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Summary

Integration frameworks are specialized software tools built and adapted to facil-
itate the design and implementation of integration solutions. An integration
solution allows for the reuse of applications from the software ecosystem of
companies to support their business processes. There are several open-source
integration frameworks available on the market designed to operate in a business
context to manipulate structured data; however, increasingly, they are required
to deal with unstructured and large volumes of data, thus requiring effort to
adapt these frameworks to work with unstructured and large volume of data.
Choosing the framework, which is the easiest to be adapted, is not a trivial task.
In this article, we review the newest stable versions of four open-source integra-
tion frameworks by analyzing how they have evolved regarding their adaptive
maintainability over five years. We rank them according to their maintainability
degree and compare past and current versions of each framework. To encourage
and enable researchers and developers to replicate our experiments, with the
aim of verifying our findings, and to experiment with new versions of the inte-
gration frameworks analyzed, we detail the experimental protocol used while
also having made all the required software involved available on the Web.
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1 INTRODUCTION

The software ecosystem1 is gaining importance in the field of software engineering and has been investigated by the
research community as an approach for software reuse.2,3 It deals not only with technological aspects of how to connect
applications but also with planning and keeping the development platform of companies under control; these platforms
are now open to third-party software development companies that provide on-premise software and software as a ser-
vice as well. The software ecosystem is composed of a diverse range of applications, which usually comprises on-premise
applications, applications deployed to the cloud, software consumed as service from the cloud, and mobile applications
that can be reused to support a business process. In this article, the term “software ecosystem” refers to a set of exist-
ing software applications running in an enterprise. These applications may be developed in-house by the enterprise's IT
department, but it is common that the software ecosystem also includes off-the-shelf software packages purchased by the
company. This set of applications is often heterogeneous because they can include applications developed in different
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languages, running on different operating systems, etc. The diversity of programming languages, operating systems, devel-
opment platforms, data models, etc, makes the communication between the applications within the software ecosystem
difficult, mainly because most of them were not developed with integration in mind. This makes their integration for
software reuse more complex.

Enterprise application integration (EAI) is a research field that deals with methodologies, techniques, and tools to
support the development of integration solutions.4 An integration solution orchestrates a set of applications aiming at
the exchange of information and the reuse of functionality among the integrated applications.5 Integration frameworks
are specialized tools to develop integration solutions.6,7 In recent years, several open-source message-based integration
frameworks have emerged, which represent a new generation of application integration tools.8,9 These frameworks follow
the architectural style of pipes-and-filters10 and are strongly influenced by the integration patterns documented by Hohpe
and Woolf.11 In the workflow of an integration solution, pipes represent message channels and filters represent atomic
tasks that implement a concrete integration pattern to process encapsulated data in messages. The patterns document
best practices to solve integration problems. In the EAI community, Apache Camel,12 Spring Integration,13 Mule ESB,14

and Guaraná15 are open-source message-based integration frameworks.
These integration frameworks were designed to operate in a business context to manipulate structured data, which

flow inside an integration solution and are temporarily stored in channels that are used to desynchronize tasks in the
workflow. Given that, in the pipes-and-filters architectural style, a message must be completely stored in a channel before
being processed by the next task in the workflow, it is not adequate when the data are large or have to be processed
in streaming. Increasingly integration frameworks are required to deal with unstructured and large volumes of data,16

making the EAI research field interesting from a practical point of view,5,8,9,17-19 whereas effort is required to adapt the
integration frameworks for them to work with unstructured and large volumes of data.17,20 A typical situation happens
in contexts such as problems associated with natural language analysis, image analysis, video analysis, video-to-text, and
extraction of text data in natural language, in which it is required to work with unstructured data that usually require a
streaming pipeline.

Analyzing the maintainability of an integration framework is an important step toward its adaptation and is not an
easy task. Adaptive maintenance is classified by Radatz et al21 as a type of software maintenance. It focuses on adapting
a software system, enabling the software to be used in contexts in which it was not developed for. Many researchers have
proposed maintainability metrics that are related to the effort required to maintain and adapt a piece of software.22-34

These metrics have been used to analyze and study software systems by avoiding practical experimentation with adap-
tation, which may result in additional costs. These metrics have been consolidated as powerful tools to provide data
regarding software maintenance, which can then be used to find which framework requires less effort to be adapted to
a specific context.

A methodology was proposed by Frantz et al35 to analyze the maintainability of integration frameworks. The authors
have organized it into the following steps: compute metrics, compute rank, check the rank, and rank pairs. The first
step deals with the computation of 25 maintainability metrics from the literature to help software engineers to analyze
the maintainability of EAI frameworks. These metrics were grouped into the following categories, based on the model
proposed by Lanza and Marinescu22: size metrics, coupling metrics, complexity metrics, and inheritance metrics. In the
second step, an empirical rank for each proposal regarding the analyzed metric is calculated. The third step statistically
checks the rankings computed in the previous step. Iman-Davenport's test is used to check if the empirical rank can be
statistically significant. The last step uses Bergmann-Hommel's test to compare each pair of proposals regarding their
metrics and keeps the error rate of the comparisons under strict control.

In their proposal, the authors applied this methodology to check the maintainability of the following integration frame-
works, in their respective versions: Apache Camel 2.7, Spring Integration 2.0, Mule ESB 3.1, and Guaraná 1.2. It is
important to note that only the core code of those frameworks was considered because it is the only code to have the same
functionality across all frameworks, since taking all the implemented code would be unfair as different frameworks have
different adapters or components. In their proposal, it was possible to analyze and identify which of those versions of the
integration frameworks required less effort in terms of its adaptation to a specific context.

In this article, we review the current stable versions of the same integration frameworks, which represent over five
years of evolution of their source-code up to August 2017. The versions considered in this article are Apache Camel 2.17,
Spring Integration 4.3, Mule ESB 3.8, and Guaraná 2.0. Please note that, in this article, our purpose is only to analyze
the maintainability of these integration frameworks centered on the code of their core package, so that it can be used by
software engineers as one more element in the process of making a decision regarding adaptation; however, it cannot be
used as a single element to make the final decision, since this involves analyzing a variety of other factors, in addition to
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maintainability, such as documentation, training courses, technical support, and the set of adapters, related to the inte-
gration framework. Thus, the contribution of this article is three-fold. First, we strictly apply the methodology proposed
by Frantz et al35 to these new versions of the integration frameworks to compute the new ranking based on maintain-
ability and to check if their evolution over time has changed the position of the integration frameworks in the original
raking computed by the authors. We also update information on the maintainability metrics and the effort required to
adapt these integration frameworks to a specific context. We carefully discuss the new data and the new ranking. We
have identified changes in the empirical rank and the ranking pairs of the integration frameworks. Second, we check the
evolution of each maintainability metric in every integration framework by comparing the data we found in the current
versions of these frameworks to those provided by Frantz et al.35 We analyze by how much every metric has increased
or decreased by comparing this data. We have observed that every integration framework has grown in size, which has
made a direct impact on other metrics in coupling, complexity, and inheritance. Third, we introduce the experimenta-
tion protocol absent in the article by Frantz et al35 while having made all the required software involved available on the
Web, so as to encourage and enable researchers and developers to replicate our experiments with the aim of verifying our
findings and to experiment with new versions of the integration frameworks analyzed.

