
1 Universidade Federal do Rio Grande do SuI - UFRGS

Instituto de Infonnatica - Av. Bento Gon<;alves, 9500 - Campus do Vale - Bloco N - Cx.15064
Porto Alegre - RS - Brazil- 9501-970

2 Universidade Regional do Noroeste do Estado Rio Grande do SuI - UNIJUI
DeTec - Departamento de Tecnologia Rua Sao Francisco, 501. Cx. Posta156098900-000

Ijui - RS - Brazil

{sawicki, lisane, Isi, reisJ@inf.ufrgs.br

Abstract

A collaborative de.\'ign .\'Y.\'tem .\'trongly depends on the
chosen collaboration methodology, 0,\' well 0,\' on its
technological infrastructure. This article describes the
implementation of collaborative service based on .\'hared
object .\paces as technological infra.\'tructure and it.\'
ntethodology i.\' based on Pair Progranlnling. Thi.\' service
will be incorporated in a distributed collaborative
environment called Cave. The collaboration service
implementation pre.\'ented in thi.\' work allows collaboration
among designers through a data depository. This service is
validated with a diagram editor that is u.\'ed as case study.

A collaborative design system strongly depends on the
chosen collaboration methodology, as well as on its
technological infrastructure used to share design data [4].
These topics will be presented in section 3 and 4,
respectively.

This paper presents an implemented approach for
collaborative services. The collaboration methodology is
based on Pair Programming [5] and the technological
infrastructure used for implementing design data repository
is based on shared object spaces using Jini/Javaspaces
technologies [6, 7]. This collaborative service will be
incorporated in the Cave environment and it must be generic
to handle all tools included in this environment. A diagram
editor, called Blade [8], is used as case study to validate this
service.1. Introduction

2. Collaborative Design with Cave2

The collaboration in Cave2 intends to support
designers working at the same time and also in different
geographical locations. The targets of collaboration among
designers are system description building using both textual
and visual languages (languages programming, HDLs, block
diagrams, schematics and UML diagrams) [3).

The Cave2 collaborative design includes the following
features: the design semantic and its graphical/textual
representation are modeled by different objects, in order to
allow several visualizations - by different designers - from a
single design block (separation of concepts); a 2-way
update/notify mechanism was implemented, to grant
consistency between the design semantic and its graphical
representations (update/notify mechanism).

To handle with the increasing complexity of an IC
design, the use of higher abstraction leve~ is necessary. To
deal with these levels of abstraction, tools and
methodologies must be built to aid the designer. Usually,
these tools have several origins and can be developed for
different platform, obliging the designer to constantly
change the work environment among distinct
hardware/software platforms. It also demands the use of
several interface models, increasing the design time [1].

Taking into account such scenario, the Cave [2]
environment in under development. The Cave is a new
framework for the integration of CAD tools, based mainly in
distribution of resources and platform independence. In the
Cave2 framework, current version of the Cave environment.
it is introduced the support to collaborative design [1,3].

The need for distributed collaborative design can be
easily justified by the following reasons: increasing
complexity of designs, demanding of larger teams; shortage
of engineers, requiring of manpower in different regions of
the world; need for experience sharing among the members
of a team.

3. ColIaooration Methodology

The choice of methodology to support collaborative
design in Cave2 is based on reported techniques used in
software engineering. The Pair Programming [5] is a

Proceedings of the 15 th Symposium on Integrated Circuits and Systems Design (SBCCI’02)
0-7695-1807-9/02 $17.00 © 2002 IEEE

Besides. the 00 modeling of the design data facilitates the
implementation of the collaboration modes proposed in
[3]. This section presents a proposal of infrastructure to
support objects storage and sharing using a data repository .

The support to an infonnation sharing space. also
called as data repository, is a fundamental issue in a
cooperative design, as well the technological infrastructure
used to implement this repository.

