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Abstract

Enterprise Application Integration provides methodologies and tools to design and

implement integration solutions. A great number of companies rely on this research

field to develop their integration solutions, since they provide the necessary technol-

ogy to integrate different applications through external workflows. An integration so-

lution is a new application whose function is to orchestrate a heterogeneous set of

applications. It provides exogenous integration among different types of applications

that compose the software ecosystem. The execution model of an integration solution

schedules a certain number of threads to perform tasks on integration process. The

implementation of the execution model can be of two types, namely the global pool
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model and the local pool model. Currently, the problem is distributing threads in a

balanced way in order to reduce the makespan and, consequently, increase the perfor-

mance of the integration solution. In this context, this chapter seeks to show that the

high level of thread management can impact the performance of integration solutions.

Thus, we propose the use of the Cat Swarm Optimization (CSO) technique to indicate

the ideal number of threads in local pools. Our method was implemented and tested

with a real-world integration process. Results demonstrate the reduction of execution

time when compared to random distributions of threads and were validated using the

statistical technique ANOVA and the Scott-Knott method.

1. Introduction

In business, the purpose of software applications is to support business processes. Typi-

cally, companies have a software ecosystem [1] with applications that have been developed

without considering a possible integration. A software ecosystem involves different appli-

cations, acquired from different suppliers or developed in the company itself, which makes

it heterogeneous [2]. The research area of software engineering that studies integration

methodologies is known as Enterprise Application Integration (EAI) [3]. Application inte-

gration is a strategic approach for connecting applications [4].

The EAI provides methodologies, techniques and tools so that the platforms can per-

form the integration of the applications [5] observing patterns of integration, proposed by

Hohpe e Woolf [6]. The EAI considers the Pipes-and-Filters architecture style [7], in which

pipes represent message channels and filters represent tasks of the concrete integration so-

lution that process data encapsulated in messages. The EAI can be performed through

topologies and integration styles [6]. Topologies are models that represent how systems

can be organized. Figure 1 presents integration processes as an intermediate layer between

business processes.
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Figure 1. Application integration environment

An integration solution connects multiple applications to an integration flow composed

of tasks that process data encapsulated in messages. Each task executes an atomic operation

that implements an integration pattern on the message [6], and these tasks are out of synch

through communication channels following the Pipes-and-Filters architecture [7]. Mes-
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sages enter the flow of the integration solution through the solution entry port and arrive

at the tasks through message channels. For each message to be processed, the execution

engine uses threads stored in pools. Integration solutions can be developed across several

open-source integration platforms available, such as Guaraná SDK [8], Apache Camel [9],

Spring Integration [10], WSO2 ESB [11], and Mule [12].

Integration platforms provide tools for the development of integration solutions, such:

Domain Specific Language (DSL), used to create the conceptual model of an integration so-

lution; a Software Development Kit (SDK), which enables the transformation of the concep-

tual model into executable code; an execution engine, responsible for executing the integra-

tion processes; monitoring tools that record and analyze statistical performance values and

identify errors that may occur during message processing in integration solutions [13, 14].

The execution engine has the fundamental role of establishing processes and instances

in the execution of tasks processed by units of time [5], considering the heterogeneity of

the software applications and the different characteristics of the tasks. The performance of

the execution engines is directly related to the average time of execution of tasks, called

makespan. The execution engines can be based on two models: the global thread pool

model and the local thread pool model. The global thread pool model is characterized by

presenting a single thread pool to perform all the tasks of the integration solution, while the

local thread pools model is characterized by presenting different thread pools associated

with the tasks present in the integration solution.

In this context, this chapter presents a strategy to find the best thread distribution in local

pools, using the least number of threads to perform the tasks of the integration process based

on the meta-heuristic Cat Swarm Optimization. This work is motivated by the possibility

of optimizing the running of the execution engine, considering that the amount of threads

available for execution is limited. We also discuss the use of metaheuristic techniques to

obtain a better distribution of threads in the local pools and also reduce the total execution

time.

This chapter is organized as follows. Section 2 introduces the Background for En-

terprise Application Integration, Styles, Platforms and Integration Topologies, as well as

introduces the concepts of the Cat Swarm Optimization metaheuristic. Section 3 describes

the work related to the theme of this research. Section 4 presents the proposed solution

to find the optimal number of threads in local pools. Section 5 shows the execution envi-

ronment and discusses the experimental results. Section 6 presents the conclusions of this

work.

2. Background

This section presents a brief description of Enterprise Application Integration, its inte-

gration platforms, integration styles. It also introduces the conceptual model of execution

of the integration platform, as well as the metaheuristic Cat Swarm Optimization.

2.1. Enterprise Application Integration

Enterprise Application Integration (EAI) aims to provide methodologies and tools to in-

tegrate the many applications of the enterprise software ecosystem. Thus, the EAI needs to
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minimize the dependencies between the systems, maintaining a low coupling observing pat-

terns and integration styles [2]. EAI seeks to prioritize a high level of planning in designing

a solution so that the integration of applications is operationally feasible and efficient.

2.1.1. Integration Platforms

Integration platforms are used to develop integration projects. Platforms allow design-

ing, develop and implement integration solutions. For the development of integration so-

lutions, the platforms offer a set of tools that usually include a Domain Specific Language

(DSL), an Application Programming Interface (API), an execution engine, and monitoring

tools.

In integration platforms, each component used for developing, executing and monitor-

ing a solution has specific functions that assist in the management and execution of solu-

tions. There are a large number of platforms to implement integration solutions. Some

prominent Open Source platforms: Apache Camel, Mule ESB and Spring Integration,

which are described below:

Apache Camel: is an integration platform that aims to make integration projects fo-

cus on productivity. Apache Camel is based on the integration patterns defined by Hohpe

and Woolf [6]. The Apache Camel framework offers many elements for most technolo-

gies within the context of integration. It has a perfect relationship with other frameworks,

such: CDI, Spring Integration, Blueprint and Guice. Apache Camel’s DSL XML presents

framework performance, such as Spring Integration and Mule-Esb.