The rest of this article is organized as follows. Section 2 provides background information on the integration frameworks
and the maintainability metrics that were considered. Section 3 introduces in detail the experimentation protocol. Section
4 discusses the data collected for every metric of the current version of the integration frameworks. Section 5 presents the
empirical rank and compares the different integration frameworks. Section 6 compares past and current versions of the
same integration framework. Finally, Section 7 presents our conclusions.

2 PRELIMINARIES

In this section, we provide a brief overview of the integration frameworks we have analyzed and introduce the maintain-
ability metrics, which are the foundation of the applied methodology.

2.1 Integration frameworks
Integration frameworks usually provide a common set of features to support the design, implementation, testing, execu-
tion, and monitoring of integration solutions. They often provide a domain-specific language, a software development kit,
a testing environment, a monitoring tool, and a runtime system. The domain-specific language focuses on the elaboration
of conceptual models for integration solutions, with an abstraction level close to the problem domain. The software devel-
opment kit allows for transforming the conceptual models into an executable code. The environment for testing allows
for running individual parts or the whole integration solution with the objective of identifying and eliminating possible
bugs in the implementation. The monitoring tool is used to follow, at runtime, the behavior of the integration solution
and to detect errors that could occur during the execution. The runtime system provides the full support necessary for
the execution of those integration solutions.

Apache Camel is a Java-based integration framework, hosted by the Apache Software Foundation. This framework
follows a code-centric development approach and provides a fluent API36 in Java to implement the integration solution.
Scala DSL or XML Spring-based configuration files can also be used to implement the solution. Apache Camel provides
a tool that can be used to generate a graphical model that represents the integration solution only for visualizations.
This model is represented using a domain-specific language that has its concrete syntax based on integration patterns. In
Apache Camel, messages are processed by routes that have one or more inputs and one or more outputs. There is a library
for exception handling to create policies for redelivering messages in case some exception occurs inside the routes. In
addition, Apache Camel allows developers to analyze and test routes after their implementation by inspecting the routes'
processing. During the execution, Apache Camel has no means to set a message priority or dynamically change the routes.
During execution, it is possible to monitor the consumption of network, disk access, and memory usage by the integration
framework; in addition, at the application level, Apache Camel provides special monitors that present information on
the integration solution. There is also a commercial version of Apache Camel, which then provides a Web-based and a
stand-alone Eclipse-based IDE, both with a visual editor to design integration solutions, called Fuse Source. This version
is provided by the company Red Hat, based on the software-as-a-service model. At the time of writing this article, the last
stable version launched was 2.17.

Spring Integration is another code-centric and Java-based integration framework, built on top of the Spring Frame-
work container. As with any Spring-based application, integration solutions can be implemented using XML Spring-based
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configuration files or a command-query API.36 The textual domain-specific language provided by Spring Integration to
implement integration solutions is based on integration patterns. This integration framework is provided as a stand-alone
application and includes an Eclipse-based IDE with a graphical editor. In Spring Integration, messages can have different
priorities, which allow those with a high priority to flow faster within the integration solution. Monitoring the integra-
tion solution running in Spring Integration requires third-party tools; only basic tools for monitoring memory and CPU
consumption are offered by the integration framework. The new version of Spring Integration now includes connectors
for many Web, Internet of Things, and cloud applications to build up solutions.

In common with previous frameworks, Mule ESB is another Java-based integration framework that implements
enterprise service bus concepts. It is a project hosted by the company MuleSoft and follows a model-centric develop-
ment approach, which means solutions can be designed using an intuitive visual editor based on an Eclipse IDE with
drag-and-drop functionality. For those who prefer coding, it is also possible to use a command query API and XML
Spring-based configuration files to implement integration solutions. The visual domain-specific language provided by
Mule can raise the level of abstraction for designing integration solutions. It is simple to test integration solutions with
Mule's own XML-based debug language.

Guaraná is a Java-based integration framework and follows a model-centric development approach. It provides an
easy-to-learn and intuitive visual domain-specific language inspired by the integration patterns to design platform-
independent models for integration solutions. It also provides a command-query API that can be used to imple-
ment integration solutions, although models designed using the visual language can be automatically transformed into
executable code.

Messages that flow in an integration solution can have different priorities and their processing can be monitored by an
external component, which can detect and analyze possible errors during message processing. The expected behavior of
an integration solution can be expressed using a rule-based language, which allows the monitor to detect possible abnor-
mal behavior. This monitoring also includes the possibility to observe the consumption of computational resources, such
as memory and CPU. Guaraná is the result of a six-year joint effort between the academy and industry to provide new lan-
guages, methodologies, and tools to help integration engineers reduce the costs involved in the design and implementation
of EAI solutions. At the time of writing this article, the last stable version of Guaraná was 2.0.

2.2 Maintainability metrics
In this section, we introduce the 25 maintainability metrics, which comprise the methodology. Based on the work
of Lanza et al,22 these metrics were classified into four groups, namely, size, coupling, complexity, and inheritance. Size
metrics can be used to indicate how big a software system is. Coupling metrics show the encapsulation degree of data and
the collaboration of objects to perform system functionality. Complexity metrics show how complex it is to understand
the source code. Inheritance metrics indicate how much and how well the concept of inheritance is used in a software
system. All of these metrics can be automatically computed by using a specific kind of software, such as Metrics37 and
iPlasma.22

Size metrics
The metrics in this group represent how big the software is. Size metrics are represented by the number of packages,
classes, interfaces, lines of code, attributes, methods, and parameters per method.

NOP: Number of packages that contain at least one class or interface. It is important to have a well-designed system,
so this metric allows us to know how much effort is required to understand the organization of packages.38 The
greater this value, the more effort is required.

NOC: Number of classes. The source code of a software system implemented with an object-oriented language is
composed of classes, so the more classes it has, the more difficult it becomes to understand its functionality.

NOI: Number of interfaces. The interfaces that comprise the software system are implemented by its classes. It is
commonly agreed that the larger the number of interfaces, the easier it is to a adapt a software system.

LOC: Number of lines of code, excluding blank lines and comments. The more lines of code a software system contains,
the more difficult it is to maintain that system.

NOM: Number of methods in classes and interfaces. This indicates the potential reuse of a class, as reported by Lorenz
and Kidd39 and by Chidamber and Kemerer,31 where a large number of methods indicates that a class is likely
to be application-specific, limiting the possibility of reuse.
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NPM: Number of parameters per method. Methods that have a high number of parameters are harder to understand
and frequently more complex. According to Henderson-Sellers,32 the number of parameters should not exceed
five. If it does, the author suggests that a new type must be designed to wrap the parameters into a unique object.
The greater this value, the more difficult it is to understand a method.