The persistence storage supports cooperative work.
serving as an information repository where data can be
easily accessed. Essentially, the stomge space must support
some basic characteristics such as concurrence control,
version control, history maintenance of the system objects
use, structured and non-structured access, group and its
members information management. members interaction
management. etc. Theses characteristics are important to
grant an efficient and concurrent access to information,
allowing notification and knowledge of other group's
member activities, follow up of activities evolution, group
information, etc.

In [4. 10], some alternatives of data repository
technology were researched and three ones were analyzed
and compared regarding the implementation of such design
repositories: relational database management system
(RDBMS), object-oriented database management systems
(OODBMS) and shared object spaces.

The following subsection highlights the shared object
spaces, that is the technology adopted in this collaborative
service implementation.

4.1. Shared Objects Spaces

programming style where two people mn work side by
side on the same computer, continuously collaborating in
the same project, algorithm, code or test. Studies about
Pair Programming demonstrate that programming results
using this technique increase software productivity and
quality.

In the Cave2 context, the Pair Programming
methodology was extended to allow collaboration among
large groups. This adaptation was proposed in [3], and it
was called Paar Programming.

The implementation of this methodology was based on
MVC (Model View-Controlleq [9] pattern. In this
software design pattern the data is separated in three
groups: the model, the visualization and the control group.
The model represents and stores data. The visualization
allows the visualization of data by users, and the control
captures the user interactions with data and visualization.

As part of the study of the implementing collaborative
work into the Cave environment, two different approaches
were described in [3] and are implemented in this
environment: the visually coupled collaboration and the
visually decoupled collaboration approach.

In the vi.s-ually coupled collaboration mode, all the
designers have the same view of the design data - for
instance, all of them see the same diagrams, modules, files,
etc. The ftrst case occurs, for instance, when one designer
creates a new block of the system, or when a connection
between two blocks is removed. The second one, when one
designer rearranges the diagrammatic representation of a
system, by moving the position of blocks, but without
altering its semantics. In both cases, the actions must be
notified to all others designers, to ensure the consistency of
the collaboration.

In this approach there is only one view, that is stored in
a persistence server. In this case, when any data is updated.
all designers are notified because every designer has in
his/her Gm a reference to that view.

In the visually decoupled collaboration mode, the
designers do not share the view of the design data - for
instance, it is possible to all of them to see different
diagrams, but all of the diagrams depict the same model.
So, in this case the updates on the view are not broadcasted
to other designers, unless it also alters the associated
model.

While this second approach allows each designer to
organize his/her design workspace, its implementation is
harder and several problems must be solved. To guarantee
to each user a consistent view in every collaborative
session, we started to store also the views for every
designer at the end of each session.

Following Indrosiak [4, 10) the shared objects spaces
provides persistence services without all the complexity of
RDBMSs (Relational Database Management Systems) or
OODBMSs (Object-oriented Database Management
Systems). In order to do that, the query engines - which are
the main interface between applications and repositories in
RDBMSs and OODBMSs - were substituted by a simpler
lookup service. Furthermore, the mechanisms to grant the
uniqueness of each data block are not present in the shared
object spaces, allowing the storage of multiple copies of a
same block.

The data access strategy in shared object spaces also
follows the model of read/write transactions, as in the
relational model. However, it grants the consistency of the
data copies in the applications through an update/notify
mechanism: every application is notified if the data they
have copied from the repository is updated.

The collaboration service proposal in this work uses
Jini/JavaSpaces [6) [7) as technological infrastructure. The
Jini technology is a set of APIs organized as a service list
and that aid in a distributed systems building. These
services are available for clients that want to utilize or
combine them to reach a determined objective.

4. Techoological Infrastructure

Usually, a CAD tool uses complex data types. With an
object-oriented paradigm it becomes possible to abstract
this complexity by using objects to model these data.