Mule Esb: for Dossot et al. [12], Mule is a communication system, event-driven cor-

porate service bus and an integration broker platform. In addition, to complete, it includes

several additional features rather than just an integration framework. Like other platforms,

Mule also has its foundations in the Business Integration Standards (EIP) registered by

Hohpe and Woolf [6]. Mule offers built-in tools on its platform like Mule Studio that con-

tains an intuitive visual interface setting performance differences when logic is used in high

complexity integration.

Spring Integration: provides an extensive set of tools for creating integration solutions

that meet the demands of the business. The Spring platform has declarative adapter systems.

Such adapters provide a higher level of abstraction in integration solution models. The

Spring Framework provides essential supports such as files, FTP, JNS, TCP, HTTP or Web

services. This framework uses the implementation of a messaging system based on the

integration patterns presented by Hohpe and Woolf [6].

2.1.2. Conceptual Model of Implementation of Integration Platforms

The conceptual model of execution engines is based on a task queue and the number of

threads to be allocated for the execution of the integration solution. This model executes

task scheduling based on queueing theory, following a First-In-First-Out (FIFO) policy, and

has structural components such: scheduler, task queue, threads, and monitors.

The scheduler can run multiple instances at the same time. To perform on instantiation,

the scheduler uses the elements it has in the toolkit, such: a task queue, a list of work

units, and three monitors [5]. The task queue is a priority queue that contains work units

to process. Tasks are performed by a standard worker process in which they can be run
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through the available threads. The task queue follows a pattern in which the first task that

enters the queue is the first one to be executed.

The task queue stores the work units to be processed. The task queue commonly creates

buffer pools and flow controls for the integration solution. Each work unit refers to the

runtime process in which, in most cases, the deadline is set to the current time; this is, that

the corresponding task can be executed as quickly as possible. Threads are computational

resources that allow running a program. Implemented through a library and divided into

small lines, threads enable tasks to be performed concurrently.

Figure 2 describes the execution engine model and its main elements responsible for im-

plementing the integration solutions, formulated in the concept of the task-based execution

model.

Figure 2. Conceptual model of the execution engine

2.2. Integration Styles

The following four integration styles are listed below: file transfer, database sharing,

remote procedure call, and message sending.

File Transfer: occurs in export and import data exchange between applications. In

this style, it is only necessary to have a standard data transfer mechanism that has the

property of being able to be used by several programming languages and platforms. This

style is considered simple with others, as long as the file format is maintained according to

mutually agreed rules. The integrity of the file contents will be maintained without loss of

information during transmission between the sending and receiving applications.

Shared Database: shares data with multiple applications. One factor that facilitates

the use of database sharing is the generalized use of relational databases based on Struc-

tured Query Language (SQL). Virtually all application development platforms can work

with SQL, often with reasonably sophisticated tools. By sharing the same database, all

applications begin to deal with data that is reconcilable and consistent. On the other hand,

there is the possibility that the database becomes a bottleneck for performance.

Remote Procedure Call: file transfer styles and the shared database are primarily fo-

cused on data integration. The so-called remote procedure style looks for process inte-
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gration, which occurs when an application invokes procedures from another application.

Basically, an A application exposes features that can be accessed remotely by another ap-

plication B. Each application can change the format of its internal data without affecting

any other application. In other words, application A communicates through its stub inter-

face with the skeleton interface provided by application B, making a procedure call.

Messages: applications use communication channels to transfer data and events to share

functionality immediately, reliably and asynchronously. An application publishes a mes-

sage on a message channel to other applications that have access to that channel. The

exchange of messages between applications occurs asynchronously [6]. In this context, the

ability to transform messages allows applications to be decoupled from one another [6].

2.3. Cat Swarm Optmization

Heuristic optimization methods have, in many cases, been motivated by natural phe-

nomena such as Simulated Annealing, Genetic Algorithm, Swarm Algorithms, Ant Colony

Optimization. According to De Castro [15], swarm intelligence is also considered a branch

of the computational approach known as Natural Computing. Such an approach is the com-

putational version of the process of extracting ideas from nature to develop computational

systems. The best-known techniques of swarm intelligence are Ant Colony Optimization

(ANT), Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC) and Cat Swarm

Optimization (CSO).

Cat Swarm Optimization (CSO) is one of the newly established high-performance com-

putational techniques introduced in 2007 by Chu et al. [16]. The CSO is inspired by the

natural behaviour of the cats, in which two main behaviours are modelled: the search mode

and the tracking mode [17, 18]. This technique uses an analogy with the behaviour of cats.

Thus apparently resting time is more significant than their hunting time; however, senses

are all on alert. With slow and calculated movements, the cat places itself in a search mode

state. However, when pursuing targets, it moves at high speed, converging on the solution.

At this new time, the cat is in a tracking mode state [19]. CCSO makes use of this behaviour

of cats to search for more solution spaces. We used an initial population of cats that are ran-

domly divided into search and tracking modes according to the ratio of the defined mixing

factor [20].

2.3.1. Search Mode

In the CSO technique, the search mode aims to model the behaviour of the cats during

a rest period, but they are always in a state of alert in the dimensions of the environment to

execute the next movement. Four key factors in search mode are applied: search memory

pool (SMP), SRD search, count dimension for change (CDC), and own search position

consideration (SPC). The SMP is used to set the memory to fetch size of each cat, which

indicates any cat position.

