10
hybrid 100
fifo 1
Fairness Execution Scheduling policy priority 10
mapping 100
no 1

Throttling controller
yes 10




14 (&) D.L FREIRE ET AL.

Table 7. Template for quantitative values.

Integration Platforms

Dimension Property Platform 1 Platform n
Thread pool creation *® *
Message Processing Message store * s *
Thread pool configuration * *
Total >k v Sk
Abstraction level * *
Hotspot Detection Detection stage * e *
Pattern identification * *
Total >k e Sk
Execution model * *
Fairness Execution Scheduling policy * *
Throttling controller * *
Total o e >k

Table 7 presents a template that can be used by software engineers to register the
values of the competence scores of the integration platforms, obtained by the objective
evaluation. The columns in the table represent the integration platforms alternatives and
the lines represent the properties in the respective dimensions. At the end of each
dimension, one line represents the total amount for the quantitative values in the
dimension. The correspondence of qualitative and quantitative values was based on
our experience in dealing with real-world integration problems by focusing on the
performance of the platforms.

3.2.3. Score computation

This activity consists of the processing of data produced during the aforementioned
activities and the calculation of the total score for each integration platform in each
dimension. This calculation is made by merging subjective or objective criteria regarding
the competence degree of the integration platforms, as well as the relevance level of
each dimension. At the end of this activity, each integration platform has a score
according to its competence degree, as well as a partial score and a total score. The
score is an independent numeric value that measures the competence degree of the
platform in a dimension. The partial score is a numeric value score for a platform in
a dimension, which depends on the weight of the dimension. The total score is
a numeric value corresponding to the accumulated partial score value of the three
dimensions.

The subjective criteria are the judgements made by software engineers about the
competence of each integration platform in finding a dimension. Table 5 has to be
used to determine the final qualitative values to show that a consensus judgement has
been reached. Equation (1) represents subjective criteria, which are equivalent to
qualitative values, where i represents each integration platform and k represents
each dimension.

subjective_criteria;, =qualitative_value;, (1)



ENTERPRISE INFORMATION SYSTEMS 15

The objective criteria involve the numeric conversion of the qualitative values of the
properties into quantitative values. Table 7 summarises them by the sum of the quanti-
tative values of properties in each dimension. According to Equation (2), objective
criteria are the summation of the quantitative values by dimension, where i represents
each integration platform, k represents each dimension and j represents each quantita-
tive value.

9
objective_criteria;, = Z quantitative_value;, [j] (2)
=
The score achieved in terms of the competence degree of an integration platform (a;, ) is
the sum of the objective and subjective criteria, cf. Equation (3). In this equation, i
represents each integration platform and k represents each dimension. The competence
degree of a platform involves a score indicating that an integration platform has been
realised in each dimension, regardless of the relevance level of the dimension. It is
important to observe that the maximum quantitative value is greater than the maximum
value of the scale of competence. This ensures that an integration platform with a high
summation of the quantitative values is better ranked, although the value assigned to
the subjective judgement of the software engineers is not sufficiently high. Thus,
objective criteria prevail over subjective criteria.

a;, = objective_criteria;, + subjective_criteria;, (3)

The partial score for an integration platform is the multiplication of the score achieved in
the competence degree of a platform in meeting a dimension (a;,) by the weight of the
respective dimension (wy), as set out in Equation (4). In this equation, i represents each
integration platform and k represents each dimension.

partial score;, = a;, - wi (4)

The total score for an integration platform is the summation of the partial scores in the three
dimensions, i.e., the multiplication of the score achieved in terms of the competence degree
of a platform (a;, ) by the weight of the respective dimension (wy), as set out in Equation (5).
In this equation, i represents each integration platform and k represents each dimension. k
assumes values from 1 to 3, which correspond to the dimensions of message processing,
hotspot detection and fairness execution, respectively. Lastly, an integration platform i has
a competence degree score, a partial score and a total score.

3
total scoreli] = Za,k - Wi (5)
k=1

3.2.4. Pairwise comparison

According to the psychological field, in order to arrive at a consensus, it is easier and more
accurate to express an opinion about two alternatives than about all the alternatives at the
same time (Ishizaka and Labib 2011). Pairwise comparisons are central to our methodology,
as they allow software engineers to focus on a small and well-defined action involving the
comparison of two elements in a given context. Software engineers use Table 8 in order to
evaluate the integration platforms, attributing the value in a scale from 1 to 9.



16 (&) D.L. FREIRE ET AL.

Table 8. The fundamental Saaty scale.

Scale* Definition Explanation

1 Equal importance Two properties contribute equally to the objective

3 Moderate importance of one over Experience and judgement strongly favour one property over

another another

5 Essential or strong importance Experience and judgement strongly favour one property over
another

7 Very strong importance A property is strongly favoured and its dominance
demonstrated in practice

9 Extreme importance The evidence favouring one property over another is of the
highest possible order of affirmation

2,4,6,8 Intermediate values between the two When compromise is needed

adjacent judgements

Reciprocals If property i has one of the above numbers assigned to it when compared with property j, then j has
a reciprocal value when compared with i

Rationales  Ratios arising from the scale If consistency were to be forced by obtaining n numerical
values to span the matrix

*¥Intensity of importance on an absolute scale

Each pair of platforms is compared by judging how many times a platform is more
competent than another to meet each dimension and to register the values of the judgement,
in line with the template in Table 9. A value of 1 is given when integration platforms are
equivalent or equal, i.e.,, both integration platforms have the same competence to meet the
evaluated dimension. A value of 2 means that an integration platform is twice as competent
than another. A value of 3 means that an integration platform is three times more competent
than another. This continues successively up to value of 9, when an integration platform is
nine times better than another. The paired judgement is a relative value (p;) or a quotient of
two values (a/b) in which the value a is attributed to platform i, while the value b is attributed
to platform j. The results of pairwise comparison for every integration platform are organised
into positive reciprocal n x n matrix P = (p,-j ), as shown in Equation (6), where n is the number
of compared integration platforms. Pairwise comparisons are supported by the
TransparentChoice software, which checks the consistency of the comparisons, points out
potential errors and is able to forecast values of comparisons, based on the previously
approximated results from the evaluation process, before making all comparisons.