MLC: Number of lines in methods, excluding blank lines and comments. For readability and maintainability reasons,
Henderson-Sellers32 recommends that the method should not exceed 50 lines; if it does, he suggests splitting the
method into new smaller methods. The greater this value, the more difficult it is to understand and maintain a
method.

NSM: Number of static methods. This metric indicates how well implemented a piece of code is. The greater this
value, the more likely that the code tends to be based on the classical procedural paradigm and not on the
object-oriented paradigm.

NSA: Number of static attributes. A large number of static attributes makes the process of reasoning about the state
of a software system during tests difficult. The greater this value, the more difficult the testing.

NAT: Number of attributes. If a class has too many different attributes, understanding it becomes more complex. The
greater this value, the more difficult it is to understand the state of a class.

Coupling metrics
These represent the main characteristic of the object-oriented paradigm, data encapsulation, and object collaboration
necessary to perform system functionality. The metrics in this group give an indication of how the software system classes
are coupled.

LCM: Lack of cohesion of methods. Cohesion refers to the number of methods that share common attributes in a
single class, and the lack of cohesion is computed using the Henderson-Sellers LCOM* method.32 A low value
indicates a cohesive class, and a high value, close to 1, indicates a lack of cohesion, which suggests that the class
might be split into two or more classes, because some methods might not belong to that class.

AFC: Afferent coupling. This is defined as the number of classes outside a package that depends on one or more classes
inside that package.33,40,41 The greater this value, the more complex maintenance becomes because there are
more dependencies between classes, as well as indicating that the package is critical for the software system and
that its maintenance must be done carefully, so as not to introduce problems for dependent classes.

EFC: Efferent coupling. The value of this metric is defined by the number of classes inside a package, which depends
on a class outside the package.33,40,41 The greater this value, the more likely that maintenance will have an
impact on a package.

FAN: Number of called classes. According to Lorenz and Kidd,39 this metric indicates how method calls are dispersed
in a class. The greater this value, the more complex a method call is because every call is supposed to involve
other classes to be completed.

LAA: Locality of attribute accesses. This metric represents how dependent a method of the attributes outside its class
is. The greater this value, the more a method inside of a class uses external attributes.

CDP: Coupling dispersion. This metric represents how badly a method is written. The greater this value, the more
likely that there is an improper distribution of functionality among the methods of a software system.

CIT: Coupling intensity. This metric can be used as an indicator of how dependent a method is, since it metrics the
number of distinct methods that are called by the measured method. The greater this value, the more likely
there is an excessive coupling among the methods of a software system.

Complexity metrics
The metrics inside this group show how complex a software system is and how complex and difficult it could be to
understand its functionality and maintain it.

ABS: Degree of abstractness of a software system. This metric can be used as an indicator of how customizable a
software system is.33 The greater this value, the easier to customize the software system.

WMC: Weighted sum of McCabe cyclomatic complexity34 for all methods in a class. This is an indication of how
difficult it is to understand and modify the methods of a class.31 The greater this value, the more effort is
required to maintain a class.
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MCC: McCabe cyclomatic complexity. This indicates how complex the algorithm in a method is, and this value should
not exceed 10, according to McCabe.34 The greater this value, the more difficult it is to maintain a piece of code.

WOC: Weight of class. This metric indicates the ratio of accessor methods regarding other methods that provide
services.42 The greater this value, the more class interfaces are used by accessor methods, indicating that classes
are not too complex.

DBM: Depth of nested blocks in a method. This metric is used to indicate how expensive debugging a piece of code
is. According to Henderson-Sellers,32 this value should not exceed 5; if it does, he suggests that the method
should be broken into other methods. The greater this value, the more complex an algorithm is.

Inheritance metrics
The main characteristic of an object oriented toward a paradigm is code reuse via the inheritance of functionality among
classes. This allows us to know and understand how much and well applied the inheritance is in the software system
looking at the following metrics.

DIT: Depth of inheritance tree. Inheritance is a mechanism to increase code reuse, and checking this metric enables
us to know how complicated maintaining a class can be.43 The greater this value, the more difficult it is to
maintain a software system.

NOH: Number of immediate children classes of a class. A class can have an impact on a software system and, if it is
modified, this metric indicates the potential impact.31 The greater this value, the greater the chances that the
abstraction defined by the parent class is poorly designed.

NRM: Number of overridden methods. Overridden methods adapt methods from their ancestors and this metric
indicates how adaptable a class is concerning their ancestors.39 The greater this value, the more likely that
the inheritance mechanism is being used to adapt a class, instead of just providing additional services to the
parent class.

3 EXPERIMENTATION PROTOCOL

In this section, we present the research protocol we have used to review the current stable version of the integration
frameworks analyzed by Frantz et al35 and compute the new ranking. The protocol is composed of four main steps, namely,
setting up the environment, collecting the core packages, computing metrics, and computing ranks. In each step, a set of
detailed instructions is provided to realize it and make the experiment we carried out with the integration frameworks
repeatable and extensible to other and newer versions of these frameworks. Figure 1 provides an overview of this protocol

FIGURE 1 Overview of the protocol
used to carry out the experimentation. CSV,
comma-separated format
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and highlights the input and output of each step, which are detailed in the following sections. Every piece of code and
software tool required to carry out this experimentation protocol are made available on the Web to encourage and enable
researchers and developers to replicate our experiments with the aim of verifying our findings and to experiment with
new versions of the integration frameworks analyzed. The protocol we present here, together with the piece of code and
software tools, can also be used by other researchers and developers to validate and improve the original methodology35

on which we have based our study in this article.

3.1 Setting up the environment
A set of five software tools must be downloaded and configured to carry out the experimentation. As Java is the technology
under these tools, the experiment is platform-independent. This step takes, as input, the list of required software and, as
outputs, these software packages installed. The instructions in the following guide the realization of this step.

1. Download and install Java SE version 7.0, which is required to run all the other software packages:
https://www.oracle.com/technetwork/java/javase/

2. Download Eclipse Neon from the Eclipse Foundation website at:
https://www.eclipse.org/downloads/

3. Follow the instructions at the Metrics 1.3.6 website to install and configure its plug-in into Eclipse:
http://metrics.sourceforge.net
Optionally, a preconfigured version of Eclipse Neon with a Metrics plug-in already installed can be downloaded and
from the following link: http://www.gca.unijui.edu.br/publication/data/spe-a/eclipse-metrics.zip

4. Download and unzip iPlasma software in any local directory in the computer from the following link:
http://www.gca.unijui.edu.br/publication/data/spe-a/iplasma.zip

5. Download and unzip MultipleTest software, which is required to run the statistical analysis in order to compute the
rankings, in any local directory in the computer from the following link:
http://www.gca.unijui.edu.br/publication/data/spe-a/multipletest-2.7.zip

3.2 Collecting the core packages
The maintainability metrics are computed against the source code of the integration frameworks. This step takes, as input,
a list with the names of the integration frameworks to be analyzed and, as outputs, individual and ready-to-be compiled
Java Projects inside Eclipse, which contain only the core packages of each framework. This step can be realized by using
the following instructions.

