
Enterprise Application Integration, Simulation, Markov Chains 1

Chapter 1

MODELING, ANALYSIS AND SIMULATION OF

ENTERPRISE INTEGRATION SOLUTIONS USING

MARKOV CHAINS

Márcia Horn1, Sandro Sawicki∗1, Fabricia Roos-Frantz 1, Rafael Z. Frantz1, and

Igor G. Haugg1

1Unijuı́ University, Department of Exact Sciences and Engineering, Ijuı́, RS, Brazil

PACS 05.45-a, 52.35.Mw, 96.50.Fm. Keywords: Enterprise Application Integration, Sim-

ulation, Markov Chains.

Abstract

It is common sense that in order to assist their business processes, companies use

heterogeneous software applications, mostly composed of legacy systems, third-party

purchased software packages or systems developed by its own programmers teams as

a solution for a specific problem. In this scenario, the main challenge facing compa-

nies is that most of their applications are not designed considering integration with

other applications. The area of Enterprise Application Integration (EAI) has become

essential to the information management, because it provides methodologies and tools

to design and implement integration solutions without affecting the data structure and

∗Corresponding Author Email: sawicki@unijui.edu.br

2 M. Horn, S. Sawicki, F. Roos-Frantz, and R. Z. Frantz

current applications. The Guaran technology is a tool that provides the development

of integration solutions allowing designs at a high level of abstraction, using a very in-

tuitive and concrete graphical syntax. Integration solutions are softwares whose main

function is to synchronize data among different applications or reuse functionalities.

The creation of an integration solution follows the software development process; typ-

ically it includes the specification phase, the design, the implementation, testing and

evolution. In this chapter we aims at analysing the behaviour and identifying bot-

tlenecks performance in application integration solutions through the development of

formal models of simulation based on Markov chains. The identification of bottlenecks

in the early stages of development can contribute to improve the quality of integration

solutions. As a case study, one personal phone management system implemented at

Unijui University and developed by Guaraná technology is used. The experimental

results show that it is possible to evaluate the quality of an integration solution still in

the design stage without implement it. The proposed simulation model was validated

using formal verification techniques.

1. Introduction

To follow a highly competitive business market and succeed in its initiatives, it is nec-

essary that companies be able to use the huge amount of information generated at all times

and manage them intelligently, producing valuable knowledge for decision making. Daily,

companies face the challenge to receive large volumes of data from different systems.

In this context, information technology supports business organizations with the objec-

tive of meeting its management needs, offering agility and quality in its business processes.

This support is provided by applications that compose the software ecosystem [26]. The

software ecosystem is composed of a set of applications, usually heterogeneous, that is,

they may have been developed using different technologies, programming languages, data

models and operating systems.

Usually applications are not designed to run their functions in an integrated way. The

application integration is necessary when an isolated application is no longer able to manage

or support certain business processes. According to Hohpe and Woolf [17], application in-

tegration provides methodologies and tools to develop and implement integration solutions.

Integration makes it possible to reuse applications already existing, in order to orchestrate

these applications to keep them synchronized or provide new features that can be built from

existing ones [38].

The Enterprise Application Integration (EAI) area uses computational techniques and

tools so that companies can integrate data and functionalities offered by different applica-

tions. The purpose of an integration solution is to keep a series of data and application

functionalities in sync or to develop new functionalities in relation to the existing ones, in

such a way that the applications are not modified in the integration solution [17].

In order to integrate applications, software engineers generally follow a style of integra-

tion. The different existing integration of styles takes into consideration some criteria, such

as application coupling, simplicity of integration, technology used by applications and data

format [17]. Some technologies use integration patterns, such as Camel [18], Spring Inte-

gration [12], Mule [11] and Guaraná [13]. These technologies contains support for projects

and development of integration solutions, as well as a domain-specific language based on

Enterprise Application Integration, Simulation, Markov Chains 3

messages.

With the evolution of business processes, there is currently a large amount of business

organizations that need to perform integration between their applications. Therefore, an

integration solution includes a set of applications, or to orchestrate them in order to keep

them synchronized or to provide new features already offered by those applications. The

success of the correct and efficient implementation of the integration solution becomes es-

sential. Thus, to improve the quality of the solutions developed, an analysis of the behavior

of the integration solution is necessary to find the possible performance bottlenecks, still in

the design phase.

The simulation is a field of research that deals with the experimentation of models that

allow to make predictions about the behavior and the performance of actual systems. It is

based on the use of mathematical techniques in order to understand the behavior of a actual

system through formal models.

An integration solution can be characterized as a stochastic, dynamic and discrete model

[36]. Stochastic model systems occur when one or more of their input variables is random.

The integration solutions have identical characteristics to the stochastic model. Dynamic

models are characterized by representing systems that change their state over time. In this

case, one has the number of messages to be processed in a certain execution time, and the

operations performed in the messages. The discrete models change their state at specific

points of time, from the occurrence of events. By consuming specific processing time, the

integration solution resemble discrete models.

Characterizing a solution of conceptual integration as a model of discrete events, it

allows predicting the future behavior of the system, through simulation techniques [36].

There are several tools already supported to support discrete event simulation, such as

SimEvents [6], ProModel [33], PRISM Model Checker [24], Pipe [10] and Arena [7].

This chapter presents the modeling, analysis and simulation of the behavior of an inte-

gration solution. The main objective is to understand the behavior and identify performance

bottlenecks in integration solutions of enterprise applications modeled on the Guaraná tech-

nology, before its implementation and execution, through the development of a mathemat-

ical model in Markov Chains. As a case study, a system of personal phone management

implemented at Unijui University was used. Analyzes and simulations were performed

using the tool called PRISM Model Checker [24]. This chapter is organized in the follow-

ing way. Section 2 presents the related work about discrete event simulation and Markov

Chains. Section 3 describes the theoretical framework on Guaraná technology, its Domain-

Specific Language and construction blocks. This section also covers the basic concepts of

Markov chains. Section 4 presents the formulation of the integration problem. Section 5

describes the Markov Chain simulation model developed, its equivalence to the conceptual

model of the integration solution. Section 5 discusses the experimental results. Finally,

section 6 presents the final considerations.

2. Background

In this section we present Guaraná technology, as well as its Domain-Specific Language

(DSL), construction blocks and concrete syntax. Besides that, concepts of Markov Chains

and Discrete Time Markov Chains (DTMC) are discussed .

4 M. Horn, S. Sawicki, F. Roos-Frantz, and R. Z. Frantz

2.1. Guaraná Technology

The Guaraná technology is the tool that supports the development of integration solu-

tions. It allows to design solutions in a high level of abstraction, using a concrete graphical

syntax that allows the software engineers to have the vision of the whole set of processes

that compose an integration solution. The implemented models are platform independent,

so software engineers do not rely on the knowledge and skills to design their solutions. With

Guaraná technology, it is possible both to design integration solutions and to use it as a tool

for implementing, executing and monitoring its solutions. In addition, Guaraná technology

makes use of tasks based on design patterns.

2.1.1. Domain-Specific Language

The Domain-Specific Language (DSL) is a language used to solve specific problems

in a particular domain, through a proper language applied software development. The use

of a DSL is recommended when a specific problem has a simplified grouping of correlated

abstractions and notations [27].

Domain-Specific Languages can be used by users with little knowledge in programming

languages, since it contains a high level of abstraction and ease of use. With the simplicity of

DSLs, effective communication is possible with customers, ease of maintenance, readable

syntax and easy understanding, making the lowest development time.