Table 9. Template to summarise pairwise comparison.

Integration Platforms

Dimension Platform 1 Platform n
Platform 1 1 .. *
Message Processing : * : ¥
Platform n * e 1
Platform 1 1 .. *
Hotspot Detection * *
Platform n * e 1
Platform 1 1 *
* *

Fairness Execution

Platform n * e 1




ENTERPRISE INFORMATION SYSTEMS 17

1 P12 P Pn
P21 1 N YRR Dan
P= pin pi2 1 Pin (6)
Pin-11  P(n-1)2 N Y
Pm Pn2 o Pni o 1

3.3. Data visualisation and interpretation

In this step, results are visualised and analysed according to the relevance level of the
dimensions and the competence of the integration platforms. The relevance level of
a dimension is the factor that most affects the ranking of an integration platform by
making it better or worse. The consistency of the judgements should be checked
according to the following points:

e The best overall position in the ranking of the integration platforms must be
occupied by the platform that has the highest quantitative values for properties,
since these values influence the score achieved in evaluating the competence
degree of the integration platforms and, consequently, the total score.

e The best overall position in the ranking of the integration platforms must be
occupied by the platform that best meets the dimension of a greater weight,
according to Table 3.

e The best ranking of the integration platforms must be consistent with the pairwise
comparison. Thus, if Platform 1 is better than Platform 2, and Platform 2 is better
than Platform 3, Platform 1 is also better than Platform 3.

The AHP method’s mathematical base takes care of the consistency checking. A software
tool can be used to perform consistency tests; thus, if there is any inconsistency in the
judgements made by software engineers, the tool will warn them and the entire process
should be repeated until all the inconsistencies have been solved, including the weight
assignment, the rating scales and the pairwise comparisons. According to Sugden (1985),
inconsistencies can be caused by clerical errors, incomplete model structure or by psy-
chological reasons Some tools offer solutions, such as PriEsT that offers Pareto-optimal
solutions based on multiobjective optimisation (Siraj, Mikhailov, and Keane 2015).

The ranking of the integration platforms can be presented as shown in the template in
Figure 3. According to Kosara (2016), bar charts work well for classification and compar-
ison and are easily understood and recognised across language barriers. This figure
depicts the evaluation of each integration platform according to each dimension, and in
general, as a partial score and total score, respectively. In this chart, each bar represents an
integration platform. The width of a bar represents the value of the partial score for each
dimension. Dark grey represents the partial score for the message processing dimension,
light grey represents the partial score of the hotspot detection dimension, and white
represents the partial score of the fairness execution dimension. The width of the entire



18 (&) D. L. FREIRE ET AL.

3
S b
k=1
3
k=1
3
Z A W
k=1
Platform n  Fai i), QAp3.W3
0 27 54 81 108 135
B Message Processing Hotspot Detection O Fairness Execution

Figure 3. Template to present the ranking of the integration platforms.

bar represents the total score of an integration platform. The widest dark grey bar
represents the best integration platform in terms of the message processing dimension.
The widest light grey bar represents the best integration platform in terms of the hotspot
detection dimension. The widest white bar represents the best integration platform in
terms of the fairness execution dimension. The widest bar represents the best integration
platform in general, i.e,, in terms of all the dimensions. It is important to emphasise that
the result could be different for the same set of integration platforms if the levels of
relevance for the dimensions reported in Table 4 change.

4. Sample application

In this section, we demonstrate our methodology by carrying out a performance evaluation
of five open-source state-of-the-art integration platforms. The chosen platforms were Spring
Integration (Fisher et al. 2012), Camel (Ibsen and Anstey 2010), Fuse (Russell and Cohn 2012),
Petals (Surhone, Timpledon, and Marseken 2010), and Guarana (Frantz, Corchuelo, and
Molina-Jiménez 2012). However, our methodology is applicable to any set of integration
platforms that support the integration patterns (Hohpe and Woolf 2004) and follow the
pipe-and-filter architectural style (Alexander, Ishikawa, and Silvertein 1977).

4.1. Evaluating comparison properties

The integration platforms were evaluated by comparing the properties of each dimen-
sion. The evaluation was done based on the findings of a multi-vocal literature review
(Garousi, Felderer, and Mantyla 2018) of publicly available documentation and source
codes on websites, as well as books and articles. Table 10 presents the values found for
every property in each of the three dimensions.



ENTERPRISE INFORMATION SYSTEMS . 19

Table 10. Summary of the values of comparison properties.

Integration Platforms

Spring
Dimension Property Integration Camel Fuse Petals Guarand
Thread pool creation local local global global global
Message ~ Message store hybrid hybrid hybrid in-memory in-memory
Processing  Thread pool static static static static static
configuration
Detection stage design time run-time design time design time design time
Hotspot .
Detection Abstraction level per group per group per group per group per task
Pattern identification no no no no no
Execution model process-based process-based process-based process-based task-based
Fairness ) :
Execution Scheduling policy fifo fifo fifo fifo fifo
Throttling controller yes yes no no no

Regarding the message processing dimension, Fuse, Petals and Guarand have a global
thread pool that executes all tasks in the integration solution. Spring Integration and Camel
allow for the creation of local thread pools that can be dedicated to a task or a group of tasks
in an integration solution. Run-time systems have seen advances in storing messages in the
communication channels of an integration solution. Disk storage capacity facilitates the
handling of big data (Chen, Mao, and Liu 2014), i.e., larger data in size or volume. Usually,
disk storage can increase the total time for message execution, meaning that it can be used
in scenarios in which this type of storage is really needed. Spring Integration, Camel and
Fuse can store data in their memory and adopt strategies to deal with other storage types,
such as in a file or on a database. In contrast, Petals and Guarana are only able to store
messages in their memory. Regarding thread pool configuration, no platform offers strate-
gies to dynamically tune the size of the thread pool according to the demand of the
execution of an integration solution. This ability allows run-time systems to efficiently
deal with message processing peaks by assigning threads to highly demanded tasks, as
well as releasing threads when the workload is lower.