Figure 3 illustrates the case where a cat has three dimensions. If the CDC is set to 100%,

the copy distribution will be ball-shaped. Thus, the possible candidates to be surveyed

around the cat are eight vertices of a cube. If the CDC is set to 66%, the copy distribution

will be four vertices of 3 flat surfaces that have the original cat in the centre. In general, a

higher value of CDC gives many possible candidates, generating many mutations.
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CDC 100% CDC 66%

Figure 3. Configuration mode of CDC

All of these factors play essential roles in search mode. The SPC is a boolean expression

variable and indicates whether the point where the cat is already standing will be one of the

candidate points for the next move. The SPC cannot influence the value of the SMP [20].

This mode has the following steps:

1. Add j copies of the cat’s current position, where j = SMP . If the value of the SPC

is true, let j = (SMP - 1), then hold the current position as one of the candidates;

2. For each copy, according to the CDC, more or less SRD percentages are randomly

added, the generated values have replaced the old ones;

3. Calculate the fitness values (FS) of all candidate points;

4. If all FS are not precisely equal, calculate the probability of selection of each can-

didate point by Equation (1), otherwise set the whole probability of selecting each

candidate point to 1;

5. Randomly select the point to change to the candidate points and replace the cat’s

position.

Pi =
FSi− FSb

FSmax− FSmin
, onde 0 < i < j. (1)

The purpose of the fitness function is to find the minimum solution, FSb = FSmax,

otherwise FSb = FSmin.

We describe below the pseudo-code of the search mode of the algorithm.
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Algorithm 1: Search Mode Algorithm

1 begin

2 for each agent-cat do

3 copies j = SMP ;

4 if SPC = true then

5 Save copies;

6 end

7 end

8 for each copy do

9 add randomly (ou sub) SRD;

10 end

11 for each copy do

12 calculate the value considering the fitness FSi;

13 end

14 if all values of the fitness function are not equal to each other then

15 calculate Pi;

16 end

17 if FSi are equals then

18 Pi = 1;

19 FSb = FSmin;

20 And replace cat-agent with its copy;

21 end

22 end

2.3.2. Tracking Mode

The tracking mode shapes the cat’s case in the crawling state. Once a cat enters the

tracking mode, it depends on its speeds for each dimension. The tracking mode comes

from the rapid movements of a cat. This mode corresponds to a global survey.

In tracking mode, the cat has a velocity and position toward the cat that is in the best

overall position (gbest). The velocity and position are updated according to Equation 2 e

3.

Vi(t+ 1) = ω ∗ Vi + acc ∗ round ∗ (gbest)− Pi(t)) (2)

Pi(t+ 1) = Pi(t) + Vi(t) (3)

Where ω is the weight of inertia; acc is the acceleration coefficient, and a rand is a random

number evenly distributed in the range between 0 and 1. The tracking mode algorithm is

represented in the pseudo-code below:
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Algorithm 2: Tracking Mode Algorithm

1 N cats in SRD randomly (velocity vector = zero) ;

2 Generate a flag for each cat ;

3 begin

4 for k number of iterations do

5 Calculate pbest (best position) ;

6 Move each cat considering its flag ;

7 else

8 flag = 0
9 end

10 Run Seach Modea;

11 Run Tracking Mode;

12 Redistribute the flags ;

13 end

14 end

2.4. Combination of Search and Trace Modes

In the basic description of cat flock optimization, it is observed that the CSO has two

secondary modes, defined as search mode and tracking mode. To combine these two modes

in the algorithm, we define a mixture index MR, which determines the union of the search

mode with mode tracking [20]. Most of the time is spent in the search mode, and MR re-

ceives a minimal value. The process of combining CSO search and trace states is described

below.

1. Create the number of N cats in the process;

2. The cats are randomly positioned in the space of the M-dimensional solution and

values are randomly given, which are within the range of the maximum velocity, for

the velocities of each cat. Then, randomly select the number of cats and set them in

the tracking mode according to the MR, while the others are in the search mode;

3. The value of the aptitude of each cat is evaluated by applying the positions of cats in

the aptitude function that represents the criteria of the objectives, and the position of

the cats in the memory is maintained. Note that it is necessary to remember the best

position of cats (gbest), because it represents the best solution so far;

4. Move the cats according to their flags; if the cat k is in the search mode, the cat k

applies the process of the search mode; otherwise, the process of the tracking mode

applies;

5. The number of cats is again selected and set to the tracking mode according to the

MR, and then the other cats are set in the search mode;

6. The end condition is checked, if satisfied, the program is finalized, otherwise step 3

is repeated for step 5.
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3. Related Work

With the systematic review of the literature, we identify studies that seek to provide

strategies for the distribution of resources, aiming to achieve the smallest makespan possible

through the optimization of the flow of tasks. We also identify work that proposes strategies

that seek to minimize the makespan that is not in the scope of the application integration

area (EAI) but use some optimization techniques such as Cat Swarm Optimization, Particle

Swarm Optimization, and Artificial Bee Colony. Table 1 represents the approach adopted

concerning the study presented in this chapter. Garg and Singh [21] addressed adaptive

workflow scaling to minimize makespan. Udomkasemsub et al. [22] proposed a workflow

scheduling framework using an Artificial Bee Colony considering multiple goals, such as

makespan and cost. Wu et al. [23] propose a revised optimization of Discrete Particle

Swarms to schedule workflow applications in the cloud. The authors consider both the cost

of transmission and the cost of communication, in order to minimize the impact and cost

(makespan) of the workflow.