Guaraná technology has a Domain-Specific Language with the objective of designing

solutions for integration of business applications, with a high level of abstraction and rea-

sonable cost, providing software engineers, the use of tools to create and implement so-

lutions to integration. It allows the maintenance of the focus in the problem with graphi-

cal support and very intuitive modeling concepts. This language is called Guaraná DSL.

Guaraná DSL is a modeling language based on the patterns of conceptual integration [13].

The transformation of Guaraná models into executable code can be achieved using model-

driven engineering.

2.1.2. Construction Blocks

The implementation of a Domain-Specific Language allows software engineers to main-

tain their focus on the problem domain through graphical support and very intuitive mod-

eling concepts. According to Frantz et al. [13] a solution presents a set of processes that

integrate a set of applications. Guaraná DSL is a modeling language based on the concep-

tual integration patterns[13], which are supported by constructors such as:

• Message: An abstraction of information that is modified and shared through an inte-

gration solution. It consists of a header, message body and one or more attachments.

The header includes custom properties and often the following predefined properties:

message identifier, correlation identifier, sequence size, sequence number, address

sender, expiration date, and message priority. The body contains the payload data,

whose type is defined by the template parameter in the message class. Attachments

allow messages to carry extra pieces of data associated with the payload, for example

an image or an e-mail message.

Enterprise Application Integration, Simulation, Markov Chains 5

• Task: An atomic operation that can be executed in a message, such as a division,

aggregation, translation, filter, combination, replication, among others. A task may

have one or more entries as well as one or more outputs where messages arrive, are

processed, and sent.

• Slot: A channel connecting the input of a task with the output of another task where

the messages are processed asynchronously by the tasks. A slot can follow policies

to distribute messages between tasks, such as priority-based outputs, or a FIFO.

• Port: The ports can be considered an abstraction of the details necessary for the

communication of components within a software ecosystem. In general, a port allows

the writing, reading, requesting and responding of communication operations with

the integration components.

• Process: The integration logic that performs the transformation, routing, modifica-

tion, and operations related to message time. The process consists of ports that allow

communication with the integration components, slots and set of tasks to specify the

logic of integration.

Conceptually, an integration solution adds one or more integration processes through

which message flows which are processed asynchronously. The integration stream is im-

plemented as a pipeline and filter architecture, where the channels are implemented by slots

and the filters are implemented by the tasks. Each task realizes an integration pattern [17]

and its execution depends on the availability of messages in the slots connected to its inputs.

Slots are key builders to trigger asynchronously an integration solution, so the messages are

stored in the slots until they can be processed by the next task in the integration stream.

2.2. Concrete Syntax

Guaraná technology makes it possible to design integration solutions using graphical

syntax. The functionality and structure of an integration solution are completely defined

using the building block language. Through these symbols it is possible to express all pro-

posed classes: Application, Process, EntryPort, ExitPort, IntegrationLink, ApplicationLink,

Slot e Task. An integration solution modeled from this language is formed by a set of ap-

plications and tasks that cooperate to integrate the different Applications. Guaraná tasks

are based on Enterprise Integration Patterns (EIP) by Hohpe and Woolf [17]. This language

provides a set of tools, called task, that are used to model different business application

integrations.

The symbol used to represent tasks has inputs and outputs that can be observed as

saliencies on the side of the icon. These inputs and outputs are used to connect tasks to

each other, through slots. In an integration solution are transmitted messages, which con-

tain information that is sent by the applications. In Guaraná technology the tasks are classi-

fied according to their semantics in Router, Modifier, Transformer, Stream Dealer, Mapper

and Communicator. These task groups are responsible for the communication between the

processes.

6 M. Horn, S. Sawicki, F. Roos-Frantz, and R. Z. Frantz

Notation Concept Notation Concept

X

Application IntegrationLink

Process ApplicationLink

EntryPort Slot

ExitPort Task

Table 1. Symbology of the concrete syntax (from Frantz et al. [13])

2.3. Markov Chains

Markov Chains is a mathematical formalism for the modeling of systems as a Stochastic

process. The modeled system is characterized by its states and the way in which they alter-

nate. Markov Chains are stochastic processes with discrete states. The parameter, which is

usually the time, can be discrete or continuous. Markov Chains are characterized by their

future state depending only on their current state, being that past states do not influence the

future state. Markov Chains are stochastic processes with the so-called Markovian property.

A Markovian process is a Chain Markov when the random variables Xt have a partic-

ular dependence relationship with time, these variables are defined in a space of discrete

states. Transitions between states are modeled by a defined continuous or discrete stochas-

tic process. According to Pinheiro [31] a stochastic process is defined as a collection of

random variables (X(t)) indexed by a parameter t belonging to a set T . Often T is the

set of nonnegative integers (but other sets are perfectly possible) and X(t) represents a

measurable characteristic of interest at time t.
In the context of Markov Chains, it is possible to represent a system using Continuous

Time Markov Chains (CTMC) or Discrete Time Markov Chains (DTMC). A discrete-time

Markov chain is a collection of random variables from a Markov process that assume values

within an enumerable state space (finitely or infinitely), where we have the probabilities of

transitions occurring from one state to another. Continuous-time Markov chains provide a

different paradigm for system modeling. In CTMCs transitions between states can occur

at any moment, that is, at any instant of time, unlike discrete-time Markov chains, where

transitions always occur at discrete and known time instants [4].

This chapter discusses the use of Discrete Time Markov Chains, since they represent

a model of a stochastic process that describes activities that end in events, these events

generate the transitions of states. A Chain Markov is represented by a state machine, that

is, a sequence of random variables Xt that represents the state at a given time. The variable

X2 represents the state of the system at time 2. The domain of Xt is the state space itself.

2.3.1. Discrete Time Markov Chains Properties

An important property of Markov Chains is lack of memory, where previous states are

irrelevant, it is also known as a Markovian process. In terms of probabilities, a Discrete

Time Markov Chains with state space S is a stochastic process {Xn}n ∈ T , where T =

Enterprise Application Integration, Simulation, Markov Chains 7

{0, 1, 2, ...}, such that the following properties are true:

• For any i ∈ S we have:

P (X0 = i) = Pi (1)

• For any i, j ∈ S, and n ∈ T :

P (Xn+1 = j|Xn = i) = Pij (2)

• For any n ∈ T and i0, i1, ..., in−1, i, j ∈ S, is used:

P (Xn+1 = j|Xn = i,Xn−1 = in−1, ..., X0 = i0) = P (Xn+1 = j|Xn = i) (3)

Case Xn = i then the process at the instant n is in the state i. In particular, the third

property shows that the present (Xn), the future (Xn+1) and the past (X0, X1, ..., Xn−1)

are independent.

Equation 3 represents the probability of states by establishing a set of discrete states and

that the next state s depends on the current state and not on the past. That is, the previous

states are irrelevant to the prediction of the following states as long as the current state is

known.

Markov Chains involve a matrix, called a transition matrix, whose elements are the

transition probabilities from one state to another. Transition from one state to another is

called a step. At each step the probability of reaching a next state is independent of the

probabilities of the previous states. The transition matrix can be represented by a matrix n
x n where n is the number of chain states and each position ij of the matrix represents the

probability of moving from state i to state j.

For Markov Chains homogeneous, P (Xn+1 = j|Xn = i) = Pij . Let {Xn}n ∈ T be a

homogeneous Markov chain with discrete state space S = {1, 2, 3, ...}. In this case we have

Pij = P (Xn+1 = j|Xn = i), i, j ≥ 0 independent of n. An intuitive way of presenting

and operationalizing the transition probabilities between states is given by the stochastic

matrix. A stochastic matrix of the transition Markov chain can be represented according to

the matrix P , where each entry in the matrix P dmust be positive and the entries of each

row in the matrix must add 1. P can be written as:

P =





















P11 P12 . . . P1S

P21 P22 . . . P2S
...