The success of hotspot detection in the design phase still depends on the expertise of
the software engineer. In the detection stage, every platform receives information that
indicates the presence of hotspots in the execution of an integration solution, but only
Camel is able to detect them during run-time. Regarding abstraction level of detection,
every run-time system, except for Guaranj, is able to detect hotspots at the group level. In
Guarang, it is possible to specify tasks to be observed. As for the identification of patterns,
none of the run-time systems is endowed with this property. Thus, the identification of
such patterns depends on the quality of the information provided by the monitoring
mechanisms, and on the experience of the software engineer. Most of the integration
platforms use some kind of monitoring mechanism, which provides information to help
with detecting bottlenecks, but they do not have any automated mechanism.

Regarding the fairness execution dimension, the majority of run-time systems adopt
a process-based execution model, except for Guarana, which adopts the task-based
execution model. In Camel, the asynchronous approach uses staged event-driven archi-
tecture that encompasses a design philosophy for building more manageable multi-
thread integration solutions, in which it is possible to allocate a thread pool to tasks in



20 (&) D.L. FREIRE ET AL.

a blocking queue. As for a task scheduling policy, every run-time system uses the first-in-
first-out approach, while none of them allows tasks to have an associated priority to
influence their scheduling, nor uses any mapping based on an exact method or opti-
misation. The throttling controller could help ensure a fairer execution when the rate of
incoming messages is high, but only in Spring Integration and Camel. Further, it is
possible to arrange tasks to actively call a thread at regular time intervals.

4.2. Ranking construction

In this section, we discuss the process of ranking the integration platforms by carrying
out the activities in our methodology. The dimensions were prioritised, the platforms
competences were evaluated by objective or subjective criteria, the scores were calcu-
lated and the pairwise comparisons were performed.

4.2.1. Dimension relevance

In this activity, we assigned the weight corresponding to the relevance level to each
dimension, cf. Table 3. Message processing was considered as an essential dimension.
Thus, high values allocated to the properties of the Message processing indicate that the
platform is efficient. Hotspot detection was considered as a desirable dimension.
Therefore, this dimension adds elements that enhance bottleneck detection, but they
are not essential. The Fairness Execution was considered an important dimension.
Therefore, the values of the properties of the Fairness execution have a medium
relevance level. These prioritisation are shown in Table 11.

4.2.2. Platform competence

In this activity, the competence of each integration platform was quantified by sub-
jective and objective evaluations. The subjective evaluation was performed with the
help of the Saaty scale, resulting in Table 12. The objective evaluation was performed by
converting the qualitative values of the properties into quantitative values, using Table 6
and resulting in Table 13.

4.2.3. Score computation

The score for each integration platforms is calculated by merging subjective and objective
criteria regarding the competence of the integration platforms, as well as the weight of
each dimension. At the end of this activity, each integration platform achieves an indivi-
dual score (a;,), a partial score (partial score;, ) and a total score (total_score]i]). The index i
assumes values from 1 to 5, corresponding to Spring Integration, Camel, Fuse, Petals or
Guarand, while the index k assumes values from 1 to 3, corresponding to the dimensions
of message processing, hotspot detection and fairness execution, respectively.

The score computation starts with an evaluation of subjective criteria, according to
Table 12, which provides the resulting values of our judgement concerning the compe-
tence of each integration platform to meet every dimension. The objective criteria are
determined according to Table 13, where the sum of the quantitative values of the
properties is on the lines entitled «Total». Equation (7) presents matrices with these
values, where the line index corresponds to every integration platform, and the column
index corresponds to every dimension.



ENTERPRISE INFORMATION SYSTEMS e 21

8 1 4 21 3 12

8 4 4 21 12 12
subjective_criteria = |4 1 1 objective_criteria = |12 3 3 (7)

1T 11 3 3 3

1 4 4 3 12 12

The score achieved in relation to the competence degree of an integration platform is
equal to the sum of the objective and the subjective criteria, cf. Equation (8). In this
matrix, the elements correspond to the achieved score, the line index corresponds to
every integration platform, and the column index corresponds to every dimension.

subjective_criteria objective_criteria

8 1 4 21 3 12 29 4 16
8 4 4 21 12 12 29 16 16
a=(4 1 1|+ 1]12 3 3 |=1]16 4 4 (8)
1T 1 1 3 3 3 4 4 4
1 4 4 3 12 12 4 16 16

The partial score is equal to the score achieved in relation to the competence degree
multiplied by the weight of the respective dimension, cf. Equation (9). In this matrix, the
elements correspond to the achieved score in the dimension, the line index corresponds
to every integration platform, and the column index corresponds to every dimension.

a

29 4 16 87 4 32
29 16 16 3 87 16 32
partial score= |16 4 4 x|1]| =148 4 8 (9)
4 4 4 2 12 4 8
4 16 16 12 16 32

The total score of every integration platform is equal to the sum of the partial scores, i.e.,
the sum of the elements of all columns in the matrix 9. Equation (10) presents a matrix
with these values, where the line index corresponds to every integration platform.

3 .
Z e partial_score;,

87 + 4 4+ 32 123
87 + 16 + 32 135
total score= 148 + 4 + 8| =1 60 (10)
12 + 4 4+ 8 24
12 + 16 + 32 60

4.2.4. Pairwise comparison
In this activity, we compared each pair of integration platforms and assessed how many
times a platform is better than another, using the Saaty scale. They were compared two
by two for each dimension, taking into account the values of Table 12. When a platform
was compared with itself, the value of 1 was assigned. The pairwise comparison results
are presented in Table 14.

In the message processing dimension, Spring Integration and Camel were considered to be
eight times better than Petals and Guarand, and twice as good as Fuse. In this dimension,



22 (& D.L FREIRE ET AL

Petals and Guarana were considered to be four times better than Fuse, Spring Integration was
considered to be equivalent to Camel, and Petals was considered to be equivalent to Guarana.
In the hotspot detection dimension, Camel and Guarana were considered to be equivalent to
each other, but four times better than Spring Integration, Fuse and Petals. In this dimension,
Spring Integration, Fuse and Petals were considered to be equivalent to each other. In the
fairness execution dimension, Spring Integration, Camel and Guarana were considered as
equivalent to each other, but four times better than Fuse and Petals. In this dimension, Fuse
and Petals were considered as equivalent to each other.