Liu et al. [24] presented a Cost-Time-Committed scheduling algorithm to minimize

the makespan and cost of workflows. The Cost-Time-Commitment scheduling algorithm

considers the characteristics of cloud computing to accommodate workflows that are con-

strained by the intensive cost of instances committing time and cost of execution with user

input activated in real time. Chirkin et al. [25] proposed an algorithm that highlights com-

mon problems in estimating the workflow execution time, as well as its execution time. The

authors have developed an algorithm that considers the complexity and stochastic aspects

of workflow components as well as their execution time.

Abdi et al. [26] presented three heuristic approaches for scheduling tasks in the cloud

environment, which were compared to each other. These approaches are the Algorithm

Optimization of Particle Swarm, the genetic algorithm and also the PSO algorithm modified

for efficient scheduling of tasks. In all of these three algorithms, the goal was to generate

an optimal timeline to minimize task completion time. Sellaro et al. [27] proposes a task

scheduling algorithm that assigns the tasks to the threads, considering the waiting time in

the ready task queue and the computational complexity of each task that optimizes the total

execution time of a message in the integration process.

Singh et al. [28] review the use of metaheuristic techniques to schedule tasks in cloud

computing. To schedule tasks in cloud computing, presenting the taxonomy and compara-

tive review on these algorithms. The methodical analysis of task scheduling in cloud and

grid computing is presented on the basis of swarm intelligence and bio-inspired techniques.

Although it does not explicitly consider makespan, scheduling tasks leaves it implied.

Bilgaiyan et al. [29] experiment with the CSO algorithm using a hypothetical workflow

and compare the results of workflow planning with the existing PSO algorithm, registering

a better cost of time. Singh and Singh [30] proposed a workflow scheduling algorithm

that seeks to minimize time-constraints defined by the user. Kumar and Ravichandran [31]

present a priority-based algorithm whose goal is to maximize the use and cost of resources

and reduce makespan. The framework for modelling and simulation of cloud computing

infrastructures and services known as CloudSim.

The protocol defined for the bibliographic review has, among other things, a sequence

of divergent points of the proposal presented in this chapter, they are:
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1. Restriction to the EAI field of study;

2. Pipes-and-Filters structure;

3. Configuration model in the execution of integration processes;

4. Restrict the mount of computational resources (threads).

Authors Schedule Workflow Cloud Computing Techniques

Garg e Singh [21] x

Udomkasemsub et al. [22] x

Wu et al. [23] x x

Chirkin et al. [25] x

Sellaro et al. [27] x PSO

Singh et al. [30] x x

Bilgaiyan et al. [29] x PSO/CSO

Singh and Singh [28] x x x ABC

Kumar et al. [31] x x

Table 1. Comparative of related work

4. Proposal based on Cat Swarm Optimization

Platforms engines perform the tasks in message processing. These engines have avail-

able threads, being able to have different numbers of threads, where a thread is the basic

unit of processing. The execution engines can be based on two models for the execution

of the integration solution: a global pool of threads and local pools of threads. The global

thread pool model consists of a single thread pool to perform all the tasks of the integration

solution. In the local thread pools model, each task will have exclusively a thread pool

dedicated to its execution. In the integration solution tasks are independent, connected by

channels called slots. Slots are responsible for transferring messages between tasks. Tasks

consume a certain amount of time to process messages.

When a high message rate enters the integration solution, as the tasks have their own

message execution time and a subsequent task has a longer execution time than its prede-

cessor, this event will result in the accumulation of messages waiting to be processed in

the slot. Moreover, this will imply in the makespan of any integration solution, making it

slower. In the scenario where the execution engine is based on the local thread pools model,

it is expected that the amount of threads in each pool will be enough to process the messages

arriving at the task slots.

However, relating the ideal number of threads in the local pool to the time-out of the

messages in the slots is not easy, it requires an optimal distribution of threads in the lo-

cal pools that minimize the makespan of the integration solution. The distribution of the
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optimal number of threads in each pool can be achieved using algorithms, mathematical

modeling, heuristics and metaheuristics [32, 33]. Figure 4 represents the configuration of

an integration solution based on local thread pools.

Figure 4. Integration solution configured with local pools

4.1. Problem Formulation

Performing tasks in an integration solution are complex and critical work [29]. The

amount of data produced by software applications included in an integration solution is

relatively large, so the processing time tends to be relatively high. It is considered that these

data are processed in a task t1, then transferred to the successor task t2, through the slots,

thus following the flow of the integration solution.

The integration solution can be represented in the form of a directed acyclic graph,

whose nomenclature is given DAG = (Z,H), where Z is defined as the set of n tasks t =

{t1, t2, ... tn} and H is defined as directional edges representing the dependency between

two tasks. Assume that a set of processing resources is represented by r = {r1, r2,..., rn}.

We are assuming that each processing resource ri (where i ∈ 1...n) has its storage,

denoted by Dr = {Dr1, Dr2, Dr3, Dr4..., Drn}, and that all processing resources are

located in P different locations.

The makespan can be obtained by summing the execution time of each task in each

resource and by summing the data transfer time between a task and its dependent successor

task [29]. Figure 5 represents a workflow, modelled in the acyclic format, containing seven

tasks, where d represents the time spent in the transfer of data Tm between tasks ti and

its successor tj with a respective thread pool. It is assumed that Tm can be monitored and

measured.

Therefore, the makespan of the entire process flow Tt (ri) is the sum of the time incurred

from the execution of the task Ti for the resources ri and the sum of the transmission times

Tm between a set of dependent tasks. Tt is calculated by Equation 1:

TTp =
∑

Ti +
∑

Tm (4)

Thus, the objective function described below can be expressed by minimizing the

makespan Tt of the integration solution, with complexity of its implementation, in order

not to exceed the total available resources (TR = |R| = Nt), that is, to respect the parameter

of constraint of an Nt number of threads. The formulation is represented by Equation 2:
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Figure 5. DAG representation of integration solution flow

Minimize (TTp) (5)

Subject to: TR ≤ Nt.