Proceedings of the 15 th Symposium on Integrated Circuits and Systems Design (SBCCI’02)
0-7695-1807-9/02 $17.00 © 2002 IEEE

This technology uses several services that can be
registered in a table, called the lookup service. In the Jini
technology, there is a set of available services that are used
in the collaborative service. From this set it can be
highlighted: JavaSpaces and transaction services. The flfSt
one provides a secure distributed storage system to store an
object. The second incorporate the four ACID properties -
atomicity, consistency, integrity and durability -
preserving the object's security.

The object-oriented paradigm and programming based
in distributed objects are used in Cave collaborative
architecture, as well in the whole framework. This object-
oriented approach makes the collaboration service
modular, reusable and easily adaptable in the Cave
environment.

The collaborative architecture used in Cave2 can be
observed in Figure 1. The main parts of this architecture
are: tool server, service space, lookup server and clients.

In the service spaces, all services available to
collaboration support are initiated. The main available
services are persistence, transaction and collaboration
service.

4.2. Collaborative Architecture

.shares ~t+ .instantiates. ,

~

~
~ ~, .download.. p

Figure 1: Cave2 Architecture [3]

browser. After. the designer must realize his/her
authentication and finally. he/she can choose one or
more tool$ available in this environment. When the
designer needs to work in a group. he/she can create
collaborative sections requesting the use of the
collaboration service.

~.
AA

~

The persistence server is responsible to store design
data, serving as a database and the transaction service
treats of the stored design security. The collaboration
service works along the others two services, proving the
collaboration among designers.

The lookup service is an interface between client and
services that contains all references to services. The
communication among the tool, the lookup service and the
services is transparent for the user. Then, the designer does
not need to be concerned about the net configurations or
where the designs are stored. The request service can be
observed in Figure 2.

The collaboration service is a set of Java classes that
allows collaborative work in an application. These classes
are added to the application when the service is requested.
The service is generic and adaptable to be used by any
tools in the Cave environment.

Designers can request a Cave tool through the tool
launcher interface. The tool launcher is opened through a
socket connection, which can be a H1TP (Hypertext
Transfer Protocol) connection created using a web Figure 2: Requesting service

Proceedings of the 15 th Symposium on Integrated Circuits and Systems Design (SBCCI’02)
0-7695-1807-9/02 $17.00 © 2002 IEEE

An application of a collaboration service is
demonstrated in a case study using a hierarchical diagram
editor, called Blade, a tool plugged into Cave.

[:::E:: ~Iock
. .

I ~ I
L~,==.!!!!!!!~!,~

The Blade (Block and5. Case Study:
Diagram Editor)

,~"i~,i~jj

cco", CC""',

Pl!nu-e .. '
Sea". i

;.
,

("

.

~

In [11], it was used the Homero, as case study for
collaborative work. This tool is an editor that works \\ith
textual descriptions (VHDL, C Language, Verilog, etc). To
validate the use of collaborative service with graphical
representations, it is used the Blade as second case study.

The Blade is a hierarchical diagram editor target to
collaboration. This tool aims to system specification using
graphical representation. Although. the current version
only allows the construction of logic diagrams, it's
structure was modeled to easily be extended to other kinds
of diagrams.

In the Blade development it was used an object-
oriented approach combined with the use of software
design patterns. Moreover, an approach of data separation
was used in Blade implementation to allow the
implementation of visually coupled and decoupled modes.

In the data separation approach. different objects
represent the design semantic and its graphical
representation, allowing different views of the same
diagram by different designers. The figure 3 shows an
illustration for this approach target to Blade.

5.1. Collabomtion
Functioning

Service Basic

In this figure, it can be observed that a diagram
representation is formed by two different representations:
graphical and semantic. The semantic data, also called
design data is used to generate the net list descriptions and
the visual data represents the information used to generate
diagram views.

The figures 4 and 5 demonstrate the application of
visually coupled and decoupled collaborative modes in the
Blade tooL I

An important characteristic of electronic system
design is modularlzation. It is used to dominate the
design complexity. Complex systems are divided into
modules, facilitating the analysis and synthesis tasks by
using modules with less complexity [12].