... . . .
...

...
... . . .

...

PS1 PS2 . . . PSS





















(4)

That is, the transition matrix of a Markov chain with k states, must be:

P1j + P2j + ...+ Psj = 1, j = 1, 2, ..., s (5)

8 M. Horn, S. Sawicki, F. Roos-Frantz, and R. Z. Frantz

Graphically a Discrete Time Markov Chains is represented by a diagram of states and

transitions, which is a finite directed graph, where states are represented by nodes and

transitions between states are represented by valued arrows, as shown in Figure 1:

0.75 0.510

0.5

0.25

Figure 1. State diagram of two states

It is observed in Figure 1 that the sum of the transitivity probabilities of a state i for all

other states of the Chain Markov is always equal to 1. Step 0 tends to follow step 1 with

the probability of 0.25 and stay in step 0 with probability 0.75, step 1 tends to follow step 0
with the probability of 0.5 and with the probability 0.5 to remain in that step.

Generally it does not have to define how many states have a system of a Markov Chain,

what can you do is specify the probabilities for each of the possible states. Thus, each

transition matrix has a probability column vector representing the s states. A vector of state

probabilities of a discrete time markov chain is called stationary if the transitions described

by the matrix P do not modify these probabilities of state, that is, vj =
∑

vipij [4].

P =















v1

v2
...

vS















(6)

The state v1 represents the probability of the system being in the first state, v2 represents

the probability of being in the second state and vs represents the probability of the system

being in the s-th state. The choice of the use of Markov Chains of Discrete Time for this

study is justified because it is a particular case of stochastic processes and, therefore, used

for discrete event systems, which makes it possible to identify and analyze the performance

bottlenecks also in integration solution.

3. Related Work

This section presents papers that use Discrete Time Markov Chains (DTMC) in discrete

events simulation tools. It should be noted that there are different and numerous works in

the literature that show the use of mathematical techniques along with the simulation pro-

cess. However, regarding the authors, there are no works in the literature that relates the use

of simulations and mathematical techniques to analyze the behavior of solutions for inte-

grating business applications. The sections are subdivided into two parts: the first describes

works that use the mathematical technique with Discrete Time Markov Chains with differ-

ent simulation tools and the second presents works that use Discrete Time Markov Chains

with the PRISM simulation tool.

Enterprise Application Integration, Simulation, Markov Chains 9

4. Verification model using simulation tools

Ahluwalia and Singhal [2] proposes to model the performance of the communication

architecture of a parallel machine. To ensure focus on the analyzes, the authors are re-

stricted to a Single Instruction, Multiple Data (SIMD) machine. The authors developed a

Discrete Time Markov Chains model in the network architecture to compute the delay time

introduced by routing algorithms and network architecture.

In order to model the performance of the machine, they developed a Markov Chain

model of a single node of the router, since modeling an entire system of routing would

be much more complex. As the state of a router’s buffer changes every cycle, the authors

developed a Discrete Time Markov Chains model, and calculated the matrix of transitivity

probabilities and the probabilities of stable Markov states Chain.

Gomes and Wanke [15] propose to apply the concept of Markov Chains in the manage-

ment of spare parts. The authors pointed out that in a Chain Markov applied to inventory

management, possible states denote the different stock positions that may occur over time.

In this study, the authors modeled the consumption and stockpile policy of replacement

parts through Markov Chains. Through the property of convergence of the Markov Chains

it is possible to infer the distribution of probabilities of the stock position and, from these

values, to determine indicators such as average stock, probability of lack and probability of

stock supply. The authors found that the Markov Chains method is a more efficient compu-

tational alternative than the Excel spreadsheet simulation. They tested the maximum level

of nine units in stock and a request point of six units, with average demand of two units per

time period, obeying the Poisson distribution. The results suggest that both distributions are

equivalent. However, gains in relation to less computational effort and execution time are

substantial in Markov Chains modeling.

James et al. [19] presented two parameter estimation algorithms for fast samples of ho-

mogeneous Markov Chains. The algorithms proposed by the authors are obtained through

the discretization of the stochastic differential equations involved in the estimation of hid-

den Markov models using the Expectation-Maximization (EM) algorithm. The first algo-

rithm is based on the discretization of the continuous-time filters, discovered by Elliott, to

estimate quantities used in the EM algorithm. The second is based on the discretization of

continuous time facilitators, producing the reassessment equations of Baum-Welch.

Sandmann [34] investigates the importance of an ideal sampling to estimate probabili-

ties of state in DTMC, both along infinity and steady state. The importance of sampling is

a technique of reducing variance for efficient simulation through a change of measure. In

particular, it can be applied to the simulation of rare events (events occurring with an ex-

tremely small probability) of Markon Chains. Such rare events are important in determining

substantially the performance and reliability of the system. A common technique in apply-

ing the importance of sampling to the Markovian process is to change the arrival of service

rates, which corresponds to the evolution of the Continuous Time Markov Chains transition

rates, or the transition to the underlying probabilities of the Discrete Time Markov Chains.

Abrahám et al. [1] presented a model verification algorithm, using Discrete Time

Markov Chains. The algorithm is based on the detection and capture of strongly connected

components, besides, it offers counterexamples, which can be interactively refined by the

user. During the verification of the algorithm, all information for the phases of recursion

10 M. Horn, S. Sawicki, F. Roos-Frantz, and R. Z. Frantz

are stored. This allows a user who needs to obtain a counterexample for a given property to

have accessibility to formulate an abstract against example. In the end, it briefly produces

counterexamples that are constructed according to the structure of Discrete Time Markov

Chains.

Clément et al. [5] propose a study from the observation of uniformity of the population

protocols models, which allows to apply an abstraction counter. The contribution is to

highlight two recipes for verifying the correct stabilization property in models with finite

population sizes. For a population of k agents, π = {π1, ..., πk} denotes the set of agents.

Each agent in the system is modeled as a finite state machine, which represents the agent

program. These programs are uniform: each agent executes the same finite state machine,

so that it does not depend of the number of agents in the system. The strongly anonymous

model: agents cannot store a unique identifier. When two agents meet, they can interact and

make a change in their states. The underlying communication network is a complete graph;

each pair of agents can meet. The initial state of each agent is defined by the protocol. The

goal of a population protocol is to calculate for each agent the same value as the protocol

output. The value to be calculated is the value of a function of the initial state of the

protocol.

Basagiannis et al. [3] introduced the verification of a probabilistic model as an approach

of an assisted tool, viable to systematically quantify security threats. These threats are ex-

pressed as probabilistic accessibility properties, which are automatically verified through a

DTMC, which represents the protocol participants and the invader model. The verification

analysis of the probabilistic model is performed in the PRISM software. The probabilis-

tic model verification approach is based on transitions labeled between model states, with

information about the probability of occurring.

Kwon and Agha [25] described a new way of modeling network sensors with DTMC

and expressed the aggregate properties of the network, both in their transient states and in

their steady state. The authors modeled the transition dynamics between states as a DTMC

and used the experimental results to illustrate and validate the method with the simulation

in PRISM Model Checker.

Kumar and Vasudevan [21] introduced a systematic and rigorous methodology to verify

the design correction in Register Transfer Level (RTL). The source code RTL uses statisti-

cal analysis techniques to calculate the probabilities. They modeled the RTL probabilistic

modules in a DTMC, which are then formally verified for probabilistic invariants using the

PRISM tool. Kumar and Vasudevan [22] performed the timing check in RTL in the context

of process variables. They constructed macro models for the variable delay of RTL opera-

tors to represent them as Gaussian random variables. Gauss delay variables are used as the

DTMC state variables. Finally, the PRISM tool is used to simulate the performance.