We propose the use of a tool for making judgements and verifying the consistency of
the outcomes, in order to simplify the ranking construction process for software engi-
neers. However, we include an explanation of the classic approach in the Appendices 6,
in order to clarify how consistency is verified. For more details, we suggest Saaty (1990),
Saaty (2008), Ishizaka and Labib (2011) and Franek and Kresta (2014).

4.3. Data visualisation and interpretation

In this section, we analyse the results of the integration platforms’ evaluation using
a graphical representation. The platforms’ total scores are expressed analytically by
a summation of the score achieved in relation to the competence degree in every
dimension multiplied by the weight of this dimension, cf. Equation (11). Equations are
in total scores’ descending order. The platforms’ total scores are expressed graphically
by Figure 4, that shows this raking by discriminating between the total and the partial
score in each of the three dimensions.

Camel : = 29-3 + 16-1 + 16-2 = 135
Spring Integration: = 29-3 + 4.1 4+ 16-2 = 123
Guarana : = 4-3 4+ 16-1 + 16-2 = 60 (11)
Fuse : = 163 + 41 + 4.2 = 60
Petals : = 4.3 4+ 4.1 + 4.2 = 24

The ranking indicates that the Camel run-time system offers the best performance
amongst them, with a score of 135, followed by Spring Integration, Fuse, Guarana and
Petals respectively with a score of 123, 60, 60, and 24. Camel and Spring Integration
were the best platforms in the message processing dimension, with a score of 87, while
Fuse scored 48, and Petals and Guarana scored 12. The relevance level of this dimension
was considered essential in order to realise good performance. Camel and Guarana were
the best platforms in the hotspot detection dimension, with a score of 16, whereas
Spring Integration, Fuse and Petals scored 4. The relevance level of this dimension was
considered desirable. Spring Integration, Camel and Guarana were the best platforms in
the fairness execution dimension, with a score 32, while Petals and Fuse scored 8. The
relevance level of this dimension was considered important.

The message processing dimension is best served by Spring Integration, Camel, Fuse
and Petals. The second dimension best served by these platforms is fairness execution.
Meanwhile, the fairness execution dimension is best served by Guarand, and the second
dimension best served by this platform is message processing. The hotspot detection
dimension is the dimension that is least served by the five platforms. Camel, Fuse, Petals,
and Guarana had the same competence degree score in the hotspot detection and



ENTERPRISE INFORMATION SYSTEMS e 23

Camel | 16-1 ‘ 16-2 ‘
123
Spring Integration |41‘ 16-2 ‘
60
Guarand | 16-1 ‘ 162 ‘
60
Fuse |41‘ 4.2 ‘
24
Petals . 4.2

0 27 54 81 108 135
@ Message Processing O Hotspot Detection O Fairness Execution

Figure 4. Ranking of integration platforms.

fairness execution dimensions. However, the relevance level of the fairness execution
dimension was considered higher than that of hotspot detection; thus, the partial scores
between these dimensions were different for these dimensions.

An important point to be observed is that the high partial score in the message
processing dimension leveraged the total score for Spring Integration, Camel and Fuse,
because this dimension was considered to be more relevant than the others, with
a relevance-level weight equal to 3. Likewise, the high partial score in the fairness execution
dimension increased the total score for Spring Integration, Camel and Guarang, because this
dimension was considered more relevant than that of hotspot detection.

5. Conclusions

New trends, such as cloud computing and big data, have provided several opportunities
for companies to leverage their business processes. However, their software ecosystems
can become more heterogeneous as a consequence. Hence, companies have started to
become concerned about the performance of their integration platforms in terms of
providing synchronisation and data exchange efficiently across their applications. The
run-time system is one of the elements of a platform that most influences performance,
because it is responsible for running integration solutions. Thus, it should have more
weight in companies’ decision-making process for an integration platform. As there are
many alternatives in the market, software engineers need support in the evaluation and
selection of platforms. In this article, we presented a methodology to compare and rank
integration platforms by focusing on the performance of their run-time systems.

The proposed methodology is based on the AHP, one of whose main benefits is the
modelling of a complex decision problem in a hierarchical structure, divided into multiple
levels. In our case, there are three hierarchical levels. At the top of this hierarchy is the main
goal, i.e, choosing the best performance. At the second level are the decision criteria, i.e,
message processing, hotspot detection and fairness execution dimensions. The first dimension



24 (&) D.L. FREIRE ET AL.

focuses on the efficiency of message processing within an integration solution, while
the second dimension focuses on the detection of bottlenecks, and the third dimension
focuses on the balanced distribution of computational resources for the tasks within an
integration solution. At the lowest level are the alternatives, i.e., the integration platforms.

There are three well-defined steps in the proposed methodology: evaluating comparison
properties, ranking construction, and data visualisation and interpretation. When evaluating
comparison properties, values are attributed to performance properties. The ranking construc-
tion step determines the relevance level of the dimensions and calculates the scores for the
integration platforms. The data visualisation and interpretation step ranks the platforms. The
proposed methodology applied objective and subjective criteria to evaluate integration plat-
forms. The objective evaluation considered the performance property values of the dimen-
sions and the subjective evaluation took the preferences of experts into account. The objective
criteria prevailed over the subjective criteria, ensuring that an integration platform with more
objective values is better ranked, even though the subjective judgement may not be as
persuasive.

To confirm the feasibility of the proposed methodology, we evaluated five integration
platforms: Camel, Spring Integration, Fuse, Petals and Guarana. In this evaluation, the priority
order for the dimensions was message processing (essential), fairness execution (important)
importance, and hotspot detection (desirable). In turn, we ranked the overall performance of
the platforms. Camel was the best amongst them, followed by Spring Integration, Fuse,
Guarana and Petals, in descending order. It was also possible to observe the results for each
of the dimensions separately. Regarding the message processing dimension, Camel and
Spring Integration were equivalent and obtained the highest score; regarding hotspot detec-
tion, Camel was the best; and regarding the fairness execution dimension, Camel, Spring
Integration and Guarana were equivalent and achieved the highest score.

Notes

https://www.transparentchoice.com/ahp-software.

https://www.expertchoice.com.

https://www.superdecisions.com.

https://bpmsg.com/academic/ahp.php.

https://github.com/czekster/Decisor/releases.

https://sourceforge.net/projects/priority/.

The spectral radius of a square matrix is the largest eigenvalue in terms of absolute value.