1. Inside Eclipse, create a separate and empty Java Project for each integration framework.
2. Download the corresponding complete source code for each integration framework from the following links:

Apache Camel:
https://github.com/apache/camel/tree/camel-2.17.0
Spring Integration:
https://github.com/spring-projects/spring-integration/tree/v4.3.0.RELEASE
Mule ESB:
https://github.com/mulesoft/mule/tree/mule-3.8.0
Guaraná:
http://www.gca.unijui.edu.br/publication/data/spe-a/guarana-2.0.zip

3. From the complete source code downloaded, copy only the Java classes of the “core” package of each integration
framework by copying the directory “core” to the inside of the “src” directory of the corresponding Java Project.

Apache Camel:
Locate the directory “camel-core” and navigate to “src->main->java”, and copy the directory “org” with all of its
subdirectories to the inside of the “src” directory of the corresponding Java Project just created.
Optionally, download the core at: http://www.gca.unijui.edu.br/publication/data/spe-a/camel-core.zip
Spring Integration:
Locate the directory “spring-integration-core” and navigate to “src->main->java”, and copy the directory “org”
with all of its subdirectories to the inside of the “src” directory of the corresponding Java Project just created.

https://www.oracle.com/technetwork/java/javase/
https://www.eclipse.org/downloads/
http://metrics.sourceforge.net
http://www.gca.unijui.edu.br/publication/data/spe-a/eclipse-metrics.zip
http://www.gca.unijui.edu.br/publication/data/spe-a/iplasma.zip
http://www.gca.unijui.edu.br/publication/data/spe-a/multipletest-2.7.zip
https://github.com/apache/camel/tree/camel-2.17.0
https://github.com/spring-projects/spring-integration/tree/v4.3.0.RELEASE
https://github.com/mulesoft/mule/tree/mule-3.8.0
http://www.gca.unijui.edu.br/publication/data/spe-a/guarana-2.0.zip
http://www.gca.unijui.edu.br/publication/data/spe-a/camel-core.zip
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Now, at Java Project, locate, from inside the “src”, the package “org->springframework->integration->
endpoint->management” and remove it. It contains a “package-info.java” file, which is just a placeholder file and
thus an invalid Java class, which leads to an error when computing values for the metrics.
Optionally, download the core at: http://www.gca.unijui.edu.br/publication/data/spe-a/spring-integration-
core.zip
Mule:
Locate the directory “core” and navigate to “src->main->java”, and copy the directory “org” with all of its
subdirectories to the inside of the “src” directory of the corresponding Java Project just created.
Optionally, download the core at: http://www.gca.unijui.edu.br/publication/data/spe-a/mule-core.zip
Guaraná:
Locate the directory “guarana-sources” and navigate to “guarana->guarana-framework->src” and copy the direc-
tory “guarana” with all of its subdirectories to the inside of the “src” directory of the corresponding Java Project just
created. Now, locate the directory “guarana-sources” and navigate to “guarana->guarana-toolkit->src”, and copy
the directory “guarana” with all of its subdirectories to the inside of the same “src” directory of the corresponding
Java Project just created.
Optionally, download the core at: http://www.gca.unijui.edu.br/publication/data/spe-a/guarana-core.zip

4. As Metrics does not work, if any class library is missing from the compilation of the core Java classes of the integration
framework, it is required to import all the necessary libraries into each Java Project. Download a zip file containing all
the necessary libraries to each framework from the following links:

Apache Camel:
http://www.gca.unijui.edu.br/publication/data/spe-a/camel-libs.zip
Spring Integration:
http://www.gca.unijui.edu.br/publication/data/spe-a/spring-integration-libs.zip
Mule:
http://www.gca.unijui.edu.br/publication/data/spe-a/mule-libs.zip
Guaraná:
http://www.gca.unijui.edu.br/publication/data/spe-a/guarana-libs.zip

Optionally, a preconfigured workspace of Eclipse, containing four Java Projects already with the only “core” package for
each integration framework, as well as with the required libraries imported, can be downloaded from the following link:
http://www.gca.unijui.edu.br/publication/data/spe-a/workspace.zip

3.3 Computing Metrics
Metrics are computed individually for each integration framework by taking, as input, the core package of the framework.
Both software packages have to be used because some metrics are computed with Metrics 1.3.6 and others are computed
with iPlasma 6.1; however, there is no metric computed using both software packages. From the set of metrics, the follow-
ing are computed by iPlasma: number of called classes (FAN), locality of attribute accesses (LAA), coupling dispersion
(CDP), coupling intensity (CIT), and weight of class (WOC). Please, note that Table 1 is simply a collection of the metrics,
whereas Table 4 only shows the increment/decrement percentage for each maintainability metric of the two integration
frameworks' versions being compared. The following instructions have to be used for each framework at a time. Different
to the majority of metrics that fall within the class of “the smaller the value of a metric, the better it is”, the metrics NOI,
ABS, WOC, and NRM fall within the class of “the smaller the value, the worse it is”. To apply the statistical tests, it is nec-
essary to keep every metric with the same goodness, ie, the smaller the value, the better it is. Thus, for Instructions 3 and
4 in the following, the values for NOI, ABS, WO, and NRM in the “Total” and “Mean” columns have to be normalized by
subtracting them from their maxima, so that the comparison is homogeneous.

1. Metrics

(a) The Metrics View has to be displayed to visualize the computed metrics. This can be performed in Eclipse by
opening the menu “Windows->Show View->Other” and navigating to the “Metrics View”.

(b) The computing process starts by right-clicking on the Java Project, which contains the source code of the core
package to be analyzed and via the pop-up menu by selecting “Metrics->Enable”.

http://www.gca.unijui.edu.br/publication/data/spe-a/spring-integration-core.zip
http://www.gca.unijui.edu.br/publication/data/spe-a/spring-integration-core.zip
http://www.gca.unijui.edu.br/publication/data/spe-a/mule-core.zip
http://www.gca.unijui.edu.br/publication/data/spe-a/guarana-core.zip
http://www.gca.unijui.edu.br/publication/data/spe-a/camel-libs.zip
http://www.gca.unijui.edu.br/publication/data/spe-a/spring-integration-libs.zip
http://www.gca.unijui.edu.br/publication/data/spe-a/mule-libs.zip
http://www.gca.unijui.edu.br/publication/data/spe-a/guarana-libs.zip
http://www.gca.unijui.edu.br/publication/data/spe-a/workspace.zip
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2. iPlasma

(a) As this software does not require installation, localize the directory in which iPlasma was unzipped and navigate to
the directory “tools->iPlasma” and run “insider.bat” (Windows) or “insider.sh” (Linux), according to the running
operating system. This will open the main window of iPlasma.