Norman et al. [28] presented an implementation of a control for the probability of

π-calculation, being an algebraic process that supports the modeling of the simultaneity,

mobility and probabilistic behavior of a discrete model. Formal verification techniques for

this calculation have applications in several domains, including protocols ad-hoc mobile

network and random security protocols. The authors show an automatic procedure for the

construction of the Markov decision process that represents a process of probabilistic π-

calculation. This can be verified using verifiers of existing probabilistic models, such as

PRISM Model Checker.

Enterprise Application Integration, Simulation, Markov Chains 11

Paulevé et al. [30] propose a technique for adjusting temporal characteristics within

stochastic calculations, presenting the construction of the stochasticity absorption factor

in the classic stochastic calculation, with exponential rates. The probabilistic model of

stochastic calculations with the Erlang distributions was obtained using the PRISM tool.

5. Integration Problem

The integration solution proposed by Frantz [14] is illustrated in Figure 5. It is noticed

that the workflow starts at the input of the port P0 that, periodically, searches the Central

with the intention of finding new telephone calls. Each call results in a message that added

the P0 on the S0 queue, enabling the T0 task can be performed. Whenever a job is run-

ning, incoming messages are waiting in line, and will be selected for processing by FIFO

discipline.

Task T0 filters and discards all calls that result in toll-free messages and routes only

those that cost to the queue S1 to be executed by task T1. Task T1 makes a copy of the

message, which is forwarded to queue S2 to be processed by task T2, which translates the

contents of the message into the format of the Human Resources application, forwarding to

queue S3 to query the application, via the gateway request P1(A). Messages return through

the request port P1(B) and sends the S5 queue. Another copy is forwarded to queue S4,

which waits for a message correlated by queue S5 to be processed by task T3.

Figure 2. Conceptual Model Developed using Guaraná technology to represent an integra-

tion solution for the Telephone Call Management Problem. Source: [14].

The task T3 analyzes the incoming messages and produces as output a set of correlated

data, containing in the queue S6 information found in the Human Resources and in the S7

12 M. Horn, S. Sawicki, F. Roos-Frantz, and R. Z. Frantz

queue the Central Telephone information. When there are correlated messages, they are

conducted for the T4 task that adds to the body of the message the information that returned

from the Human Resources application with the information coming from the Telephone

Company.

After the message transits in task T4, it is forwarded to queue S8 so that task T5 can

be performed. The task T5 makes a copy of the enriched message and has how to target

the applications of port P3 referring to Payroll; Port P4 referring to the Messaging Service

and port P5referring to E-mail Server. A copy forwarded to the queue S9 that is destined to

task T6, which, when executed, translates the contents of the message to the format of the

Payroll application.

After the message is processed by task T6, the message is routed to queue S10 that

destines port P2 informing the debit orders in the payroll. Another copy is forwarded to

the S11 queue that is destined to task T7, which, when processing the message, analyzes

and discards the message that does not have the employee’s telephone number information.

After the message is filtered, it is forwarded to queue S12 that is destined to task T8, which,

when executing, translates the content of the message to the format of the application and

sends the message to the S13 queue that is destined to port P3, which sends a text message

to the employee’s cell phone informing the charge. Another copy is forwarded to queue S14

which is destined to task T9, which, when processing the message, analyzes and discards the

message that does not have the employee’s email address information. After the message

is filtered, forwarded to S15 queue which has as destination the task T10 that translates the

content of the message into the format of the E-mail Server application and forwards the

message to the queue S15 that is destined to port P4, which sends an expense statement to

the employee’s email.

6. Formal Model Proposed

This section presents the transition diagram between matrix states of a Markov chain

and the mathematical model. Therefore, it is necessary that the variables that will be ob-

served to identify the performance bottlenecks of the integration solution are presented.

6.1. Observed Variables

Another common feature between the integration solution presented by Guaraná and a

system of discrete events is the relationship between its elements and its operating structure.

In the modeling of discrete event systems, as an integration solution, the identification and

relation with the variables to the performance and the way in which they interact with each

other and with the other elements, aids the understanding of the system.

In the Guaraná technology, the entities are messages, that is, objects that allow interac-

tion with the system. A process is a sequence of activities. An activity occurs between two

events, and during an event, the state of the system can change. The occurrence of an event

in the Guaraná technology can be characterized as the arrival of a message to be processed

by a task. Each time a task processes a message, the system changes its state. A task occurs

between two events, so you can be characterized as an activity and, consequently, a process

can be characterized as a sequence of tasks. In general, it is also possible to define the size

Enterprise Application Integration, Simulation, Markov Chains 13

Table 2. Main variables used as measures of system performance [32]

System
TS = mean time that the message stays in the system

NS = mean number of messages in the system

Arrivel

process

λ = mean arrival rate

IC = mean interval between arrivals

Queue
TF = mean time spent by the message in the slot

NF = mean of messages in the slot

Service

process

TA = mean time of service

µ = mean number of messages executed

of queues, however, in an integration solution designed with Guaraná technology, the queue

size, characterized as a slot can contain an infinite number of messages.

The M/M/1 queuing model presented by [20] is a model based on the queuing theory

that is widely used for discrete and simulation events. This model also allows the con-

struction and understanding of basic ideas and methods of queuing theory. According to

[32] in the model M/M/1 both arrivals and service are Marcovian (which is to say that

they follow the Poisson distribution or the negative exponential) and that we have a single

attendant, being the finite population.

Prado [32] states that the service process is also quantified by an important random

variable. The Greek letter µ means average attendance rate, and TA time or mean time of

service. The representation of a queuing system requires knowledge about some random

variables used, the main ones being the following:

• λ = mean arrival rate

• IC = mean interval between arrivals = 1/ λ

• µ = mean number of messages executed

• TA = mean time of service = 1/ µ

Table 2 describes the main variables used as measures of performance regarding the

system, process of arrival, queue and service process. Table 4 describes the formulas that

treat the main random variables of the M/M/1 model. When we know the probability

distribution that describes the number of customers in the system, we can calculate the

queue parameters: average number of clients in the queue, average number of clients in

the system, average time during which the client queues, average time during queue which

client is in the system. We can also calculate the probability of number customers in the

system, the probability distribution of the number of customers in the system.

6.2. Equivalence of the elements of Guaraná technology with Markov chains

This section discusses the equivalence of the elements of an integration solution pro-

jected in the Guaraná technology with the elements that make up the Markov Chains. The

14 M. Horn, S. Sawicki, F. Roos-Frantz, and R. Z. Frantz

Table 3. Random variables to evaluate the behaviour of M/M/1 model [32]

Name Description Formula

NF mean number of messages in the queue NF = λ2

µ(µ−λ)

NS mean number of messages in the system NS = λ
µ−λ

TF mean time that the message stays in the queue TF = λ
λ(µ−λ)

TS mean time that the message stays in the system TS = 1
µ(µ−λ)

characterization of an integration solution as a system presenting a stochastic behavior

makes it possible to demonstrate the equivalence of the solution with Markov Chains. A

stochastic process represents, in this context, the evolution of the system of random vari-

ables in time. In other words, a process with degree of uncertainty, which evolves through

a set of possible indications, from one of the possible states.