NouhkwnN=

Acknowledgments

This work was supported by the Coordenacdo de Aperfeicoamento de Pessoal de Nivel Superior
(CAPES) under Grant Numbers 73318345415 and 88881.119518/2016-01, as well as the Fundacédo
de Amparo a Pesquisa do Estado do Rio Grande do Sul (FAPERGS) under Grant Number 17/2551-
0001206-2. We would like to thank Dr Rafael Corchuelo and Dr Inma Hernandez from the
University of Seville (Spain) and Ms Elizabeth Thornton Rush from Pennsylvania State University
(United States) for their helpful comments in earlier versions of this article.


https://www.transparentchoice.com/ahp-software
https://www.expertchoice.com
https://www.superdecisions.com
https://bpmsg.com/academic/ahp.php
https://github.com/czekster/Decisor/releases
https://sourceforge.net/projects/priority/

ENTERPRISE INFORMATION SYSTEMS e 25

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the Coordenacdo de Aperfeicoamento de Pessoal de Nivel Superior
[73318345415, 88881.119518/2016-01]; Fundacdo de Amparo a Pesquisa do Estado do Rio Grande
do Sul [17/2551-0001206-2].

ORCID

Rafael Z. Frantz http://orcid.org/0000-0003-3740-7560
Fabricia Roos-Frantz http://orcid.org/0000-0001-9514-6560

References

Ahmad, S. 2016. “Load Balancing in Distributed Framework for Frequency Based Thread Pools.”
Computational Ecology and Software 6 (4): 150-164.

Aldin, L, and S. de Cesare. 2011. “A Literature Review on Business Process Modelling: New Frontiers of
Reusability.” Enterprise Information Systems 5 (3): 359-383. doi:10.1080/17517575.2011.557443.

Alexander, C, S. Ishikawa, and M. Silvertein. 1977. A Pattern Language: Towns, Buildings,
Construction. Oxford: Oxford University Press.

Anwar, N., and H. Deng. 2018. “Elastic Scheduling of Scientific Workflows under Deadline Constraints in
Cloud Computing Environments.” Future Internet 10 (1): 1-23. doi:10.3390/f110010005.
Balko, S., and A. Barros. 2015. “In-Memory Business Process Management.” International
Conference on Enterprise Distributed Object Computing (EDOC), Adelaide, Australia, 74-83.
Botta, A., W. de Donato, V. Persico, and P. Antonio. 2016. “Integration of Cloud Computing and Internet of
Things: A Survey.” Future Generation Computer Systems 56: 684-700. doi:10.1016/j.future.2015.09.021.

Brahmi, Z.,, and C. Gharbi. 2014. “Temporal Reconfiguration-Based Orchestration Engine in the Cloud
Computing.” In International Conference on Business Information Systems (ICBIS), 73-85.

Chen, M., S. Mao, and Y. Liu. 2014. “Big Data: A Survey.” Mobile Networks and Applications 19:
171-209. doi:10.1007/s11036-013-0489-0.

Chen, W., and E. Deelman. 2011. “Workflow Overhead Analysis and Optimizations.” Workshop on
Workflows in Support of Large-scale Science (WORKS), 11-20.

Corchuelo, R, R. Z. Frantz, and J. Gonzales. 2008. “Una Comparacién De ESBs Desde La Perspectivade La
Integracién De Aplicaciones.” Jornadas de Ingenieria del Software y Bases de Datos (JISBD), 403-408.

Czekster, R. M., H. J. De Carvalho, G. Z. Kessler, L. M. Kipper, and T. Webber. 2019. “Decisor: A Software Tool
to Drive Complex Decisions with Analytic Hierarchy Process.” International Journal of Information
Technology & Decision Making 18 (1): 65-86. doi:10.1142/50219622018500360.

Ebert, N, and K. Weber. 2016. “Integration Platform as a Service in Der Praxis: Eine
Bestandsaufnahme.” In Multikonferenz Wirtschaftsinformatik (MKWI), 1675-1685.

Ebert, N., K. Weber, and S. Koruna. 2017. “Integration Platform as a Service.” Business & Information
Systems Engineering 59: 375-379. doi:10.1007/512599-017-0486-0.

Fisher, M., J. Partner, M. Bogoevice, and I. Fuld. 2012. Spring Integration in Action. Manning Publications.

Franek, J.,, and A. Kresta. 2014. “Judgment Scales and Consistency Measure in AHP.” Procedia
Economics and Finance 12: 164-173. doi:10.1016/52212-5671(14)00332-3.

Frantz, R. Z, R. Corchuelo, and J. L. Arjona. 2011. “An Efficient Orchestration Engine for the Cloud.” IEEE
International Conference on Cloud Computing Technology and Science (CloudCom), 711-716.

Frantz, R. Z, R. Corchuelo, and C. Molina-Jimenéz. 2012. “A Proposal to Detect Errors in Enterprise
Application Integration Solutions.” Journal of Systems and Software 85 (3): 480-497. doi:10.1016/j.
j$5.2011.10.048.


https://doi.org/10.1080/17517575.2011.557443
https://doi.org/10.3390/fi10010005
https://doi.org/10.1016/j.future.2015.09.021
https://doi.org/10.1007/s11036-013-0489-0
https://doi.org/10.1142/S0219622018500360
https://doi.org/10.1007/s12599-017-0486-0
https://doi.org/10.1016/S2212-5671(14)00332-3
https://doi.org/10.1016/j.jss.2011.10.048
https://doi.org/10.1016/j.jss.2011.10.048

26 (&) D.L. FREIRE ET AL.

Frantz, R. Z., R. Corchuelo, and F. Roos-Frantz. 2016. “On the Design of a Maintainable Software
Development Kit to Implement Integration Solutions.” Journal of Systems and Software 111:
89-104. doi:10.1016/j.jss.2015.08.044.

Freire, D. L., R. Z. Frantz, and F. Roos-Frantz. 2019. “Ranking Enterprise Application Integration
Platforms from a Performance Perspective: An Experience Report.” Software: Practice and
Experience 49 (5): 921-941.

Freire, D. L, R. Z. Frantz, F. Roos-Frantz, and S. Sawicki. 2019. “Survey on the Run-Time Systems of
Enterprise Application Integration Platforms Focusing on Performance.” Software: Practice and
Experience 49 (3): 341-360.