(b) The directory containing the core package of every integration framework has to be loaded individually to compute
the metrics. This can be carried out by clicking on “load->java sources->source path” and selecting the directory.

(c) The source code is loaded under “∼root”, which must now be right-clicked to select “select columns”. This action
opens a new window where metrics can be aggregated by localizing them via the “search” field.

(d) The search field allows one metric (called property) per time to be aggregated. Once the metric is located, select it
and, in the next box, aggregate the columns “avg”, “sum”, and “max”, so that the corresponding values are shown
in the main window of iPlasma. The following properties in this software package correspond to the metrics in our
article class_FANOUT (FAN), method_LAA (LAA), method_CDISP (CDP), method_CINT (CIT), and class_WOC
(WOC).

3. Using a plain text editor such as Notepad, create an empty text file with the name “total.csv”. Input the total values for
every metric of all integration frameworks to this file. The first column must be named “TECH”, and the other column
“Total”. Each row provides the value for one metric in a comma-separated format (CSV), such as in the following
excerpt:

TECH, Total
Camel, 77
Camel, 1205
Camel, 60
...
Mule, 156
Mule, 1184
Mule, 0
...
Spring, 50
Spring, 495
Spring, 274
...
Guarana, 20
Guarana, 96
Guarana, 356
...

Optionally, a complete and ready-for-use “total.csv” file can be downloaded from the following link:
http://www.gca.unijui.edu.br/publication/data/spe-a/total.csv.zip

4. Create another empty text file with the name “mean.csv”. Input the mean values for every metric of all integration
frameworks to this file. The first column must be named “TECH”, and the other column “Mean”. Each row provides the
value for one maintainability metric of each framework in a comma-separated format (CSV), such as in the following
excerpt:

TECH, Mean
Camel, 15.649
Camel, 0
Camel, 10.71
...
Mule, 7.59
Mule, 1.648
Mule, 7.018
...
Spring, 9.9
Spring, 2.133

http://www.gca.unijui.edu.br/publication/data/spe-a/total.csv.zip
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Spring, 6.234
...
Guarana, 4.8
Guarana, 3.363
Guarana, 4.531
...

Optionally, a complete and ready-for-use “mean.csv” file can be downloaded from the following link:
http://www.gca.unijui.edu.br/publication/data/spe-a/mean.csv.zip

3.4 Computing ranks
The last step is the computation of the raking, which takes, as input, the metrics in the CSV file format and, as outputs, the
tables of the ranking. This step is supported by MultipleTest software, which must be executed against the mean and the
total values. The following instructions guide the realization of this step and provide data for Figure 2 and Tables 2 and 3.

1. Move the CSV files containing the computed values for the metrics (total.csv and mean.csv) to the inside of the local
directory where the MultipleTest software was unzipped.

FIGURE 2 Empirical ranking
of the integration frameworks

Test Total Mean

Statistic 11.52 7.00
P-Value 8.27 × 10−6 3.69 × 10−4

TABLE 2 Iman-Davenport's test

TABLE 3 Results of Bergmann-Hommel's test

(a) Total values
Comparison Statistic AP-Value Integration Framework Rank

Apache Camel vs. Guaraná 4.384 0.287 Guaraná, Spring Integration, Mule ESB, Apache Camel 1
Mule ESB vs. Guaraná 2.923 0.287
Apache Camel vs. Spring Integration 2.923 0.010
Spring Integration vs. Mule ESB 1.461 0.287
Spring Integration vs. Guaraná 1.461 0.287
Apache Camel vs. Mule ESB 1.461 0.287

(b) Mean values
Comparison Statistic AP-Value Integration Framework Rank
Apache Camel vs. Guaraná 3.712 1.000 Guaraná 1
Mule ESB vs. Guaraná 3.084 1.000 Spring Integration, Mule ESB, Apache Camel 2
Apache Camel vs. Spring Integration 0.685 1.000
Spring Integration vs. Mule ESB 0.057 1.000
Spring Integration vs. Guaraná 3.027 0.006
Apache Camel vs. Mule ESB 0.628 1.000

http://www.gca.unijui.edu.br/publication/data/spe-a/mean.csv.zip
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2. Open a command prompt and navigate to the local directory where the MultipleTest software was unzipped. Inside
this directory, run the following commands to compute ranks:

Compute the Total values to the ranking:
java -jar multiple-test-2.7.jar total.csv Total -
Compute the Mean values to the ranking:
java -jar multiple-test-2.7.jar mean.csv Mean -

4 COMPUTED METRICS

The set of 25 maintainability metrics was computed for Apache Camel, Spring Integration, Mule ESB, and Guaraná, as
suggested in the methodology and by following the protocol previously introduced. Table 1 summarizes the results that
we collected.

The structural size of the integration frameworks was organized into packages: 77 in Apache Camel, 50 in Spring Inte-
gration, 156 in Mule ESB, and 20 in Guaraná. Even though Mule ESB has so many packages, Apache Camel has even
more classes than Mule ESB, with 1205 and 1184 classes, respectively; in contrast, in Spring Integration, there are 495
classes, whereas Guaraná has only 96 classes. The maximum number of classes in a package is 137 for Apache Camel,
86 for Mule ESB, and 72 for Spring Integration, that is, almost half that of Apache Camel; meanwhile, Guaraná has just
11. A different situation occurs for the number of interfaces. Although Apache Camel has 309 interfaces in its packages,
Mule ESB has 369, which indicates that Mule ESB is more adaptable. In Spring Integration, there are 95 interfaces, and
in Guaraná, there are 13.

The number of classes also implicates the number of lines of code; and, as we can see, in Table 1, Apache Camel
has 119 418 lines of code, Mule ESB has 105 077, Spring Integration has 33 139, and Guaraná has 3504. Thus, Apache
Camel has almost four times more lines of code than Spring Integration, which has nine times more than Guaraná. These
differences can also be seen in the number of methods. Apache Camel has a total of 12 905, with an average of 10.710,
methods per class, Guaraná has only 435, Spring Integration has 3086, and Mule ESB has 8309, with mean values of 4.531,
6.234, and 7.018, respectively. Now, if we compare the maximum number of parameters per method, another important
difference can be noticed: 14 in Apache Camel, 20 in Mule ESB, 9 in Spring Integration, and 4 in Guaraná. This indicates,
especially in Mule ESB and Apache Camel, that there is much more complexity in some methods, which are also more
limited, less reusable, and much harder to understand. So far, these methods are difficult to maintain. These differences
can be observed again in the number of lines in methods: 150 lines in Apache Camel, 145 lines in Spring Integration, 209
lines in Mule ESB, and 54 lines in Guaraná, with a total number of lines in the methods equal to 67 024, 18 360, 54 584, and
2107, respectively, ensuring that methods in Guaraná are smaller and probably less complex to understand and maintain.

