
A Proposal to Detect Errors in Enterprise
Application Integration Solutions⋆

Rafael Z. Frantz1, Rafael Corchuelo2, and Carlos Molina-Jiménez3

1 UNIJUÍ University, Department of Technology
Rua do Comércio, 3000, Ijuí, 98700-000, RS, Brazil

rzfrantz@unijui.edu.br

2 Universidad de Sevilla, ETSI Informática
Avda. de la Reina Mercedes, s/n, Sevilla 41012, Spain

corchu@us.es

3 Newcastle University, School of Computing Science
Newcastle upon Tyne, NE1 7RU, United Kingdom

carlos.molina@ncl.ac.uk

Abstract. Enterprise Application Integration (EAI) solutions comprise
a set of specific-purpose processes that implement exogenous message
workflows. The goal is to keep a number of applications’ data in syn-
chrony or to develop new functionality on top of them. Such solutions
are prone to errors because they are highly distributed and involve appli-
cations that were not usually designed with integration concerns in mind.
This has motivated many authors to work on provisioning EAI solutions
with fault-tolerance capabilities. In this article we analyse EAI solutions
from two orthogonal perspectives: viewpoint (orchestration versus chore-
ography) and execution model (process- versus task-based model). A
review of the literature shows that current proposals are bound to a
specific viewpoint or execution model or have important limitations. In
this article, we report on an error monitor that can be used to provision
EAI solutions with fault-tolerance capabilities. Our theoretical analysis
proves that it is computationally tractable, and our experimental results
prove that it is efficient enough to be used in situations in which the
workload is very high.
Key words: Enterprise Application Integration, Fault-Tolerance, Error
Monitoring, Error Detection.

1 Introduction

The computer infrastructure of a typical today’s enterprise can be seen as a
software ecosystem that involves several complementary applications purchased

⋆ Complementary material for this article is available at the following Internet site:
http://www.tdg-seville.info/rzfrantz/JSS-2010. This material includes an implemen-
tation of the system, source code, documentation, and screen casts.

1

mailto:rzfrantz@unijui.edu.br
mailto:corchu@us.es
mailto:carlos.molina@ncl.ac.uk
http://www.tdg-seville.info/rzfrantz/JSS-2010
Rafael Z. Frantz
Rectangle

Rafael Z. Frantz
Rectangle

Rafael Z. Frantz
Typewriter
Published in the International Journal of Systems and SoftwareVolume 85, Issue 3, March 2012, Pages 480–497The final publication is available at:http://dx.doi.org/10.1016/j.jss.2011.10.048

App3 App2

Prc3 Prc2
P5 P7 P3 P4

App1

API Prc1
P1

P2

Solution1

Solution2

App4

P6

Communication Channel

Entry Port

Exit Port
Application

Process

Figure 1. Sample integration solutions.

from different providers or built at home [26]. A recurrent challenge is to make
these applications inter-operate with each other to keep their data synchronised
or to create a new piece of functionality [14, 15]. This problem is known as
Enterprise Application Integration (EAI).

A typical EAI solution consists of one or more processes that interact with
each other and with the existing applications by means of ports that read/write
messages from/to communication channels. Roughly speaking, they implement
an exogenous workflow in which messages are read from a subset of applications,
routed through the processes, which may transform them, and the results are
written to another subset of applications. Ports abstract away from the details
of a specific communication mechanism, which may range from an RPC-based
protocol over HTTP to a document-based protocol implemented on a database
management system. Processes build on tasks to filter, enrich, split, aggregate,
route or transform messages, to name a few [14, 15]. It is common that solutions
share processes, which makes them overlap or even include others. Figure §1
shows two solutions that we shall use throughout the article to illustrate our
proposal. In this example, there are two overlapping solutions, namely: Solu-
tion1, which integrates applications App1 and App2 by means of processes Prc1
and Prc2, and Solution2, which integrates applications App3, App4 and App2 by
means of processes Prc3 and Prc2. Note that process Prc2 is shared by both
solutions.

EAI solutions can be characterised from several perspectives. In this article,
we focus on viewpoint and execution model.