Garousi, V., M. Felderer, and M. V. Mantyla. 2018. “Guidelines for Including Grey Literature and Conducting
Multivocal Literature Reviews in Software Engineering.” Information and Software Technology 1-22.
Gleyzer, G., and J. Howes. 2017. “System and Method for Supporting Dynamic Thread Pool Sizing

in a Distributed Data Grid.” US Patent 9,547,521 B2.

Guttridge, K., M. Pezzini, E. Golluscio, E. Thoo, K. lijima, and M. Wilcox. 2017. “Magic Quadrant for
Enterprise Integration Platform as a Service 2017."” Technical Report. Stamford, CT: Gartner, Inc.

Harman, M., K. Lakhotia, J. Singer, D. R. White, and S. Yoo. 2013. “Cloud Engineering Is Search Based
Software Engineering Too.” Journal of Systems and Software 86 (9): 2225-2241. doi:10.1016/j.
j55.2012.10.027.

Hohpe, G., and B. Woolf. 2004. Enterprise Integration Patterns: Designing, Building, and Deploying
Messaging Solutions. Boston, MA: Addison-Wesley Professional.

Ibsen, C., and J. Anstey. 2010. Camel in Action. Stamford, CT: Manning Publications.

Ishizaka, A., and A. Labib. 2011. “Review of the Main Developments in the Analytic Hierarchy
Process.” Expert Systems with Applications 38: 14336-14345.

Kawaguchi, A, and H. Yamada. 2005. “Methodology of Performance Evaluation of Integrated
Service Systems with Timeout Control Scheme.” Asia-Pacific Network Operations and
Management Symposium (APNOMS), Okinawa, Japan, 235-246.

Khoumbati, K., M. Themistocleos, and Z. Irani. 2006. “Evaluating the Adoption of Enterprise
Application Integration in Health-Care Organizations.” Journal of Management Information
Systems 22: 69-108. doi:10.2753/MIS0742-1222220404.

Kosara, R. 2016. “Presentation-Oriented Visualization Techniques.” IEEE Computer Graphics and
Applications 36 (1): 80-85. doi:10.1109/MCG.2016.2.

Linthicum, D. S. 2017. “Cloud Computing Changes Data Integration Forever: What's Needed Right
Now.” IEEE Cloud Computing 4 (3): 50-53. doi:10.1109/MCC.2017.47.

Manikas, K. 2016. “Revisiting Software Ecosystems Research: A Longitudinal Literature Study.”
Journal of Systems and Software 117: 84-103. doi:10.1016/j.js5.2016.02.003.

More, V. R, and M. M. Bartere. 2013. “Enterprise Integration Using Boomi Tool.” International
Journal of Advanced Information Science and Technology 11: 18-22.

Perron, O. 1907. “Grundlagen Fir Eine Theorie Des Jacobischen Kettenbruchalgorithmus.”
Mathematische Annalen 64 (1): 1-76. doi:10.1007/BF01449880.

Pfaff, M., and H. Krcmar. 2018. “A Web-Based System Architecture for Ontology-Based Data
Integration in the Domain of IT Benchmarking.” Enterprise Information Systems 12 (3):
236-258. doi:10.1080/17517575.2017.1329552.

Ritter, D., J. Dann, N. May, and S. Rinderle-Ma. 2017. “Hardware Accelerated Application Integration
Processing: Industry Paper.” International Conference on Distributed and Event-based Systems (DEBS),
Barcelona, Spain, 215-226.

Ritter, D, N. May, and S. Rinderle-Ma. 2017. “Patterns for Emerging Application Integration
Scenarios: A Survey.” Information Systems 67: 36-57. doi:10.1016/j.i5.2017.03.003.

Roos-Frantz, F., M. Binelo, R. Z. Frantz, S. Sawicki, and V. B. Fernandes. 2015. “Using Petri Nets to
Enable the Simulation of Application Integration Solutions Conceptual Models.” Conference on
Enterprise Information Systems(ICEIS), 87-96.

Russell, J., and R. Cohn. 2012. Fuse ESB. Edited by F. P. Miller, A. F. Vandome, M. John. Riga, Latvia:
VDM Publishing.

Saaty, T. L. 1990. “How to Make a Decision: The Analytic Hierarchy Process.” European Journal of
Operational Research 48: 9-26. doi:10.1016/0377-2217(90)90057-I.


https://doi.org/10.1016/j.jss.2015.08.044
https://doi.org/10.1016/j.jss.2012.10.027
https://doi.org/10.1016/j.jss.2012.10.027
https://doi.org/10.2753/MIS0742-1222220404
https://doi.org/10.1109/MCG.2016.2
https://doi.org/10.1109/MCC.2017.47
https://doi.org/10.1016/j.jss.2016.02.003
https://doi.org/10.1007/BF01449880
https://doi.org/10.1080/17517575.2017.1329552
https://doi.org/10.1016/j.is.2017.03.003
https://doi.org/10.1016/0377-2217(90)90057-I

ENTERPRISE INFORMATION SYSTEMS e 27

Saaty, T. L. 2008. “Relative Measurement and Its Generalization in Decision Making Why Pairwise
Comparisons are Central in Mathematics for the Measurement of Intangible Factors the Analytic
Hierarchy/Network Process.” Revista De La Real Academia De Ciencias Exactas, Fisicas Y Naturales 102:
251-318.

Santos, J., J. M. Sarriegi, and N. Serrano. 2008. “A Support Methodology for EAl and BPM Projects in
SMEs.” Enterprise Information Systems 2 (3): 275-286. doi:10.1080/17517570802262719.

Sharma, S. 2017. “Ovum Decision Matrix highlights the growing importance of iPaaS and API
platforms in hybrid integration.” Technical Report. London, UK: Ovum Consulting.

Siraj, S., L. Mikhailov, and J. A. Keane. 2015. “PriEsT: An Interactive Decision Support Tool to
Estimate Priorities from Pairwise Comparison Judgments.” International Transactions in
Operational Research 22 (2): 217-235. doi:10.1111/itor.12054.