Discrete Time Markov chains can be described as a state transition model, increased

with probabilities. Formally, it is described as a finite set of states (S), an initial state s0
belonging to S, a transition probability matrix (P) of SxS→[0-1] where the sum of the

transitions of a state must be 100% , a labeling function attributing to the states a set of

atomic propositions (L : S → 2AP). Time is commonly seen in Discrete Time Markov

Chain models as a discrete, homogeneous time interval, and time-independent transpose

probabilities. An execution of a Markov Chain model of Discrete Time is represented by

a path, with equal lengths of the same transitions. The path probability calculations allow

to analyze the behavior of the system and the reason in properties, such as probabilistic

accessibility. Quantitative and qualitative properties, including repeated accessibility and

persistence, may be of interest in the context of a system behavior analysis, and conducted

with the verification of the probabilistic model of the Markov Chain of Discrete Time. Mod-

eling of retributive structures can also be used to represent benefits or cost characteristics.

Retributive (instantaneous) and retributive (cumulative) transitions are modeled by the re-

tributive functions rs: S → R ≥ 0 e rt : SS → R ≥ 0 respectively. A retributive structure

can be used to measure the number of time slots spent in a state or the chance that the

system is in a specific state after a certain number of time slots [23] [29].

Slot

Start

a)

Step

Task

Step

Slot
TaskMessage

Arrival

Message

Departure

b)

Figure 3. Generic model of a representation in Markov Chains (a) with the equivalence in

Guaraná.

The Markov decision processes, such as the Markov Chain of Discrete Time , model a

Enterprise Application Integration, Simulation, Markov Chains 15

system as a discrete set of states and transitions between states that occur at discrete time

intervals. In addition, the Markov decision extends the models of the Discrete Time Markov

Chain process by allowing for non-determinant choices. This type of modeling is especially

suitable for competition, unknown environments and application of non-specific scenarios.

Since Discrete Time Markov Chain models are totally probabilistic, they are unable to solve

some aspects of the system, such as non-determinant choice [29].

Formally, a Markov decision process is a tuple (S, sinit, Steps, L) where S is a finite set

of states, SsinitǫS, and S is the initial state. The steps: S → 2ActDist(S) Is the transition

probability function, acting with a set of actions, Dist(S) othe set of discrete probability

distributions on S, and (L : S → 2AP) a labeling with atomic proportions. A path in

a Markov decision process is a sequence of states and pairs of actions/distributions, that

is,s0(a0, µ0)s1(a1, µ1)s2, representing the execution of a system. Solving non-determinant

paths (transformation of the model into a DTMC) and probabilistic choices, and then cal-

culating a measure of probability on paths [23] [29].

Figure 3 (a) illustrates a generic model of Markov Chain elements. This process is based

on Markov models, which have a similar structure of the conceptual model of an integration

solution designed with Guaraná technology. In Figure 3 (a), from the moment a message is

in the queue, the process starts, messages arrive at the beginning of the process, and wait in

the system. Similarly, Figure 3 (b) illustrates a piece of an integration solution developed

with Guaraná technology, in which message arrival represents the beginning of the process.

In Markov Chains, the steps represent the slots and tasks of the Guaraná technology.

6.3. Simulation Model

Figure 4 shows the working schema of the Markov decision process, and aims to help

the understanding of the method used in the model that represents an integration solution.

As soon as there is a message in the queue, the process starts with the P0 state. This state

indicates that a message has been found and taken from the queue. Then, in the T0 state,

only messages containing the cost of the telephone call are chosen. Port P1 sends a message

to the Human Resources System in order to obtain information from the employee.

The message goes to the Payroll system, state P3, which discounts the value of the call

made by the employee. Upon completion of the discount, the employee is notified by states

P4 e P5, which respectively represent an SMS messaging system and an e-mail server.

However, it must undergo a process of filtering to prevent these systems from receiving an

empty message or incomplete information from the receiver.

The Markov decision process represented as a tuple M = (S, sinit, P, L) the exampre in

Figure 4 can be described as:

S finite set of states. Ports = P0, P1, P2, P3, P4, Slot = S0, S1, S2, S3, S4, S5, S6, S7,

S8, S9, S10, S11, S12, S13, S14, S15, S16 and Tasks = T1, T2,T3, T4, T5, T6, T7, T8, T9, T10

which represent a finite set of states, or state space.

P = SxS → [0,1] is the transitivity probability matrix.

L = The labeling with atomic propositions (L : S → 2AP), which are simply associ-

ated with the states in the current example and AP = [start, filter, copy, translate, consult,

compare, mix, debit and notify, forward, delete], the set of atomic propositions.

16 M. Horn, S. Sawicki, F. Roos-Frantz, and R. Z. Frantz

T1

S5

S6

T4

S7

T5

S8

S10

T6S9

P3 T7

S11

T8 S12

P4

S13

T9 S14T10 S15

S1 T0 S0 P0S2T2

S3 S4

T3

Start

FilterTranslator Replicator

Requested

Merge

Merge

Replicator

Translator

Debit

Filter

Filter

Translator

Translator

Delivered

Delivered

P1(a)P1(b)

Routed

Routed

Routed

Routed Routed

Routed

Routed

Routed

P2

Eliminater

S16

Eliminater

Eliminater

Correlator

Context-based

Content Enricher

RoutedRouted

Routed

Routed

RoutedRouted

Routed

E0

E2

E1

0.01

1111

1

1

1

1

1 1 1

1

1

1
1

1
1

1

1 1

1

1

1

111

1

1

1

1

1 1 1

1

1

0.05

0.050.95

0.95

0.99

1

1

Figure 4. Diagram of Transformation between Matrix States of a Markov Chain corre-

sponding to the Conceptual Model

6.3.1. Mathematical Model

Markov chains of discrete time, the random variables X0, X1,..., Xn,... are discrete, the

set T is discrete (T = 0, 1, ..., n, ...), then:

P (Xt = xj |Xt1 = xi1 , Xt2 = xi2 , ..., Xtn = xin) (7)

The stochastic process Xt is a Markov Chain if the distribution of Xt is independent of

all previous states in which the chain was found, with the exception of state immediately

before, that is,

P (Xt = xj |Xt−1 = xit−1
, ..., X2 = xi2 , X1 = xi1) = P (Xt = xj |Xt−1 = xit−1

) (8)

A Markov model where the state space I is discrete and is described by its state transi-

tion matrix. This matrix is dynamic because it allows the transition probabilities to change

as a function of time t, where t is discrete.

Consider a Markov chain with N states xn ∈ I and let xi, xj ∈ I . We denote xi(t) to

means that the process is in state xi at time t.
Definition 1: If pij is the probability of transitioning from state xi(t) to state xj(t+1),

then the matrix N x N , given by

Pij = Pr(Xn+1 = j|Xn = i) (9)

Enterprise Application Integration, Simulation, Markov Chains 17

that is,

P = [pij] (10)

It is called the state transition matrix of the Markov chain. Note that, in Definition 1,

the sum of the lines of the matrix P must always be equal to 1. The transition matrix can

also be given by a state transitions diagram. Figure 5 shows the state transitions diagram

for a Markov chain with only 2 states.

P00 X1X0 P11

P10

P01

Figure 5. Transition diagram between two states of the matrix of a Markov chain. Source

[9]

Proposition 1: For arbitrary t, we have that:

1. The probability of transitioning from state xi(t) to state xj(t+n) (in n steps) is given

by Pn
i,j ;

2. The n step transition matrix, denoted by Pn , is calculated as the power n of the

transitional matrix P , that is

Pn = Pn. (11)

According to Figure 5, the transitions diagram represents the transition between two

states, so the transition matrix is a square matrix, and is represented by the matrix P :

P =

[

1 0

0 1

]

2x2

(12)

To simulate a Markov process, considering an initial state x0, one can choose a succes-

sor state according to the probabilities p0j, para j = 1, ..., N , determining a new state x1.