By viewpoint, we refer to whether a solution is specified an orchestration or a
choreography. It is an orchestration if there is a single process that co-ordinates
every exchange of messages [29]. This process plays the role of a centralised point

2

of control that can consequently have an accurate global view of the current
state of execution. This is a valuable piece of information that can be used, for
instance, to identify the applications and processes that are involved in an error.
Contrarily, an EAI solution is a choreography if there is not a centralised point
of control, i.e., applications and processes interact in a peer-to-peer fashion; this
consequently implies that no process can have an accurate global view of the
execution [29]. Currently, WS-BPEL [28] and WS-CDL [31] are the de facto
standards to specify orchestrations and choreographies, respectively.

Regarding the execution model, it is worth mentioning that EAI solutions
must be deployed to a run time system that must provide an execution engine.
Depending on the granularity of execution, we distinguish between the process-
and the task-based execution models. In the process-based model, the engine
controls process instances as a whole, i.e., there is no means that it can interact
with the internal tasks; contrarily, in the task-based model, the engine may con-
trol both process instances and their internal tasks. The implication is that the
process-based execution model requires a mechanism to gather messages, corre-
late them, and decide when a new process instance can be started; furthermore,
each process instance requires a thread to be allocated exclusively, which may
have a negative impact on performance in cases in which a process instance sends
a request and has to wait for a long time before it gets the answer (for instance,
think of a request that requires the intervention of a person or a configuration
that assigns low priorities to request that come from integration solutions [13]).
Since the task-based execution model deals with the tasks inside a process in-
stance, it can allocate threads more efficiently; in other words, no thread shall
be idle as long as there is a task ready to be executed, independently from the
process to which this task belongs.

EAI solutions are inherently distributed; they are thus vulnerable to a variety
of errors due to which they may behave abnormally. Errors are due to faults,
which can be either permanent, e.g., due a software defect, or transient, e.g.,
due to a resource that is temporarily unavailable. Errors that are not dealt with
properly are perceived as failures by end users [2, 6]. Fault-tolerance proposals
aim to help keep systems delivering their functionality in spite of faults. Typi-
cally, they can be modelled as a pipeline that goes through the following stages:
event reporting, error monitoring, error diagnosing, and error recovering. The
event reporting stage deals with reporting whether a port was able to handle a
message or not. In the error monitoring stage, events are stored and analysed
to find correlations that shall later be checked for validity. When an error is de-
tected, a notification is created and sent to the error diagnosing stage, whose aim
is to identify the cause of the error, the messages and the parties involved. The
error recovering stage attempts to execute recovery actions to help the system
compensate for the existence of faults and the occurrence of errors.

In the literature there are many proposals to deal with fault tolerance [1,
3, 4, 7–10, 13, 21–25, 33–35]. We have analysed them from the viewpoint and
execution model perspectives. Our conclusion is that most of them aim at the
orchestration viewpoint and the process-based execution model, since they focus

3

Event

Handler

Monitor

events updates reads

Meta-information

reads

Work Graph

reads

Error

Detector

Work Queue

takes
updates

notifications

updates

Figure 2. Abstract view of the monitor.

on Web Services, WS-BPEL, and traditional workflow systems. There are a few
exceptions that take the choreography viewpoint and/or the task-based execu-
tion model into account, but they have important limitations that make them
difficult to use in a general context. The main limitation of [7] is that processes
can have only one input and messages cannot be split or aggregated inside the
workflow; these are common tasks in EAI solutions. In proposals [3, 9], although
the authors suggest that it can be applied to the choreography viewpoint, no im-
plementation or evaluation is provided, which makes them difficult to assess and
apply in practice. Finally, the limitation of proposal [21] is that it is theoretical
and transforming it into a practical tool that deals with distribution problems
in a software ecosystem does not seem straightforward.

In this article, we focus on the error monitoring stage. Our proposal is
sketched in Figure §2. It relies on a so-called Meta-Information database that
stores meta-information about the solutions being monitored. (Note that this
database is external to the monitor since it is intended to be shared with other
stages of the fault-tolerance pipeline.) The monitor itself is composed of two sub-
systems and two databases, namely: Event Handler, Error Detector, Work Graph
and Work Queue. The Event Handler uses inbound events to build a graph struc-
ture that is stored in the Work Graph database; this graph keeps track of the
messages processes exchange and their relationships. The Error Detector is re-
sponsible for analysing this graph to find and verify correlations. The Work Queue
database is used as an intermediate buffer that allows the Event Handler and the
Error Detector to work in total asynchrony. Every time the Event Handler pro-
cesses an event, it stores a piece of information in the Work Queue database; this
information instructs the Error Detector to analyse the Work Graph database at a
specific point in time in order to find the correlation in which a specific message
is involved. To validate correlations, the Error Detector builds on both built-in
and user-defined rules; the former allows to detect communications or deadline

4

errors; the latter allows to detect structural errors that depend on the seman-
tics of a given process or solution, i.e., correlations that lack messages or have
more messages than expected. The only assumption we make is that the clock
resolution of the monitor is enough to distinguish between every two messages
that are read or written in a row; in other words, we can distinguish between
multiple events that involve the same message at the same port. Note that this
is not a shortcoming in practice since current clock resolutions are in the order
of nanoseconds, whereas reading or writing to a port usually consumes much
more time.