We assume that each task has a unit of time Ut of execution related to the complexity

of the work performed by it. We also assume that in this flow, there are tasks with different

units of time. Tasks with relatively small time unit have processed the messages in less

time, while tasks with relatively large time unit (Ut) process the same message rate. The

accumulation or predominance of messages in the task slots makes the execution of the

integration solution slow. Then a message (M1) would take a considerably considerable

time to be processed from start to end of the flow. Therefore, minimizing the time a message

waits in the slot to be processed will also minimize the makespan of the integration solution.

4.2. Algorithm Proposed

In order to transform the CSO problem into an algorithm, it is necessary to define the

particle and its dimensions. In the approach adopted in this work, a particle represents

workflow and its tasks, whereas the particle dimension represents the number of tasks in

the workflow. The dimension of a particle serves to locate its position in the environment,

defining the system of positions represented by flags. In the solution example presented,

the particle size is the location, and a system specifies its position with two flags, to which

values of 0 and 1 are assigned.

We consider that each task has the same number of thread pools with a single assign-

ment to perform the task. Thus the location value is represented by the flag, which is in

the range of 0 to 1. In the positioning system, the particle’s moving space has a range of

up to 1, with 1 being the maximum number of available thread pools. The value of a flag

at the position of a particle corresponds to the number of thread pools and represents the

computational resource assigned to a task defined by that particular flag. Thus, the position

of the particle corresponds to the respective task incurred by the computational resource.

In the formulation of the problem, we consider the representation of DAG = (Z,H)
for an integration solution flow, with Z sets of nodes and H a set of edges. For the proposed
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problem, the nodes represent the tasks, and each edge H represents the time spent for data

transmission between every two tasks of Z. Then Ti and Tj are two tasks of Z.

Besides three operators were defined: position, speed and flag. The position is defined

by Equation 4, the solution is obtained through the thread distribution; the velocity is the

set of pairs ( Ti, Tj), , which represents the permutation to be applied for the distribution

of a pair number ( Ti, Tj ) and the velocity is defined by Equation 2, the flag allows us

to determine if each particle is in search mode or in crawl mode. The goal is to find each

particle to which it has the best aptitude, namely, the time of execution of the particle in the

best position.

The objective function characterizes the object of the distribution problem since it is

used to indicate the degree to which the solution is optimal or close to optimal. In the pro-

posed approach, the objective function is minimized and its value will be the Tt makespan

contained in the distribution, associated with the position of the particle. Algorithm 3

presents the pseudo-code of the proposal through the set of R resources to be allocated

and the set of threads directed to the tasks.

4.3. Structure of the CSO Algorithm

To generate the solutions it is necessary to use the nine tasks that make up the integra-

tion solution, T= {t1, t2, t3, t4, t5, t6, t7, t8, t9}, so that the quantity of tasks is equal to

the number of Npools. Another critical factor is the number of threads Nt to not exceed

the total available resources {TR = |R| = Nt}, according to the constraint TR ≤ Nt. The

Minimize( TTp) objective function calculates the makespan according to the TXM mes-

sage rate that arrives at the input port of the integration solution flow, in particular, the case

study addressed. The makespan relation and the thread distribution in the pools configure

a set of solutions stored in vectors. After the calculation is performed through interactions,

it searches for and classifies the best distributions based on makespan. In this part of the

algorithm, we use the standard CSO parameters: MR (number of cats that hunt), SMP

(searching for memory pool), SPC (self-positioning, default value is False), CDC (de-

fault value is 0.1), W (inertia constant, default value is 0.1), and C (default value is 1),

SRD (searching for range of selected dimension, constant acceleration (the default value is

1.05).These parameters are elements of fundamental importance for local and global search

modes, according to the probabilistic factor of MR mixing. The complete interface of the

proposed can be observed in Algorithm 3.

4.4. Encoding CSO Algorithm

The proposed algorithm was implemented through the GNU Octave version 4.4.1. This

software primarily works with a rectangular numeric object-array type, which can accept

even complex values. All variables in Octave represent matrices. The three coding parts of

the CSO algorithm with Matlab programming language compiled in Octave.
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Algorithm 3: Algorithm based on Cat Swarm Optimization

1 begin

2 Number of K population of solutions;

3 Message rate TXM ;

4 Number of Tasks T = {T1, T2, Tn} = Number os Pools Npools;

5 end

6 Objective Function Minimize( TTp );

7 Better threads Distribution MDT ;

8 begin

9 Generate K population of solutions

10 Start threads distribution R = {R1, R2,..., Rn}) in pools located at K solutions

11 Start mesage rate TXM

12 Calculate TTp of each K solutions, such as Npools e TXM

13 Store K solutions with MDT and smaller than TTp

14 Based on MR indicate randomly K solutions with the best MDT and smaller

than TTp in: search and tracking modes

15 Classify (to rank) K solutions with the best MDT and smaller than TTp

→ (Pbest1)
16 Store K solutions with the best rating (Pbest1)

17 K Solution withe the best MDT and smaller than TTp in search mode Set

search mode considering MR;

18 Set tracking mode considering MR;

19 Classify (to rank) K solutions with the best MDT and smallher TTp in both

modes → (Pbest2)
20 Store K solution with the best rank → (Pbest2)
21 Compare (Pbest1) and (Pbest2)

22 Choose K solution with the best MDT and smaller TTp → (Pbest3)
23 Pbest3 is the best K solutions concluded

24 Show → (Pbest3)
25 Based on MR distributed randomly K in search or trancking mode.

end

26

5. Experimental Results

In this section, we present the experiments performed to evaluate the performance of

the execution engine. We use the proposed algorithm based on Cat Swarm Optimization to

simulate the actual behaviour of the execution engine.