Regarding the number of static methods, we can see 1185 in Apache Camel, 883 in Mule ESB, 82 in Spring Integration,
and only 1 in Guaraná. This is a significant difference, as a static system is more complex to adapt. In addition to the
number of static attributes, there are 553 in Apache Camel, 224 in Spring Integration, 964 in Mule ESB, and 35 in Guaraná.
Even regarding the total number of attributes, we can see significant asymmetry, where Apache Camel has about 3657
attributes and a maximum of 85 in a single class, whereas Spring Integration has 1056 attributes and a maximum of 20 in
a single class, Mule ESB has 2286 attributes and a maximum of 35 in a single class, and Guaraná with 106 attributes and
a maximum of 13 in a single class.

For coupling values, it is noticeable that the mean and the maximum values for the lack of cohesion among methods
are very similar in every framework. These means are 0.314, 0.252, 0.233, and 0.136, with a maximum of 1, 1, 1.333, and
0.918, for Apache Camel, Spring Integration, Mule ESB, and Guaraná, respectively. Regarding the lack of cohesion, the
closer the value is to 1, the more likely it is to split the class, so Mule ESB exceeds the limit. In addition, we have the values
for afferent and efferent coupling classes in the tools. First, the afferent values of Apache Camel are very high, with a
mean of 38.974 and a maximum of 895, whereas Spring Integration has 12.400 and 60, Mule ESB has 27.590 and 766, and
Guaraná has 8.400 and 61 for the mean and the maximum, respectively. Observe how proximate Spring Integration and
Guaraná are. Although the efferent value for Mule ESB is better than that of Apache Camel and Spring Integration, with a
mean of 7.628 and a maximum of 54, it is still not as good as it could be. The efferent values of the mean and the maximum
for Apache Camel are 15.429 and 119, whereas, for Spring Integration, they are 9.900 and 71. Guaraná stands out with
values of 4.800 and 11. These data suggest that much more attention must be paid when performing maintenance on any
classes of a package because the classes might have a high number of dependencies.
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For the number of called classes, we have 7980 for Apache Camel, 1380 for Spring Integration, 6193 for Mule ESB,
and only 183 for Guaraná. The locality of attribute accesses reveals the dependence of a method on attributes outside its
class: this is 0.960 for Apache Camel, 0.980 for Spring Integration, 0.980 for Mule ESB, and 0.960 for Guaraná, thereby
keeping every framework at the same level. Coupling dispersion indicates how properly distributed the methods are, with
the mean values being 0.140 for Apache Camel, 0.100 for Spring Integration, 0.160 for Mule ESB, and 0.070 for Guaraná,
which indicates that Mule ESB is the most dispersed. Regarding coupling intensity, the maximum dependency values are
42, 22, 30, and 7 in a method for Apache Camel, Spring Integration, Mule ESB, and Guaraná, respectively, demonstrating
an excessive coupling, especially in the case of Apache Camel.

The degree of abstractness highlights how abstract an integration framework is, which reflects how easily it can be
customized. Apache Camel has the lowest degree of abstractness, with a mean of 0.163, whereas it is 0.318 for Spring
Integration, 0.357 for Mule ESB, and 0.531 for Guaraná. As it gets close to the maximum value of 1, the better it is. The
weighted sum method of McCabe cyclomatic complexity for all methods in a class demonstrates a high complexity within
that class. As we can see in Apache Camel, the sum is 23 915, whereas it is 5747 in Spring Integration, 16 036 in Mule ESB,
and only 594 in Guaraná. The mean and the maximum values are 19.846 and 556 for Apache Camel, whereas they are
11.610 and 107 for Spring Integration, 13.544 and 282 for Mule ESB, and 6.188 and 47 for Guaraná. Thus, the weighted
sum also implicates McCabe cyclomatic complexity, which is high for these frameworks. They reached values of 64, 33,
and 39 for Apache Camel, Spring Integration, and Mule ESB, respectively. Thus, all of them have at least three times
more than the recommended value, which is 10. Those values indicate that the frameworks are complex and that their
maintenance could be difficult. Guaraná reached a maximum complexity of 8.

Regarding the weight of class, we obtained mean values of 0.620, 0.530, 0.660, and 0.660 for Apache Camel, Spring
Integration, Mule ESB, and Guaraná, respectively. This maintainability metric indicates that the greater this value is, the
more complex the classes are, in terms of the ratio of accessing methods. Considering the maximum value for the depth
of nested blocks in a method, Apache Camel and Mule ESB have 8, whereas Spring Integration has 7 and Guaraná has 4.
The cost of debugging a piece of code is more expensive in the cases of Apache Camel and Mule ESB.

Finally, for inheritance parameters, the depth of the inheritance tree is 7 for every framework, except for Guaraná, whose
value is 5. Therefore, the maximum number of immediate children classes has significant differences: 97, 12, 26, and 10
for Apache Camel, Spring Integration, Mule ESB, and Guaraná, respectively. These values suggest that the parent classes
of Apache Camel were poorly designed, making it harder to carry out proper maintenance without having compatibility
problems. Still, the four frameworks have a maximum number of overridden methods of 8 for Apache Camel, 13 for
Spring Integration, 10 for Mule ESB, and 3 for Guaraná concerning a single method.

5 STATISTICAL ANALYSIS

When analyzing a set of data values by using the mean measure, it may lead to wrong conclusions, since, for skewed
distributed values, the mean is not necessarily the best choice. For example, a uniformly distributed set of numbers may
have the same mean as a highly skewed set, but they behave quite differently in practice. Analyzing the standard deviation
in addition to the mean could help; but then, the problem becomes how to compare two different indicators at the same
time. This comparison is questionable because it is difficult to guarantee that the empirical data support the hypothesis
that the differences are statistically significant. Many authors from the statistics field have been motivated to approach
nonparametric tests44 for computing and comparing the empirical ranks of the metrics instead of their values. What
happens is that these tests are completely independent of the distribution of the values, making these kinds of tests more
resistant to outliers, such that there is a better chance that there are no wrong conclusions about the collected values.
In the following sections, we compute and check the rank, as well as carry out a pairwise comparison of the analyzed
integration frameworks following the methodology proposed by Frantz et al.35

5.1 Computing rank
This rank allows us to see which integration framework has the best overall maintainability. As can be observed in
Figure 2, the values of the empirical ranking of the integration frameworks indicate that both the total values and the
mean values from Guaraná are better, with 1.53 and 1.57, respectively, followed by Spring Integration with 2.18 and 2.72,
Mule ESB with 2.82 and 2.74, and Apache Camel with 3.47 and 2.98.
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5.2 Checking rank
The ranking is checked using Iman-Davenport's test, as shown in Table 2. It is necessary to determine if the differences
in the empirical ranking from the last section have a significant value. In order to verify the existence of this meaningful
statistic difference between the empirical values, it is important that a confidence interval of 𝛼 = 0.05 is used. A P-value
is used to determine the significance of the results in a statistical test, whereas a small value, such as the interval of
confidence which we use, could indicate strong evidence against the null hypothesis.