Sudarsanam, A. M. Srinivasan, and S. Panchanathan. 2004. “Resource Estimation and Task
Scheduling for Multithreaded Reconfigurable Architectures.” International Conference on
Parallel and Distributed Systems (ICPADS), Newport Beach, CA, 323-330.

Sugden, R. 1985. “Why Be Consistent? A Critical Analysis of Consistency Requirements in Choice
Theory.” Economica 52 (206): 167-183. doi:10.2307/2554418.

Surhone, L. M., M. T. Timpledon, and S. F. Marseken. 2010. Petals ESB. Beau Bassin, Mauritius:
Betascript Publishing.

Tan, S., H. K. B. Milhim, B. Chen, A. Schiffauerova, and Y. Zeng. 2011. “Enterprise Applications
Integration Using Environment Based Design (EBD).” International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference (ASME), Washington,
DC, 1245-1255.

Traore, |, I. Woungang, A. A. E. S. Ahmed, and M. S. Obaidat. 2012. “Software Performance Modeling
Using the UML: A Case Study.” Journal of Networks 7 (1): 4-20. doi:10.4304/jnw.7.1.4-20.

Vaidya, O. S., and S. Kumar. 2006. “Analytic Hierarchy Process: An Overview of Applications.”
European Journal of Operational Research 169: 1-29. doi:10.1016/j.ejor.2004.04.028.

Varghese, B, and R. Buyya. 2018. “Next Generation Cloud Computing: New Trends and Research
Directions.” Future Generation Computer Systems 79: 849-861. doi:10.1016/j.future.2017.09.020.

Appendices

A. Classic Approach

In this section, we applied a classic approach to verify the consistency results. We used one of the
simplest algebraic methods in order to demonstrate how it is applied using support tools. As the
algebraic method is not feasible for high-dimension matrices, numeric methods are adopted,
which have different stop criteria, precision degrees and a number of interaction constraints. The
study of such methods exceeds the scope of the proposed methodology.

A.1. Pairwise Dimensions Comparison

According to Table 11, the decision matrix for the first level of the hierarchy structure is:

13 3)2
D=1{1/3 1 1)2 (12)
2/3 2 1

First, it is necessary to calculate the eigenvectors and eigenvalues for decision matrices. We use
characteristic equations for matrices. Equation (13) expresses the general formula for a characteristic
equation.

det(D—ApZ) =M’ -(Ap—3)=0 (13)


https://doi.org/10.1080/17517570802262719
https://doi.org/10.1111/itor.12054
https://doi.org/10.2307/2554418
https://doi.org/10.4304/jnw.7.1.4-20
https://doi.org/10.1016/j.ejor.2004.04.028
https://doi.org/10.1016/j.future.2017.09.020

28 (&) D.L. FREIRE ET AL.

Table 11. Summary of dimension relevance.

Dimension Essential Important Desirable
Message Processing 3 - -
Hotspot Detection - - 1
Fairness Execution - 2 -
Table 12. Competence degree.
Integration Platforms
Dimension Spring Integration Camel Fuse Petals Guarand
Message Processing 8 8 4 1 1
Hotspot Detection 1 4 1 1 4
Fairness Execution 4 4 1 1 4
Table 13. Quantitative values for the competence of each integration platform.
Integration Platforms
Dimension Property Spring Integration Camel  Fuse Petals Guarand
Thread pool creation 10 10 1 1 1
Message Processing Storage message 10 10 10 1 1
Thread pool configuration 1 1 1 1 1
Total 21 21 12 3 3
Detection stage 1 10 1 1 1
Hotspot Detection Abstraction level 1 1 1 1 10
Pattern identification 1 1 1 1 1
Total 3 12 3 3 12
Execution model 1 1 1 1 10
Fairness Execution Scheduling policy 1 1 1 1 1
Throttling controller 10 10 1 1 1
Total 12 12 3 3 12

The solutions of the characteristic equations are A = 3 with a multiplicity equal to 1 and A = 0 with
a multiplicity equal to 2. The theorem proposed by Perron (1907), a German mathematician, insists that:

A positive square matrix has an eigenvalue with a multiplicity equal to 1 in relation to its
spectral radius,” although no eigenvalue is so large in terms of absolute value. In addition, there
is an eigenvector on the right and an eigenvector on the left corresponding to the spectral

value only with positive components.

The theorem proves that, if D = (dj), d;>0, i, j=1,2,...n, D has a simple positive eigenvalue
Amax, known as the principal eigenvalue of D and Apgy > |A«| for the remaining eigenvalues of D.
Thus, it is necessary to obtain the highest eigenvalue A, associated with the main eigenvector
of the positive matrix. In this case, the eigenvalue is Apnox = 3. The priorities vector of the elements
in the decision matrix is obtained by the right eigenvector method. This eigenvector is such that

DW = AW, thus:



ENTERPRISE INFORMATION SYSTEMS e 29

Table 14. Summary of the pairwise comparison results.

Integration Platforms

Dimension Spring Integration Camel Fuse Petals Guarand
Spring Integration 1x 1x 2x 8x 8x
Camel 1x 1x 2x 8x 8x
Message Processing Fuse 1/2x 1/2x 1x 4x 4x
Petals 1/8x 1/8x 1/4x 1x 1x
Guarand 1/8x 1/8x 1/4x 1x 1x
Spring Integration 1x 1/4x 1x 1x 1/4x
Camel 4x 1x 4x 4x 1x
Hotspot Detection Fuse 1x 1/4x 1x x 1/4x
Petals X 1/4x 1x 1x 1/4x
Guarand 4x 1x 4x 4x 1x
Spring Integration 1x 1x 4x 4x 1x
Camel 1x 1x 4x 4x 1x
Fairness Execution Fuse 1/4x 1/4x 1x 1x 1/4x
Petals 1/4x 1/4x 1x 1x 1/4x
Guarand 1x 1x 4x 4x 1x
D
—_—~
1 3 3)2 w Ama Ty,
1/3 1 12| x|{wa| = 3 X|w; (14)
2/3 2 1 W3 w3
Then,
Table A1. Saaty’s random indices.
n 1 2 3 4 5 6 7 8 9 10
RI 0 0 0.52 0.8 1.11 1.25 135 1.4 1.45 1.49
4 3w, 3 3
WD = | Wy = W> =Wy X 1 = 1 (15)
W3 2W2 2 2
The consistency index was defined by Saaty (1990) as:
C=Amax—n)-(n—1) (16)

where Anqx is the largest eigenvalue associated with the main eigenvector of the positive matrix
and n is the order of the matrix. Saaty proposes random indices (R/) for matrices with dimensions
from 1 to 10, cf. Table A1. The consistency index (Cl) is compared with the random indices to
produce the consistency ratio (CR), where CR = CI/RI. If CR<0.1, then judgements about the
decision matrix are consistent; otherwise, there is some inconsistency and the judgements must
be made again.