According to Franca and Travassos [34], the uncertainties, time and costs of the ex-

periments can be reduced through simulation-based studies because they are performed in

virtual environments. Our simulation compares the results of the average total processing

time of a message in the integration processing flow represented in Table 5.. We use the

proposed model with a random set of threads to minimize processing time.

The program receives the following parameters:
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Task Caption T-Exec T-Slot T-Send T-Rec T-Proc

T1 Splitter 0.531 2 - - 2.531

T2 Normalizer 0.303 1 - - 1.030

T3 Content Enricher 0.005 - 2 2 4.005

T3* Content Enricher 0.005 1 - - 1.005

T4 Content Filter 0.003 1 - - 1.003

T5 Content Enricher 0.005 - 2 2 4.005

T5* Content Enricher 0.005 1 - - 1.005

T6 Recipient List 0.531 1 - - 1.531

T7 Message Filter 0.003 1 - - 1.003

T8 Message Translator 0.001 1 - - 1.001

T9 Message Translator 0.001 1 - - 1.001

Table 2. Task processing time

• Parameter 1: Number of solutions to be tested;

• Parameter 2: Total number of threads to be distributed in pools;

• Parameter 3: Number of messages to be processed;

• Parameter 4: Task processing times;

• Parameter 5: Number of Cat (candidate cats) for the search.

The protocol applied to perform the experiments was developed based on the works of

Jedlitschka e Pfahl [35], Wohlin et al. [36] e Basili et al. [37], which established procedures

for controlled experiments in the field of software engineering studies. The authors propose

the development of an experimental component based on a unified standard. These guide-

lines serve as a starting point for further discussion of the quality improvement of empirical

studies and controlled experiments. This protocol is detailed in the following sections to

present the experiment that was performed.

5.1. Case study

We use a real software ecosystem as a case study, which is responsible for managing

the collection of the Urban Land Tax in the municipality of Ijuí, located in the state of Rio

Grande do Sul, Brazil. The ecosystem calculates the amount of tax due, relative to each of

the properties registered. Files generated from this integration are converted to PDF format.

The final document, in the form of a ticket for payment, must be sent by mail and/or e-mail

to the owner of the property.

The ecosystem consists of seven applications: Application of accounting, application

of IPTU, ARCetil, ARCit, Database, E-mail Server and Print Server. Each of these appli-

cations is described below based on Kühne [38].
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1. Application of accounting: this application is made in a direct way in which the

taxpayer seeks information in the municipal unit;

2. Application of IPTU: this application is responsible for requesting the creation of

tax tickets for each of the properties registered in the city’s database. This action

is performed manually by the operator around the last month of each year so that

payment is made the following year;

3. ARCetil: calculates the amount due from the Urban Land Tax and creates the ticket

in PDF file format;

4. ARCit: allows the taxpayer to request, through the internet network, the second leg

of the Urban Land Tax ticket and/or updated route of the tax due;

5. Database: Microsoft SQL Server 2014 database that includes data on taxpayers,

which are used by the ARCetil application in the calculation of the Urban Land Tax

relative to the property;

6. E-mail server: accepts the sending requests of taxpayers who have registered an e-

mail address and sends the file in PDF format to the address;

7. Print server: PDF files are printed and mailed to each taxpayer.

5.2. Abstract Model of the Integration Solution

The following is the role that each of the patterns used in the model has in the integra-

tion flow. Figure 6 represents the conceptual model designed with the integration patterns

proposed by Hohpe and Woolf [6], to solve the problem of integration of the Urban Land

and Land Tax (IPTU) collection solution.

Figure 6. Solution modeling in EAI standards

1. Splitter: breaks the message requesting the generation of the tickets, relative to all

existing registrations, so that each outgoing message corresponds to single property

registration, and forwards all these outgoing messages to the standard (2);
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2. Normalizer: transforms inbound messages from the three applications, which have

different formats, to the same canonical format that is used in the rest of the solution

and forwards this transformed message to the standard (3);

3. Content Enricher (T3): requests information from each registration to the city’s

database, enriches the message with the data obtained and forwards this enriched

message to the standard (4);

4. Content Filter : eliminates unwanted data from the real-estate return message and

forwards this message to the default (5);

5. Content Enricher (T5): asks the ARCetil application to perform the IPTU calcula-

tions of the property referenced in the message, enriches the message with a PDF

file corresponding to the generated ticket and forwards this enriched message to the

default (6);

6. RecipientList: receives the message and makes a copy, forwarding it to the defaults

(7) and (9), so that the PDF file can be sent by e-mail to the contributor (segment of

the solution that contains the default (7)) , and printed to be sent by mail (segment of

the solution containing the standard (9));

7. Message Filter: filters the messages so that only those related to the contributors

who have a registered e-mail address are forwarded to the default (8), discarding the

others;

8. Message Translator T8: transforms the content of the received message into an e-mail

sending requirement compatible with the e-mail server, and forwards this transformed

message to that server so that the PDF file is sent to the e-mail -mail;

9. Message Translator T9: transforms the content of the received message into a print

request compatible with the print server and forwards that transformed message to

that server so that the PDF file is printed and sent to the taxpayer by mail.

The Urban Land Tax integration solution formulated in acyclic DAG graph represents

the directed flow, according to Figure 7. It represents the arrangement of the times incurred

from the execution of the task Ti and the transmission times Tm between subsequent tasks.