It is possible to see, in Table 2, that the P-value of the total values and the mean values are smaller than the statistic
values, meaning that these values become irrelevant from a statistical point of view. Noting that the total P-value is smaller
than the standard level, we are confident that the empirical ranks are different from a statistical point of view; thus, it
becomes necessary to apply Bergmann-Hommel's test to rank every pair of frameworks.

5.3 Ranking pairs of proposals
To rank the pairs of proposals, it is necessary to compare every pair regarding a metric. In order to obtain a static ranking,
we have used Bergmann-Hommel's test.

As presented in Table 3, the adjusted P-values (AP-values) result from the comparison of Guaraná with the other three
frameworks: Apache Camel, Mule ESB, and Spring Integration. When observing the total values for statistics, it is possible
to see that the difference in maintainability between Guaraná and Apache Camel is the highest (4.384). The difference
in maintainability between Guaraná and Mule ESB is also high (2.923). The maintainability of Guaraná is closer to the
maintainability of Spring Integration (1.461). The mean values for statistics between Spring Integration and Mule ESB
are very small (0.057), which suggests that the maintainability of these integration frameworks is almost the same. The
difference in the mean values of Guaraná and Apache Camel is the highest (3.712), which reinforces the claim that they
are the most different in terms of maintainability. The Bergmann-Hommel's test for the total values regarding each pair of
proposals ranks the four integration frameworks at the same level. However, when analyzing the mean values in this test,
Guaraná is ranked in the first place, followed by Spring Integration, Mule ESB, and Apache Camel in equal second place.

6 COMPARING VERSIONS

In this section, we analyze how the source code of each integration framework evolved over the course of five years regard-
ing its maintainability. To do so, we compare the maintainability data, which we computed for each metric of Apache
Camel 2.17, Spring Integration 4.3, Mule ESB 3.8, and Guaraná 2.0, with the maintainability data originally computed by
Frantz et al35 for Apache Camel 2.7, Spring Integration 2.0, Mule ESB 3.1, and Guaraná 1.2. Table 4 summarizes the differ-
ences between values in each metric of the two compared versions. The values shown in this table indicate the increment
(+) or decrement (−) percentages in each metric. Cells highlighted in dark gray indicate that there was an improvement
in the last version of the integration framework with respect to this metric, whereas cells highlighted in light gray indicate
that the last version of the integration framework worsened.

Starting with the size of metrics, the number of packages has increased over time in every framework. Spring Integration
has the highest rate of increase at 56.25%, followed by Apache Camel at 42.59%, Mule ESB at 25.81%, and Guaraná at
11.11%. The number of classes was also affected: Spring Integration increased its number of classes by 84.01%, Apache
Camel by 65.07%, Mule ESB by 61.53%, and Guaraná by 21.52%. This is also expected for interfaces, but in a positive
way. Guaraná increased the number of interfaces by 44.44%, Mule ESB by 76.56%, Apache Camel by 120.71%, and Spring
Integration by 137.50%. It is important to note that the more interfaces a system has, the more adaptable it is.

The lines of code also increased in every framework as expected, with Apache Camel and Spring Integration basically
doubling their size by 91.26% and 121.98%, respectively. Looking at the number of methods, Spring Integration again is
the one that increased the most by 115.65%, followed by Apache Camel by 83.96%, Mule ESB by 61.09%, and Guaraná by
17.89%. It is noteworthy that the mean value for Mule ESB decreased by 0.31% and, for Guaraná, it decreased by 2.98%,
which is good. As for the number of parameters per methods, Guaraná and Spring Integration decreased their means by
0.58% and 9.91%, whereas Mule ESB and Apache Camel increased by 2.72% and 0.22%, respectively. The number of lines
in a method increased, as a total and as a mean, for Apache Camel by 92.38% and 5.33%, for Spring Integration by 122.17%
and 2.57%, and for Guaraná by 20.54% and 2.39%. It is noticeable how Mule ESB increased by 51.67% in total, whereas its
mean decreased by 3.59%.
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The number of static methods did not change for Guaraná. For Spring Integration, it increased by 168.52%, whereas,
for Apache Camel, it increased by 67.14% and, for Mule ESB, it increased by 28.72%. Mule ESB also decreased the mean
value by 20.64%. For the number of static attributes, Mule ESB decreased its mean value by 10.55%, whereas Guaraná
decreased the mean value by 3.95%, but increased its total value by 16.67%. Spring Integration increased its maximum
value by 61.54%. Apache Camel increased all its values for this metric. At last, regarding the number of attributes, Spring
Integration and Apache Camel showed the greatest total increase, with 122.78% and 102.83%, respectively. They were
followed by Mule ESB with 61.33% and Guaraná with 21.84%.

Coupling metrics offer us another perspective on how elaborated the system is. For the lack of cohesion among meth-
ods, the mean values portray an increase of 14.55% for Spring Integration, 8.28% for Apache Camel, and 1.30% for Mule
ESB, and a decrease of 2.86% for Guaraná. Guaraná also decreased by 2.86% and 2.22% for mean and deviation values.
Afferent coupling decreased significantly only in the case of Spring Integration, with 58.90% in the maximum value and
49.74% in its deviation; all the other frameworks have increasing values. Concerning efferent coupling, Guaraná is the
only framework that decreases a value by 7.47% in deviation, whereas there are no changes in the maximum value. The
other three frameworks increased their values.

The total value for the number of called classes increased for Apache Camel by 119.41%, Spring Integration by 114.95%,
Mule ESB by 64.49%, and Guaraná by 4.57%, which was the only framework that did not change in the maximum value.
In contrast, the mean value for the locality of attribute accesses decreased in Apache Camel by 1.03% and increased in
Guaraná by 1.05%, whereas, for Spring Integration and Mule ESB, there were no changes. For coupling dispersion, we
found the highest increase in the total value in Spring Integration at 177.42%, followed by Apache Camel at 133.80% and
Mule ESB at 68.15%; meanwhile, Guaraná decreased by 7.91%. The same applies to coupling intensity in which Spring
Integration had an increase of 156.86% in its total value, Apache Camel had an increase of 132.59%, Mule ESB had an
increase of 64.89%, and Guaraná had an increase of 1.35%. Note that Mule ESB had no change in the maximum value for
coupling intensity.

Complexity metrics are essential to evaluate the maintainability of a system: the less abstract and complex the system is,
the easier it is to understand and thus maintain it. The abstractness of Guaraná decreased by a mean of 1.67%, compared
to an increase for Apache Camel and Mule ESB by 8.66% and 8.18%, respectively. The highest increase in abstractness
was found in the case of Spring Integration, with a value of 17.78%.