The process is repeated to generate the next state, and so successively. Due to the proba-

bilistic nature of the model, each time this simulation is repeated, it is likely that a different

sequence of states will be obtained as a result. So the only way to analyze the process is to

keep track of the probabilities of being in a state.

Definition 2: Let Si(t) be the probability that a Markov process is in a state xi at time

t. Then the vector

18 M. Horn, S. Sawicki, F. Roos-Frantz, and R. Z. Frantz

s(t) =















S1(t)

S2(t)
...

Sn(t)















(13)

is called the vector of distribution of state probabilities of the Markov chain at time t.
Let sT (0) be the initial distribution of the process (sT is the transposed vector of s).

The evolution of the distribution vector is governed by the transition matrix in steps t.
Proposition 2: For any time t, we have that

sT (t) = sT (0)P t, (14)

where P t is calculate and sT is the transposed vector of s.

7. Formal Verification

The verification of the proposed model follows the simulation techniques suggested by

Sargent [35] and de Freitas Filho [8]. In each scenario, 25 repetitions were performed.

According to de Freitas Filho [8] the differences between the different rounds of repetitions

are expected. Such differences, considering the averages of these repetitions should be

small. Sargent [35] points out that a large amount of variability between repeats makes the

results of the model questionable. The repetitions are organized into tables and analyzed,

and later the average of the messages accumulated in the queues in each slot is performed.

The analysis found that there are no discrepancies in results.

By the definition presented by Kwiatkowska et al. [23], a Markov Chain of Discrete

Time D is a tuple (S; s;P ;L), where:

- S is a finite set of states, represented by ports, slots, and tasks;

- s ∈ S, is the initial state;

- P : SxS → [0, 1] is the transition probability P matrix where
∑

s
′ ∈ SP (s, s

′

) = 1
for all s ∈ S;

- L : S → 2AP Is a marking function that assigns to each state s ∈ S the set L(s) of

atomic propositions that are valid in the state.

Each P (S; s0) element of the transition matrix gives the probability of doing a transition

from state s to state s0. Note that the probabilities of transitions that come from a single

state must add one. Finalizing states, that is, those from which the system can not move

to another state, can be modeled by adding a single transition back to the same state, with

probability 1.

According to the state diagram between states of the matrix of a Chain Markov cor-

responding to the conceptual model, we obtain the partial transition diagram described in

Enterprise Application Integration, Simulation, Markov Chains 19

S1 T0 S0 P0
Start

FilterRouted Routed

EliminaterE0

111

1

0.05

0.95

Figure 6. Partial state diagram of conceitual model

Figure 7., which describes the behavior of the complete transcription matrix and presents a

simple example of a Discrete Time Markov Chain D1 = (S1; s1;P1;L1). In the graphical

notation, states are drawn as circles and transitions as arrows, labeled with their associated

probabilities. The initial state is indicated by an input additional arrow. The Discrete Time

Markov Chain D1 has four states: {P0, S0, T0, S1}, with the initial state s = S0. The partial

probability transition matrix representing Figure 7. P1, is given by:

s(t) =

























P0 S0 T0 E0 S1

P0 1 0 0 0 0

S0 0 1 0 0 0

T0 0 0 0, 95 0, 05 0

E0 0 0 0 1 0

S1 0 0 0 0 1

























(15)

The atomic propositions used to label the states are taken from the set AP = port P0,

slot S0, filter T0, eliminated E0 and slot S1. In this model the Discrete Time Markov Chain

is a simple process that sends messages into an integration solution. After a time step, it

enters the state P0 from which, with probability 1 the message is sent to the other step S0,

which goes to another time step, with probability 1 the message is sent to the next step T0,

and with probability 0.05 the filter task T0 eliminates free messages, and with a probability

of 0.95 the messages follow in the flow.

Another analysis is done according to de Freitas Filho [8] and Sargent [35]. In each

scenario, a simulation is analyzed in detail. According to the authors, subtracting the num-

ber of messages that entered the integration solution, the messages that are executing in the

system and the messages that left by each of the ports, the result would have to be equal to

zero.

To prove that the model is valid, it is considered that the simulation model studied

presents: (1) three output ports; (2) task that allows to replicate the messages; and (3) each

task is running each time you have queues in the slots. In these conditions for each exit port

is structured a generic way to verify each scenario.

20 M. Horn, S. Sawicki, F. Roos-Frantz, and R. Z. Frantz

8. Experimental Results

The experiments and scenarios in which the simulations are submitted are described in

this section. In order to carry out the simulations, a model of states and transitions is used

where each transition occurs a certain probability. The PRISM Model Checker tool is used

to make modeling and formal verification of probabilistic models.

8.1. Scenarios submitted

For the realization of the simulations, ten scenarios are defined, with entry into the

system of 10,000, 20,000, 30,000, 40,000, 50,000, 60,000, 70,000, 80,000, 90,000 and

100,000 messages. In order to increase the efficiency of the obtained results, each scenario

was submitted to 25 repetitions. After all, in statistics, an experiment is repeated a large

number of times with the same data, following the Big Numbers Law [16]. Empirically,

for the simulation experiments that are performed, the population mean is usually obtained

with approximately 25 repetitions. The number of repeats is due to the simulation model

being a probabilistic model. After the 25 simulations the mean arithmetic, variance and

standard deviation were analyzed by the following methods [37]:

• Arithmetic Mean: is the most used position measurement. Is observed with the

same number of observations. It has its ease as its calculation and as a disadvantage

of being greatly affected by extreme values (oultiers values). It has the following

form:
x =

∑n
i=1 xi

n
(16)

where:

Xi = values of variable X

n = number of data

• Analysis of Variance: fundamentally, it aims to verify if there is a significant dif-

ference between the means and if the factors exert influence in some dependent vari-

able. The analysis of variance is used when deciding whether the observed sample

differences are real (caused by significant differences in the observed populations)

or casual (due to the mere sample variability). Therefore, this analysis starts from

the assumption that chance only produces small deviations, the great differences be-

ing generated by real causes. The analysis of variance is the mean of the quadratic

deviations of each value in mean relation. The sample variance is given per:

S2 =

∑n
i=1(xi − x)2

n− 1
(17)

ou

S2 =

∑n
i=1 x

2
i −

(
∑

n

i=1
xi)

2

n

n− 1
(18)

• Standard deviation: shows how much variation or ”dispersion” exists in relation to

average (or expected value). A low standard deviation indicates that the data tends to

Enterprise Application Integration, Simulation, Markov Chains 21

be Close to the average; A high standard deviation indicates that the data is scattered

over a range of values. The standard deviation is the square root of the variance.

S =
√
S2 (19)

8.2. Analysis of experimental results

In this section the simulation results are presented. The simulation model is equivalent

to the integration solution model designed in Guaraná technology. For the simulation, the

conceptual model was implemented in the PRISM Model Checker tool. The purpose of

the simulation is to evaluate the behavior and predict possible performance problems that

the solution may present. The results are obtained through the simulations in different

scenarios. The simulation experiments that are performed are obtained with 25 repetitions,

[16]. The number of repetitions is due to the simulation model being a probabilistic model.

After the simulations of all the scenarios are performed, Table 4 is presented with a set

of results of the averages obtained with the simulation in the PRISM tool for this case study.