Our main contribution is that our proposal is not bound with a particular
viewpoint and/or execution model; neither imposes it any practical limitations.
We have analysed our proposal from a theoretical point of view, and have proved
that the algorithms on which it relies are computationally tractable; furthermore,
we have carried out a series of experiments that prove that it performs quite well
under heavy workloads.

The rest of the article is structured as follows: Section §2, discusses the related
work; the Meta-Information database shared by all of the stages of the fault-
tolerance pipeline is presented in Section §3; Section §4, reports on the Event
Handler; Section §5, reports on the Error Detector; the time complexity analysis
of our algorithms is presented in Section §6; the experiments are introduced in
Section §7; and, finally, we draw our conclusions in Section §8.

2 Related Work

The literature distinguishes between static and run-time fault tolerance pro-
posals. As discussed in [32], static analysis is concerned with the detection of
logical errors in the specification of a system; for instance, race condition errors
that emerge from overlooking data dependencies. In this proposal, the authors
use a directed acyclic graph to specify the synchronisation constraints imposed
on the execution of individual tasks of business processes; they then convert the
graph into a coloured Petri net and analyse it to detect potential synchronisation
errors. In contrast, we assume that the EAI solutions with which we deal are
logically consistent; we then focus on errors that emerge during their execution
due, for instance, to delayed or missing messages. The work on static analysis is
orthogonal to ours, which is the reason why we do not report on these proposals.

We have realised that the distinction between the error detection and the
error recovery stages is blurred in many proposals. This is common in cases in
which the complexity of the error detection algorithm is trivial or abstracted
away from the user’s view by means of another mechanism. In our proposal, we
make a clear distinction between error detection and error recovery.

In some cases, the presence of an error can be determined from the analy-
sis of a single event, e.g., the widely-used try-catch mechanism falls within this
category [11]. These cases fall outside the scope of our research. We are in-
terested in cases in which it is necessary to process large traces of events that
are related to each other. Traces like these are prone to propagate faulty data.

5

Representative examples include discrete event-based systems, e.g., workflow
systems [13], automatic controllers used in manufacturing processes [21], and
computer-based controllers used to automatically operate aircrafts, train traffic
crossing and medical devices [20]. Error detection is a challenging problem in
this context, in particular, when the number of events notified to the monitor is
large, e.g., in the order of hundreds of events per second.

To place our proposal in context, it is worth clarifying that our solution
builds on a centralised error monitor that can receive events from several EAI
solutions concurrently. We are aware that some authors have pointed out that
centralised error detectors are problematic regarding scalability [27]. Alterna-
tively, they favour decentralised error detectors which are composed of two or
more local error detectors that gather and process their own local information
and collaborate to detect global errors. A similar idea to handle scalability is also
suggested in [17–19]. Our reservations about decentralised error detectors is the
complexity involved in the co-ordination and synchronisation of their activities,
and the difficulty to deal with open systems in which processes and solutions
are not pre-defined, but may be created and destroyed as time goes by; we leave
this alternative out of our discussion on the basis that centralised error detectors
seem to satisfy our requirements well even in situations in which the workload
is high, cf. Section §7.

A distinctive feature of our research is that we do not only suggest an er-
ror detector, but we also provide a rule-based language to express the expected
behaviours of processes and solutions. The rules provide flexibility to our er-
ror detection mechanism. Finally, it is worth clarifying that the proposals that
provide a rule-based language consider that the messages or events in the log
are already correlated, presumably because they aim only at orchestrated EAI
solutions. Since our proposal aims to be independent from the viewpoint and the
execution model, our monitor accounts for the arrival of uncorrelated messages
and then finds their correlations. A salient feature of our proposal is that it em-
phasises the relevance of evaluating the error detection algorithm, from several
dimensions. This is an issue frequently overlooked in current literature.