Where: TA={TA1, TA2, TA3, TA4, TA5, TA6, TA7, TA8, TA9} represents the

set of tasks and times incurred in the execution of task Ti; and the set a={a1, a2, a3, a4,

a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17} present directed edges and

transmission times Tm.

5.3. Experimental Environment

The implementation and execution of the proposed algorithm for the simulation were

performed in a computer with Mac OS Mojave Operating System version 10.14.1; Intel (R)

Core (TM) i5-5200U, 2.9 GHz CPU; 2 colours; 256KB Cache L2 (per Core); 4 MB L3

cache; 8 GB of RAM. GNU Octave version 4.4.1 was installed to encode and execute the

simulation. In order to process the descriptive statistics, the software Genes [16], version

2015.5.0, was used to calculate the Anova to use the Scott-Knott method.
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a15

a16

a17

Figure 7. Case study graph

5.3.1. Simulation Scenarios

The ideal distribution in the thread pools depends on the amount of resource available

by looking at the number of thread constraints as well as the message rate. For a simulation

of message processing in the case study solution flow, 200 different scenarios were used,

using ten configuration sets and ten constraints on the number of threads described in 8. We

consider that there is one thread per pool, and the total number of constraint threads must

be greater than or equal to the number of tasks.

Experimental Settings

Num. Messages

Num. Executions 20

Total scenarios: 200

Figure 8. Experimental scenarios

5.3.2. Execution and Data Collection

The execution of the algorithm was performed using the flow of the integration solution

represented in the graph model shown in Figure 7. This experiment is classified in the liter-

ature as a termination simulation. In this type of simulation, the outputs are a function of the

initial conditions and are generally analyzed statistically by the method of the executions,

in which several runs between 20 and 30 is acceptable to obtain a population [39]. In this

experiment, the execution of the algorithm was repeated 20 times. We decided to limit the

allowable number of population solutions to 10 thread pool configurations, generated by

the first part of Algorithm 3. Moreover, we used ten constraints on the number of 10 sets of
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distributions interspersed in 10, 20, 30, 40, 50, 60, 70, 80, 90, 100.

The algorithm was executed with the number of possible solutions, the number of mes-

sages of the integration solution and a vector to represent the processing times of tasks. At

each interval, the number of threads was varied. The algorithm was executed 20 times for

each set with the number of threads. In each execution, we collect the following values:

smaller makespan best distribution threads in the pools and the execution time related to the

best distribution threads in the pool performed by the proposed algorithm. The standard de-

viation was calculated from the average total processing times measured in the experiment.

We used the statistical technique of ANOVA variance analysis for the different execu-

tion times, among the variations found in a set of results. The Results are derived from

random factors called error and are influenced by the total number of segments. Accord-

ing to Georges et al. [40], the statistical theory is indicated for the analysis of data from

performance experiments, since statistical reasoning is an adequate resource to deal with

non-determinism in computational systems such as time systems of execution [41]. In

the experiment, we verified that the same execution time value was repeated for different

distributions in each set of threads. This fact could lead to redundancy, but this was ampli-

fied through ANOVA analysis of variance using the Scott-Knott technique. The Scott-Knott

technique is considered the most demanding test because it considers significant differences

between the alternatives; it is adopted in the literature in experiments with performance due

to its ease of application.

5.4. Results and discussion

The results for each thread distribution in the local pools and the total message pro-

cessing times in the integration solution tasks (Figure 6) are presented in Figure 9. In the

graphs, the x−axis represents the order of execution. The y−axis represents the average

total processing time makespan represented by TTp in seconds (s). Line charts present the

best distributions of thread sets an average total time processing for each of the quantities

of the total number of threads allocated.

A vector stores the distribution of threads in the pool, integral elements are the number

of threads in each thread pool, the index of the vector corresponds to the order of threads

in the local pool for tasks in an execution flow of the integration solution. The highlighted

point in the curves presents the lowest makespan TTP , corresponding to the distribution

of in the thread pool. The standard deviation of the mean of total processing time, are

presented in Table 3, summarizes the standard deviations and averages of the algorithm.

A scatter plot was generated to analyze the total time values obtained from the process-

ing with the best thread pool distribution relative to the treatment of 38, 723 messages. This

graph, shown in Figure 10, compares the results of the lowest total average processing time

for each of the numbers of threads sets. The x− axis represents the constraint of the total

number of threads, and the y − axis represents the values of the total average minimum

processing time.

The graph also demonstrates a statistical disposition line of TTp, represented by a line,

which corresponds to a polynomial equation, according to Equation 6:
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Figure 9. Experimental Distributions
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Threads Standard Deviation (TT_p)

10 77.559

20 38.788

30 25.865

40 25.865

50 19.476

60 19.399

70 19.476

80 19.399

90 19.437

100 19.399

Table 3. Standard deviation and averages of TTp

Figure 10. Results of the lowest total average processing time for each of the numbers of

threads
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TTp = 2, 952(Nt)
6
− 1, 187(Nt)

5 + 0, 0002(Nt)
4

−0, 0157(Nt)
3 + 0.7033(Nt)

2
− 16, 515 + 186, 32

(6)

In this equation, the trend line is represented by a polynomial equation that treats the

behaviour of the makespan as a function of the total number of threads and their respective

value of R2 = 0,9965. The variable Nt epresents the number of threads, and TTp is the

value of the lowest makespan.

Statistical techniques were used to verify the influence of the total number of threads

used in makespan. The independent variable is the total number of threads, and the depen-

dent variable is TTp. Table 4 presents the analysis of variance of the dependent variable.

The total of results is the number of executions multiplied by the number of possible val-

ues for the total number of segments. The degree of freedom of the total is its value by

subtracting 1.