The weighted sum of the McCabe cyclomatic complexity total value increased for Apache Camel, Sprint Integration,
Mule ESB, and Guaraná by 85.34%, 118.68%, 52.19%, and 19.28%, respectively. It should also be acknowledged that Mule
ESB and Guaraná are the only frameworks that decreased their mean value, by 5.81% and 1.78%, respectively. Guaraná
also decreased its maximum value by 27.03%, which is important for maintainability. McCabe cyclomatic complexity
increased the maximum value in all frameworks, with Apache Camel leading with 39.13%, followed by Mule ESB with
18.18%, Spring Integration with 10.00%, and Guaraná without any change.

The weight of a class not only significantly increased in Spring Integration, by a total of 111.85% and by a mean of 10.42%,
but also in the others frameworks. The last metric of complexity is the depth of nested blocks in a method, where Apache
Camel, Mule ESB, and Guaraná experienced no change in the maximum value, with only Spring Integration increasing
its maximum value by 16.67%. Inheritance metrics can reveal how much code has been reused during the evolution of
the versions. Both Apache Camel and Spring Integration increased the maximum value in the depth of the inheritance
tree by 16.67%, whereas Mule ESB and Guaraná saw no changes. The total value of the number of immediate children
classes of a class increased for every framework. For Apache Camel, Spring Integration, and Mule ESB, it increased by
64.71%, 55.78%, and 74.48%, respectively, whereas, for Guaraná, it only increased by 6.78%. Nevertheless, the mean value
decreased for all frameworks, except for Mule ESB, which increased by 8.04%, but the maximum value decreased by 7.14%.
Spring Integration and Apache Camel increased this metric's maximum value by 9.09% and 40.58%, respectively, whereas
Guaraná had no change.

For the number of overridden methods, Spring Integration is the single framework, which increased all its values by
200.00% in total, and 60.77% and 160% in mean and maximum values. Apache Camel increased its total and mean values
by 153.50% and 53.27%, whereas there were no changes in the maximum value. Mule ESB decreased the mean value by
13.88%, whereas the total and maximum values increased by 42.45% and 11.11%. Guaraná increased its total value by
21.43%, whereas the mean value decreased by 0.56%; the maximum value did not change.

A comparison of the empirical ranking computed for past and current versions of the integration frameworks analyzed
is shown in Figure 3. In the new empirical ranking, Mule ESB moved up one position to occupy the third place, whereas
Apache Camel dropped one position. Guaraná and Spring Integration retained the same position in the empirical ranking.
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FIGURE 3 Comparing the empirical rankings of past and current
versions analyzed

This change in the ranking is motivated by an increase in the total value of Apache Camel from 2.64 in its version 2.7 to
3.76 in its version 2.17, which was launched five years later.

7 CONCLUSION

An enterprise usually uses several applications, either local or in the cloud. These applications comprise the enterprise
software ecosystem and provide support for running business processes. The diversity of technologies, data models, and
programming languages makes the exchange of data and the reuse of functionality from one application to another diffi-
cult, especially because the applications that comprise the software ecosystem were not often designed with integration
in mind. Business processes are constantly being created and updated, frequently requiring collaboration between two or
more applications. An integration solution aims to enable two or more applications to collaborate by exchanging data and
sharing functionality. Integration frameworks are specialized software tools, which are built and adapted to provide sup-
port for the design and implementation of integration solutions. There are several open-source integration frameworks
available on the market, which are designed to operate in a business context to manipulate structured data; however,
increasingly, they are required to deal with unstructured and large volumes of data, thus requiring effort to adapt these
frameworks to work with unstructured and large volumes of data. Choosing the framework, which is the easiest to be
adapted, is not a trivial task.

In this article, we have analyzed the current stable versions of Apache Camel, Spring Integration, Mule ESB, and
Guaraná, all of which are open-source integration frameworks. We followed a methodology to compute their maintain-
ability metrics and rank them according to maintainability. The data obtained for the metrics in the last version of each
framework were compared with a previous study, which allowed us to evaluate the analyzed integration frameworks dur-
ing the five years of their evolution with respect to their maintenance. In this article, our sole purpose was to analyze the
maintainability of these integration frameworks and to compare them; we did not intend to present a decision method
with which to choose the best integration framework because this decision involves analyzing a variety of other factors,
in addition to maintainability, such as documentation, training courses, technical support, and the set of adapters, related
to the integration framework.

It is noticeable that every framework grew in size, and we saw the number of differences reflected in the number of
lines of code, the number of packages, the number of classes, the number of interfaces, and the number of methods and
attributes. Consequently, other metrics were also affected. Regarding coupling, some metrics, such as coupling intensity,
increased in every framework, which indicates that the methods in every framework were more dependent on other
methods. This is not necessarily negative because it could represent an improvement in method reuse. McCabe cyclomatic
complexity did not decrease to a recommended level in Apache Camel, Spring Integration, or Mule ESB. In the best cases,
it remained at the same level; however, in the worst cases, it was higher across the versions. Even if Guaraná increased
its complexity, it was near to the recommended value. Our study shows that the development of newer versions of these
frameworks is not concerned enough with improving maintainability; thus, more time may be required to understand the
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functionality of a framework and adapt it to a specific context. Inheritance metrics, such as the depth of the inheritance
tree and the number of overridden methods, had similar results concerning the maximum values for all frameworks,
which changed proportionally to their size. For the depth of inheritance, Guaraná was the integration framework with
the smallest value, in turn, implicating its compact size, making it easier to understand its functionality and be adapted
to a specific context. Regarding the number of children classes of a class, Apache Camel had the highest value, followed
by Mule ESB and Spring Integration with 812, 588, and 229, respectively. Guaraná was the framework with the smallest
value for this metric, that is, 15. It is possible to observe that the metrics in Spring Integration increased more, in terms
of percentage when considering the total values, than in the other integration frameworks. This result can be credited to
the rapid growth of this integration framework, moving quickly from versions 2.0 to 4.3.

The new empirical ranks computed by ourselves in this review of the current versions of Apache Camel, Spring Inte-
gration, Mule ESB, and Guaraná reflect how these frameworks have evolved over five years. These ranks differ from
the original ones, which reflects how each framework has become more concerned about maintenance. In the new
empirical ranking, Mule ESB moved up one position to third place, whereas Apache Camel dropped one position.
Bergmann-Hommel's test for the total values regarding each pair of proposals ranks the four integration frameworks at
the same level. However, when analyzing the mean values computed for the metrics, Bergmann-Hommel's test ranks
Guaraná in first place, and Spring Integration, Mule ESB, and Apache Camel in equal second place. In the future, we plan
to include in our study other open-source integration frameworks that were not considered herein and in the original
article, which proposed the methodology. We also plan to compute the maintainability metrics for all intermediate ver-
sions during this period of five years to track the evolution of individual metrics across the versions and possibly identify
correlations between project improvement decisions and their actual reflection on source code maintainability.
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