Table 4. Message average stored in each slot corresponding to each scenario

Slots 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000

s0 65,00 73,76 104,52 147,16 132,28 135,46 221,92 215,56 252,12 374,72

s1 18,72 13,28 18,96 16,88 20,88 21,66 21,24 15,32 11,08 14,28

s2 16,88 29,76 15,44 14,16 11,00 18,54 18,76 16,56 14,00 17,76

s3 12,04 20,84 14,28 19,76 13,40 20,87 17,36 21,48 13,40 14,92

s4 80,28 101,96 98,24 84,36 83,24 89,04 96,48 91,08 76,56 115,37

s5 16,48 15,68 22,20 16,56 22,08 27,45 18,48 15,8 15,48 16,96

s6 12,56 19,72 20,36 14,32 12,48 20,25 14,36 10,16 19,64 10,96

s7 12,56 19,72 20,36 14,32 12,48 20,25 14,36 10,16 19,64 10,96

s8 20,08 17,24 21,08 11,28 16,80 17,75 23,64 17,12 19,40 18,12

s9 12,84 15,20 15,80 18,28 15,32 20,91 18,8 11,84 12,96 25,84

s10 20,64 13,4 19,68 19,96 14,08 17,25 16,44 15,96 33,08 11,16

s11 22,32 14,12 26,20 22,00 21,04 26,70 21,04 19,36 23,28 13,76

s12 10,00 8,60 6,64 7,88 5,48 7,541 8,36 8,60 8,720 9,96

s13 6,56 10,64 6,60 6,72 9,40 4,458 10,12 4,80 3,920 12,04

s14 9,88 6,72 18,16 13,48 12,80 16,66 12,16 8,72 11,32 7,96

s15 21,68 17,20 12,48 13,8 12,20 16,75 12,60 10,64 20,92 17,36

s16 11,60 14,44 11,80 17,6 20,56 16,12 23,80 19,40 24,80 14,08

Analyzing Table 4, it can be verified that the performance bottlenecks of the simula-

tion system are in slots s0 and s4, in the other slots there are few accumulated messages.

According to the results it can be stated that the accumulation of messages in s0 is a result

of the excessive demand of messages that enter the simulation system. That is, the more

messages you enter into the system, the greater will be the accumulation in the slot s0. This

22 M. Horn, S. Sawicki, F. Roos-Frantz, and R. Z. Frantz

also occurs because the simulation tool does not work in relation to time, but rather in steps

according to the Markov Chain of Discrete Time. Besides, the more messages enter into

the system, there will also be an accumulation in slot s4. However, this accumulation is not

in the same proportion as the slot s0. This is due to the messages that are accumulated in

the s0, waiting to be processed causing a smaller amount of messages circulating through

the system.

Figure 7. Message average stored in each slot

Analyzing the graphs of Figure 7, it is possible to verify that the performance bottle-

necks of the simulation system are in slot s0 and s4, in the other slots there are few accumu-

lated messages. According to the results it can be stated that the accumulation of messages

in the s0 is a result of the excessive demand for messages that enter the simulation system.

That is, the more messages you enter the system, the greater the accumulation in the slot s0.

This also occurs because the simulation tool does not work in relation to time, but rather in

steps according to the Markov Chain of Discrete Time. And, the more messages enter into

the system, there will also be an accumulation in slot s4. However, this accumulation is not

in the same proportion as the slot s0. This is due to the messages that are accumulated in

the s0, waiting to be processed causing a smaller amount of messages circulating through

the system.

All discrete event simulations are subject to unusual values known as outliers. To iden-

tify if there is a discrepancy of values it is necessary that the outliers are calculated for the

analysis, as well as highlighting in each graph the values that are outside the upper and

lower limits of the standard deviation. The outliers are calculated and analyzed through the

Box-Plot graph. It is observed in Figure 8 that Box-Plot graphs are based on the minimum

value, first quartile (Q1), median (second quartile Q2), third quartile (Q3) and maximum

value. The results of the slots of each scenario are necessary to organize a Box-Plot graph.

Considering a simulation in a queuing system of an M/M/1 model, the occurrence of

an outliers, over the variable average number of clients in the queue is due to the number of

clients and the time of service. It is observed that if the service of a client takes more than

Enterprise Application Integration, Simulation, Markov Chains 23

Figure 8. Box-Plot Diagram for Outliers identification.

the average, the amount of clients waiting in the queue increases. This client happens to be

considered an outliers. Because it is a simulation of discrete events, it is considered that the

occurrence of outliers can be influenced by the average rate of messages that arrive at the

simulation system, or a certain task may be consuming specific processing time due to the

size of a message in the system.

It can be seen from the results that there are no outliers in slot s0, so all the values of the

simulations are acceptable. In slot s4 there are three (12%) top outliers. In the slot s0 there

are four (16%) top outliers, and in slot s4 ha there are three lower and five upper outliers.

It is observed that in the scenario of 20,000 messages there are 32% of the values obtained

with the simulation in slot s4 are outliers. There are two inner outliers in the slot s0 and in

the slot s4 there are three lower outliers and two upper outliers, which correspond to 20%

of the simulation values.

9. Conclusion

The companies are always looking to improve their business processes. Over the years,

a company may have acquired or internally developed several applications that were not de-

signed to share data and functionality, that is, they were built without integration concerns.

Through the study carried out and presented, it has become possible to realize that there are

works in the literature that have used the simulation of discrete events, techniques and tools

to analyze systems to predict the behavior and to find the possible performance bottlenecks.

24 M. Horn, S. Sawicki, F. Roos-Frantz, and R. Z. Frantz

However, it can be seen that there is no evidence of discrete event simulations aiming at

the analysis of conceptual models of integration solutions of business applications, using

mathematical techniques and simulations. With the analysis of the conceptual model of

the integration solution developed in Guaraná technology was developed state diagram be-

tween states of the matrix of a Chain Markov. It was noticed that there is equivalence of the

elements of an integration solution projected in the Guaraná technology with the elements

that make up the Markov Chains. Another common feature between the integration solu-

tion presented by Guaraná technology and a system of discrete events is the relationship

between its elements and the structure of operation. The characterization of an integration

solution with a discrete event system helped the understanding of the integration problem

and the identification of performance bottlenecks. In this sense, it was observed that in the

discrete event simulations, the variables are equated in a model, whose state changes occur

in discrete points of time. The choice of the use of Markov Chains for this study is given,

since it is a particular case of stochastic processes and, therefore, used for discrete event

systems. This made it possible to study and analyze the formation of queues. Events gener-

ate the state transitions represented by a transition matrix. For the simulation the use of the

PRISM tool is proposed, which is an application used for the formal modeling of systems.

With this simulation approach, we sought to find performance bottlenecks still in the design

phase reducing consequently the cost, risk and time to implementation. Thus, integration

solutions are seen as discrete event systems and their conceptual models are translated into

formal models, which are simulated using techniques and tools known for the simulation of

discrete events.

With the results obtained, it was noticed that there is an accumulation of messages in

slots s0 and s4. In slot s0 the accumulation is the result of the messages entries in the sys-

tem, and the larger the number of messages entering the modeled system, the greater is the

accumulation. However, in slot s4, the accumulation is the result of the correlator task that

precedes this slot. In this case, in order for the correlator task to process the messages, it

needs to have in its input slots, correlated messages, from replications of the replicator task.

The availability of the integration solution described in a formal model, a stochastic verifi-

cation model based on discrete event simulation, allowed a rigorous exploration, attributing

the verification and analysis of reliable information. For future works, it is recommended

to extend the application of the computational simulation technique in the PRISM tool to

the mathematical technique Continuous Time Markov Chain (CTMC). The specification of

the behavior of CTMC is done in a similar way to a Markov Chain of Discrete Time. The

main difference is that command updates are labeled with (positive value) rates, rather than

probabilities.