A modularization natural consequence is the
possibility of working in teams. For example, a
microprocessor design can be divided into the design of
modules such as ALU, memory, etc. When the
specification of the interface among the modules is

Proceedings of the 15 th Symposium on Integrated Circuits and Systems Design (SBCCI’02)
0-7695-1807-9/02 $17.00 © 2002 IEEE

and the names of the designers. Each designer has a
password that could be modified by the authorization of
the responsible designer.

This operation generates two objects. The flCSt one
stores the design and the name of its designers. The
second one stores a list of designers that are on-line with
the information about their design block and
permissions.

5.4. Including Designers

Only the designers included in a design team can
participate on collaborative sessions of a design. In the
creation mode, the person who is responsible for the
design can include designers in the team. Only he/she
has a permission to do this operation.

5.5. Transmitting Write Pennission

ready, different designers or design team can design them
independently. However, it is also needed interaction
among designers during a design process. When the design
of the modules is finished, their assembly can be made.

As described previously, the collaboration
methodology used in this work is the Pair Programming.
However, this methodology was extended to work with
remote machines, allowing collaboration among large
groups. In this approach. two or more designers cannot
have the write pennission at the same time. The designer
who has this pennission is called writer. The others
designers can participate as read-only partners, also have
known as listeners. The listeners can request a write
pennission to the writer to be able to do changes in the
design data.

A collaborative session can work in two different
collaborative modes: visually coupled and decoupled. The
launch of an update occurs at a different moment in each
mode (see section 5.6).

The writer and listeners will be able t> interact with
every designer through discussions transmitted using a
communication tool (chat).

C~;"!,"!

ill
62

rIBJ~jl]r~
l..,;

~
'. , ",

~""

A designer can equire the write permission. This
solicitation is transmitted to the designer with writer
permission that authorize or not to write changes. The
permission visualization is possible through a traffic
light that is included in the tool interface. It uses the
green color to indicate write permission and red color
for only read pennission.

In this implementation, when a listener designer
needs to update the design data, he send a request to the
writer designer that can attend or not to his/her request.
It is a simple approach, however limited. Other fonDS to
implement the change of permissions is being studied.
When the writer designer is gone off, the write
permission can be given to the next designer in a
requiring list. The other interesting feature is to alow
the election of writer designer. In this case, the team
designers can vote in a designer to be a new writer.

Figure 5: Request or a Write Permission 5.6. Saving Designs

5.2. Connecting the Space Service Only the designer who has the write pennission can
update the design. An update can be or not notified to
each team designer, depending on the collaboration
mode that is used. The agent that observes the service
space launches the notification of an data update. This
agent has a different behavior to each collaboration
mode: visually coupled and visually decoupled mode.

In the visually coupled mode, when any design block
update is made, either in the semantic or in the
visualization, every on-line designer receives a
notification and the design block update is visualized in
the screen. This process can be observed in figure 5. In
visually decoupled mode, the designers can have
different views of a same functional block. In this case,
only changes in the semantic data will be observed by
others designers.

To allow the designer to work in a collaborative mode,
he/she needs to establis h a unicast connection using a
distributed database (service space). This connection
provides every collaborative resource to the designers. The
connection is made through a LookupLocator protocol in
the Lookup Service. The Lookup stored references to
persistence (service space), transaction and collaboration
services. When the connection is established, the services
directly work using the tool.

5.3. Creating Designs

A collaborative design in this implementation is
created through the definition of the design name, the
responsible person name for this design, the block names,

Proceedings of the 15 th Symposium on Integrated Circuits and Systems Design (SBCCI’02)
0-7695-1807-9/02 $17.00 © 2002 IEEE

5.7. Opening Designs [3J Indrosiak. L. S.; Becker. J.; Glesner. M.; Rcis. R. A.
L.; Distributed Collaborative design over Cave2
Framework. International Conference on Very Large
Integrated (VLSI). Mootpellier. 2001.