In our case, Apmax = 3 and n = 3, then:



30 (&) D.L. FREIRE ET AL.

= nax—n) - (n=1)=(3-3)-3-1) =0

CR=CI/RI=0/1.11=0

Thus, as in the case of CR< 0.1, the judgements about the decision matrix are consistent.

A.2. Pairwise Comparison of Platforms

According to Table 14, there are three decision matrices for the second level of the hierarchy
structure. In Equation (17), «A» refers to the message processing decision matrix, «B» refers to the
hotspot detection decision matrix, and «C» refers to the fairness execution decision matrix.
Equation (18) shows the characteristic equations for message processing, hotspot detection and

fairness execution, respectively.

A B C

1 1 2 8 8 1 1/4 1 1 1/4 1 1 4 4 1

1 1 2 8 8 4 1 4 4 1 1 1 4 4 1

1/2 1/2 1 4 4 1 1/4 1 1 1/4 1/4 1/4 1 1 1/4 (17)

1/8 1/8 1/4 1 1 1T 1/4 1 1 1/4 /4 1/4 1 1 1/4

1/8 1/8 1/4 1 1 4 1 4 4 1 1 1 4 4 1
det(A—MT)=M*- M —5) =0
det(B—AgZ) =Ag* - (Ag—5)=0 (18)
det(C—AcZ) =Ac* - (Ac—5)=0

The solutions of the characteristic equations are A = 5 with a multiplicity equal to 1 and A =0
with a multiplicity equal to 4. According to Perron’s theorem, Apg = 5.

Equation (20) shows the message processing priorities vector, Equation (21) shows the hotspot
detection priorities vector, and Equation (23) shows the fairness execution priorities vector.

A
1 1 2 8 8 4} W1
1 1 2 8 8 w» Amac | wry
1/2 1/2 1 4 4| x|ws| = 5 x|ws (19)
1/8 1/8 1/4 1 1 Wy Wy
1/8 1/8 1/4 1 1 Ws Ws
then,
W, w; 1 1
115} 1%} 1 1
Wyp=|ws| = W2/2 = W3 X 1/2 = 0.5 (20)
Wy w,/8 1/8 0.125
Ws w,/8 1/8 0.125
B
1 1/4 1 1 1/4 Wi Wy
4 1 4 4 1 W Amac | wy
1T 1/4 1 1 1/4| x|ws| =5 x|ws 21
1 1/4 1 1 1/4 Wy Wy
4 1 4 4 1 Ws Ws

Then,



ENTERPRISE INFORMATION SYSTEMS e 31

Table A2. Aggregation of priority vectors.

Message Processing (3) Hotspot Detection (1) Fairness Execution (2)
Spring Integration 1 0.25 1 5.25
Camel 1 1 1 6
Fuse 0.5 0.25 0.25 2.25
Petal 0.125 0.25 0.25 1125
Guarand 0.125 1 1 3.375
Wy w, /4 1/4 0.257
w W) 1 1
WB = |W3 | = W2/4 =W, X 1/4 = 10.25 (22)
Wy w, /4 1/4 0.25
Ws W 1 1T ]
C
1 1 4 4 1 4] 4] 1
1 4 4 W Amax W»
1/4 1/4 1 1 1/4| x|{ws| =5 x|ws (23)
1/4 1/4 1 1 1/4 Wy Wy
1 1 4 4 1 Ws Ws |
then,
4] W» 1 1 ]
w3 w3 1 1
Weg= |ws| = |wa/d| =wyx [1/4]| =[0.25 (24)
Wy wy /4 1/4 0.25
W5 1%} 1 1

In our case, Anax = 5 and n = 5; thus, in three cases, the consistency index is:
= Amax—n)-(n=1)=(5-5)-(5—-1)=0
CR=CI/RI=0/1.11=0

In turn, as in the case of CR< 0.1, the judgements about the decision matrix are consistent.

A.3. Results Aggregation

After obtaining the priority vectors of the decision matrices, these vectors are aggregated to
generate the final values of the platforms. We set out the competences of the platform with
respect to each dimension in the matrix, multiply each column of vectors by the priority of the
corresponding dimension, and add across each row, which results in the desired vector of the
platforms in Table A2. In descending order of priority, the platforms are ranked as follows: Camel,
Spring Integration, Guarand, Fuse and Petal.



	Abstract
	1. Introduction
	2. Related work
	3. The ranking methodology
	3.1. Evaluating comparison properties
	3.1.1. Message processing
	3.1.1.1. Thread pool creation
	3.1.1.2. Message storage
	3.1.1.3. Thread pool configuration

	3.1.2. Hotspot detection
	3.1.2.1. Detection stage
	3.1.2.2. Abstraction level
	3.1.2.3. Pattern identification

	3.1.3. Fairness execution
	3.1.3.1. Execution model
	3.1.3.2. Scheduling policy
	3.1.3.3. Throttling controller


	3.2. Ranking construction
	3.2.1. Dimension relevance
	3.2.2. Platform competence
	3.2.3. Score computation
	3.2.4. Pairwise comparison

	3.3. Data visualisation and interpretation

	4. Sample application
	4.1. Evaluating comparison properties
	4.2. Ranking construction
	4.2.1. Dimension relevance
	4.2.2. Platform competence
	4.2.3. Score computation
	4.2.4. Pairwise comparison

	4.3. Data visualisation and interpretation

	5. Conclusions
	Notes
	Acknowledgments
	Disclosure statement
	Funding
	ORCID
	References
	Appendices
	A. Classic Approach
	A.1. Pairwise Dimensions Comparison
	A.2. Pairwise Comparison of Platforms
	A.3. Results Aggregation