Source of variation (FV) Degree of relaxation (GL) Mean Square (QM)

Threads available 9 4761,43*

Error 190 204,09

Total 199

Média Geral 41,58

CV(%) 34,35

*significant at a level of 5 % confidence

Table 4. Analysis of Variance

The comparison of means by the Scott Knott technique of the dependent variable is

present in Table 5. The constraints on the number of threads in the first column correspond

to the TTp in the second column for 20 runs, and the Scott-Knott technique group is in

the third column. This technique of constraint groups on the number of threads about the

execution time indicates that the sets of threads inserted in a group are the same for the

processing of messages.

In the analysis performed, there are three groups: a, b and c. O grupo a representa as

restrições sobre o número de 10 threads. Group a represents constraints on the number of

10 threads. Group b represents the constraints on the number of 20 threads. Group c exposes

constraints on the number of 30, 40, 50, 60 threads. The group d presents the constraints on

the number of 70, 80, 90, 100 threads.

The minimum number of threads to distribute among the 10 thread sets is equal to 10,

one thread for each pool. In this case, the algorithm can only provide distribution, and

the minimum processing has pan was 77.55 seconds. When the number of threads to be

distributed is greater than 10, the algorithm can provide the different amounts of threads

distributed in the pools, resulting in different values for the makespan. With the number of

threads equal to 20 and 30 threads, the lowest TTp value was 25, 865 seconds for both.

A reduction of 51.69 seconds concerning the processing time with the distribution of

10 threads is observed. With the number of threads equal to 40, the shortest TTp execution
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Number of threads available Average of TTp Groups

10 77.5590 a

20 57.2587 b

30 44.6378 c

40 41.3299 c

50 39.3434 c

60 36.9474 c

70 30.5661 d

80 29.7867 d

90 28.6042 d

100 27.1410 d

Confidence Level 5% by the Scott test & Knoot

Table 5. Scott-Knoot Statistical Analysis

time was 25.86 seconds, with a reduction of 11.92 seconds concerning the number of 20
threads, but equal to the number of 30 threads. With the number of threads equal to 50,

the shortest execution time was 19.47 seconds, a reduction of 6.40 seconds concerning the

restriction number of 40 threads is noticed.

With sets of thread numbers equal to 60, 80, and 100, it is observed that the lowest

TTp is the same for all sets, which is 19.39 seconds. Another identified observation is a

reduction of only 0.03 seconds concerning the thread sets 70 and 90, respectively. In the

relation of the set of 90 threads and the set of 100 threads, we have the smaller TTp de

19, 47 of 19.47 and 19.39 seconds respectively, reduction of only 0.03 seconds.

It is important to emphasize that the value of the smaller makespan has decreased with

the addition of threads up to a limit, so this lower mean total time stabilizes and tends to no

more prolonged decrease. The Scott Knott averages comparison test demonstrates that the

TTp value for the 100-thread distribution is 19.39 seconds. The most significant difference

between averages occurs for 10 and 100 threads, being 58.16 seconds.

The present study is pertinent to be applied in other case studies. With different in-

tegration solutions, which receive different message rates. The study can still serve as a

reference for software engineers, assisting in the distribution of pooled threads in concep-

tual execution models.

5.5. Threats to Validity

We analyzed the factors that may influence the results and the central interventions that

occurred in the experiment. The execution of processes parallel to the process of execution

of the optimization algorithm and that possibly will imply in the results of the realized

experiments. Another threat is that running with another integration solution with another

number of messages may present different results and with several possible solutions.
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During the experiments, we tried to reduce the likelihood of influencing external pro-

cesses to extract the maximum performance from the actual hardware. They include pro-

cedures such as disconnecting the machine from the Internet and avoid starting any other

process during the execution of the experiment.

The results obtained are valid to compare with the execution of other integration solu-

tions, with different numbers of messages and with different numbers of possible solutions,

generated by the population algorithm, as long as it is maintained in an experimentation en-

vironment. However, the results obtained in this experiment may vary, so it is not possible

to consider them a general standard.

For Wainer et al. [42], validation means comparing under the view of a condition, if the

model behaves as a system in the real world on the same conditions, then the model is valid;

otherwise it is not valid. To experiment, we followed procedures based on the integration

solution of the case study.

We apply the proposed algorithm in the conceptual model of execution under the same

conditions of the real world. The time obtained the execution of the algorithm with opti-

mization technique, allowed to identify the shorter execution times. They demonstrate a

direct relation as to the thread distribution of each local pool. After the collection of the

metrics of execution of the algorithm, we tried to construct a representation of the analysis

of variance using the statistical techniques of Scott Knott aiming to evaluate results. Statis-

tical validation, in general, is used when one wants to measure mean, variance and degree of

satisfaction of models of a universe through a sample that represents them in a statistically

proven way.

6. Conclusions

This chapter introduced a method based on the Cat Swarm Optimization (CSO) tech-

nique to find the ideal distribution of threads in integration solutions. This approach can

contribute to improve the performance of the execution of integration processes in runtime

models and, consequently, increase the productivity of the system.

The algorithm was implemented and tested with a real-world integration process. The

results of the executions showed improvements in the runtime model with the optimal dis-

tribution of threads in the pool. We verified that the statistical analysis utilizing the trend

line described by Equation 6 allowed to find the behaviour of the makespan in the function

of the total number of threads. However, this statistical technique showed some stability

at the execution time, even with the increase in the number of threads. With this, we have

verified that there is no significant reduction in the average total processing time over 70

threads. Therefore, it is possible to achieve an optimal distribution of threads in pools, and

this distribution causes minimization of makespan. This experiment can be adopted for

other scenarios, varying the message rate, different integration solution, number of threads

and the number of solution populations. In future research, we intend to compare the CSO

optimization technique with other metaheuristics in order to compare its execution results.
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