References

[1] E. Abrahám, N. Jansen, R. Wimmer, J.-P. Katoen, and B. Becker. Dtmc model check-

ing by scc reduction. In Quantitative Evaluation of Systems (QEST), 2010 Seventh

International Conference on the, pages 37–46. IEEE, 2010

[2] A. K. Ahluwalia and M. Singhal. Performance analysis of the communication archi-

Enterprise Application Integration, Simulation, Markov Chains 25

tecture of the connection machine. Parallel and Distributed Systems, IEEE Transac-

tions on, 3(6):728–738, 1992

[3] S. Basagiannis, P. Katsaros, A. Pombortsis, and N. Alexiou. A probabilistic attacker

model for quantitative verification of dos security threats. In Computer Software and

Applications, 2008. COMPSAC’08. 32nd Annual IEEE International, pages 12–19.

IEEE, 2008

[4] G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi. Queueing networks and markov

chains: modeling and performance evaluation with computer science applications.

John Wiley & Sons, 2006

[5] J. Clément, C. Delporte-Gallet, H. Fauconnier, and M. Sighireanu. Guidelines for

the verification of population protocols. In Distributed Computing Systems (ICDCS),

2011 31st International Conference on, pages 215–224. IEEE, 2011

[6] M. I. Clune, P. J. Mosterman, and C. G. Cassandras. Discrete event and hybrid sys-

tem simulation with simevents. In Proceedings of the 8th international workshop on

discrete event systems, pages 386–387, 2006

[7] P. J. de Freitas Filho. Introdução à modelagem e simulação de sistemas: com

aplicações em arena. Visual Books, 2001

[8] P. J. de Freitas Filho. Introdução à modelagem e simulação de sistemas: com

aplicações em arena. Visual Books, 2001

[9] G. P. Dimuro, R. H. Reiser, A. C. Costa, and P. Souza. Modelos de markov e

aplicações. VI Oficina de Inteligência Artificial, Pelotas: Educat, pages 37–59, 2002

[10] N. J. Dingle, W. J. Knottenbelt, and T. Suto. Pipe2: a tool for the performance evalua-

tion of generalised stochastic petri nets. ACM SIGMETRICS Performance Evaluation

Review, 36(4):34–39, 2009

[11] D. Dossot, J. D’Emic, and V. Romero. Mule in action. Manning, 2014

[12] M. Fisher, J. Partner, M. Bogoevici, and I. Fuld. Spring integration in action. Manning

Publications Co., 2012

[13] R. Z. Frantz, A. M. Reina Quintero, and R. Corchuelo. A domain-specific language

to design enterprise application integration solutions. International Journal of Coop-

erative Information Systems, 20(02):143–176, 2011

[14] R. Z. Frantz. Enterprise application integration: an easy-to-maintain model-driven

engineering approach. PhD thesis, Universidad de Sevilla, 2012

[15] A. V. P. Gomes and P. Wanke. Modelagem da gestão de estoques de peças de reposição

através de cadeias de markov. Gestão & Produção, 15(1):57–72, 2008

[16] C. M. Grinstead and J. L. Snell. Introduction to probability. American Mathematical

Soc., 1997

26 M. Horn, S. Sawicki, F. Roos-Frantz, and R. Z. Frantz

[17] G. Hohpe and B. Woolf. Enterprise integration patterns: Designing, building, and

deploying messaging solutions. Addison-Wesley Professional, 2004

[18] C. Ibsen and J. Anstey. Camel in action. Manning Publications Co., 2010

[19] M. R. James, V. Krishnamurthy, and F. Le Gland. Time discretization of continuous-

time filters and smoothers for hmm parameter estimation. Information Theory, IEEE

Transactions on, 42(2):593–605, 1996

[20] D. G. Kendall. Stochastic processes occurring in the theory of queues and their anal-

ysis by the method of the imbedded markov chain. The Annals of Mathematical

Statistics, pages 338–354, 1953

[21] J. A. Kumar and S. Vasudevan. Variation-conscious formal timing verification in rtl.

In VLSI Design (VLSI Design), 2011 24th International Conference on, pages 58–63.

IEEE, 2011

[22] J. A. Kumar and S. Vasudevan. Formal probabilistic timing verification in rtl.

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on,

32(5):788–801, 2013

[23] M. Kwiatkowska, G. Norman, and D. Parker. Stochastic model checking. In Formal

methods for performance evaluation, pages 220–270. Springer, 2007

[24] M. Kwiatkowska, G. Norman, and D. Parker. Prism 4.0: Verification of probabilistic

real-time systems. In Computer aided verification, pages 585–591. Springer, 2011

[25] Y. Kwon and G. Agha. Scalable modeling and performance evaluation of wireless sen-

sor networks. In Real-Time and Embedded Technology and Applications Symposium,

2006. Proceedings of the 12th IEEE, pages 49–58. IEEE, 2006

[26] D. G. Messerschmitt and C. Szyperski. Software ecosystem: understanding an indis-

pensable technology and industry. MIT Press Books, 1, 2005

[27] J. d. MORAES et al.. Usando arquétipos e linguagem especı́fica de domı́nio no de-

senvolvimento de aplicações ubı́quas para o cuidado de saúde pervasivo. In CON-

GRESSO BRASILEIRO DE INFORMÁTICA EM SAÚDE, volume 13, 2012

[28] G. Norman, C. Palamidessi, D. Parker, and P. Wu. Model checking the probabilistic

pi-calculus. In Quantitative Evaluation of Systems, 2007. QEST 2007. Fourth Inter-

national Conference on the, pages 169–178. IEEE, 2007

[29] D. Parker. Lectures - probabilistic model checking. University of Oxford, Department

of Computer Science, 2011

[30] L. Paulevé, M. Magnin, and O. Roux. Tuning temporal features within the stochastic

π-calculus. Software Engineering, IEEE Transactions on, 37(6):858–871, 2011

[31] G. Pinheiro. Teoria de filas e sistemas de comunicação. Apostila de Aula. Departa-

mento de Engenharia Eletrônica e Telecomunicações, Universidade Estadual do Rio

de Janeiro–UERJ, 2013

Enterprise Application Integration, Simulation, Markov Chains 27

[32] D. Prado. Teoria das filas e da simulação. Belo Horizonte, Nova Lima: Editora

FALCONI, 5, 2014

[33] H. G. Reyes and L. E. C. Barrón. Simulación y análisis de sistemas con promodel.

Pearson Educación, 2006

[34] W. Sandmann. On optimal importance sampling for discrete-time markov chains. In

Quantitative Evaluation of Systems, 2005. Second International Conference on the,

pages 230–239. IEEE, 2005

[35] R. G. Sargent. Verification and validation of simulation models. Journal of Simulation,

7(1):12–24, 2013

[36] S. Sawicki, R. Z. Frantz, V. Basto Fernandes, F. Roos-Frantz, I. Yevseyeva, and

R. Corchuelo. Characterising enterprise application integration solutions as discrete-

event systems. In Handbook of Research on Computational Simulation and Modeling

in Engineering, pages 261–289. IGI Global, 2016

[37] M. F. Triola et al.. Introdução à estatı́stica, volume 9. Ltc Rio de Janeiro, 2005

[38] R. Z. Frantz, S. Sawicki, F. Roos-Frantz, R. Corchuelo, V. Basto-Fernandes, and

I. Hernández. Desafios para a implantação de soluções de integração de aplicações

empresariais em provedores de computação em nuvem. 2014