A designer can open an existing design using two
different forms. The first one is searching by designer's
name. This search shows the design names in which the
designer is participating, as well as the name of others
designers that participate in each one of these designs. The
second strategy uses the design's name and the design
block's name. In this case, a designer enters the
information followed by the password in order to control
the design access.

[4] Indrusiak. L. S.; Glesner, M.; Reis. R.; Comparative
Analysis and Application of Data Repository
Infrastructure for Collaboration-enabled Distributed
Design Environments. In: Design Automation and Test
in Europe, Paris, 2002. Los Alamit~: IEEE Computer
Society, 2002 (to appear).

[5] Williams, L; Kessler, R.R. All I Really Need to
Know about Pair Progra mming I Learned In
Kindergarten. Comm. ACM, 43 (5), p. 108-114. 2(XX).

6. Conclusions

[6) E. Freeman. S. Hupfer and K. Arnold. JavaSpaces:
principles, patterns, and pratice. Java Series. Reading:
Addison Wesley, 1999.

[7] Edwards. W. Keith. Core Jini. Upper Sa(k1le River.
Prentice Hall Ptr. 1999. 772p.

[8] Brisolam. L.; Indrusiak L S.; Reis. R. A. L.;
Modelagem Orientada a Objetos de primitivas de
projeto de sistemas eletr6nicos voltada para
colabora~o. In: XIII Workshop lbercbip. Guadalajara.
M~xico. 2002.

[9] Gamma, Erich; et al. ; PadrOes de Projeto. Solu~Oes
Reutiliz4veis de Software Orientado a Objetos. TnKl
Luiz M. Salgado. Porto Alegre, 2<XX>.

This paper presents an approach based on shared object
space that provides persisterK:e service without all the
complexity of RDBMSs or OODBMSs. This approach was

developed using Jini/JavaSpaces technology.
The use of Jini/JavaSpaces technology can perfonn

dynamicly the communication among the designers. The
database can be refereed in se..eral lookup tables,
becoming a typically distributed system. The use of
distributed databases facilitates the design data access, turn
into flexible, fault tolerant and transparent to users.

Two collaborative modes were proposed in [3] to
support collabomtion among designers: visually decoupled
and visually coupled modes. These collaborative modes
were validated by the collaboration service implemented
and tested with the Blade diagram editor.

The implementation of the design data repository
presented in this paper shows the advantages of using
Jini/Javaspace technology. Besides, it proves the
advantages of sharing data among designers to support
collaborative work. [10] Indrusiak. L. S.; Gles~, M.; Reis, R.; Alternatives

on Data Repository Infrastructure for Collaboration-
enabled Distrlooted Design Frameworks. (Submitted to
SBCCI 2002).7. References

[1] Sawicki, Sandro; Projeto Cooperativo no Ambiente
Cave; XIll Workshop Iberchip; Guada1ajara-M~xico;
2002.

[11] Hernandez. E.; Sawicki, S.; Indmsiak, L.; Reis, R.
Homero - Urn Editor VHDL Cooperativo via Web. In:
VII Workshop lberchip, Montevideo, Uruguay, March,
2001.

[2] Indrosiak, L. S.; Reis, R. A. L. Ambiente de Apoio 80
projeto de Circuitos Integrados baseado na World Wide
Web. Disserta(jAo de Mestrado. Porto Alegre: CPGC -
UFRGS. 19998.

[12] Wagner, Aavio Rech; Ambientes de Projeto de
Sistemas Eletr6nicos. In: IX Escola de Compu~Ao , 24
a 31 de julbo de 1994. R~ife, Brasil.

Proceedings of the 15 th Symposium on Integrated Circuits and Systems Design (SBCCI’02)
0-7695-1807-9/02 $17.00 © 2002 IEEE