There are several proposals in the literature on fault-tolerance aiming to help
keep systems delivering their functionality in spite of errors. Our conclusion is
that most of them aim at the orchestration viewpoint and the process-based
execution model, since they focus on Web Services, WS-BPEL, and traditional
workflow systems. The few proposals that cover choreography and the task-
based execution model have important limitations, which prevent them from
being used in a general context. For example, in [7] processes can have only
one input and messages cannot be split or aggregated inside the workflow; in
[3, 9], no implementation or evaluation is provided, which makes it difficult
to assess and apply; in practice [21] addresses only a single class of errors. Our
proposal tackles the problem of endowing EAI solutions, independently from the
viewpoint and execution model, with a fault-tolerance mechanism, that does not
impose in practice any limitation. Our failure semantics includes communication,
structural and deadline errors.

6

Proposal Orchestration Choreography Process-based Task-based

Zeng and others [35] + - + -

Liu and others [24] + - + -

Erradi and others [10] + - + -

Liu and others [23] + - + -

Chiu and others [8] + - + -

Hagen and Alonso [13] + - + -

Liu and others [25] + - + -

Alonso and others [1] + - + -

Chen and others [7] + +† + +†
Ermagan and others [9] + +† + -

Baresi and others [3] + +† + -

Li and others [22] + - + -

Borrego and others [4] + - + -

Li and others [21] - +† - +†
Yan and Dague [33] + - + -

Yan and others [34] + - + -
† With important limitations.

Table 1. Summary of the related work.

In the following, we report on more details about the proposals we have
summarised in Table §1.

Fault tolerance in business processes and web service composition has been
addressed by several authors, but mainly with a focus on error recovery. For
instance, in [35] the authors realise that service compositions are vulnerable
to failures and produce different exceptions; they then show how so-called ECA
rules can be used to handle them at run time. The focus of this proposal is on
error recovery. Error detection is mentioned in passing only, presumably, because
their context does not require sophisticated error detection algorithms. A similar
discussion on exception handling for WS-BPEL can be found in [24], which is
complementary to [35]. In [10], the authors propose a policy-driven middleware
solution to handle exceptions in web service compositions. With this article, we
share the view that communication operations are the most error-prone. Relevant
to us is also the failure semantics, which covers the communication failure types
addressed in our proposal. An algorithm for the execution of WS-BPEL processes
with relaxed transactions is presented in [23]. In [24] the authors enhance their
approach with a rule-based language for defining specific-purpose error recovery

7

rules. It is worth emphasising that papers [10, 23, 24, 35] focus on orchestrated
applications.

The research conducted by the workflow community on fault-tolerance is also
related to our proposal. An abstract model for workflows with fault-tolerance fea-
tures is discussed in [8]; this article also provides a good survey on fault-tolerance
approaches. An algorithm for handling faults automatically in applications inte-
grated by means of workflow management systems, which is amenable to com-
pensation actions or to the two-phase commit protocol, is suggested in [13]. Our
reservation about this idea is that it does not isolate fault-tolerance mechanisms
from business logic. In addition, it is suitable only for orchestrated applications
that are based on the process-based execution model. Error recovery in work-
flow applications in which compensation actions are difficult or infeasible to
implement is discussed in [25]. The authors assume that there is a centralised
workflow engine, which suggests that they focus on orchestrated solutions. In
[1], the authors discuss error recovery in orchestrated workflow applications that
build on the process-based execution model. An architecture to implement fault-
tolerance based on ad-hoc workflows is discussed in [7]; runtime error detection
is central in this proposal. The architecture relies on a web server as a front-
end, an application server, a database server, and a logging system. Like in our
proposal, error detection is achieved by means of the analysis of message traces.
The reservation we have about this approach is that processes can have only
one input and messages cannot be split or aggregated inside the workflow; how-
ever, at least in theory, it is suitable for both orchestrated and choreographed
processes; it supports both the process- and the task-based execution model.

An architecture for fault-tolerant workflows, based on finite state machines
that recognise valid sequence of messages, is discussed in [9]. Error recovery
actions are triggered when a message is found to be invalid, or the execution time
of the state machine goes beyond a pre-defined deadline. This proposal is suitable
for both orchestrated and choreographed processes; however it aims at process-
based executions. In [3], the authors discuss some preliminary ideas for building
an error monitor that can be used for both orchestrated and choreographed
processes. No implementation or evaluation is provided, which makes it difficult
to assess and apply in practice.

An approach for runtime detection of errors that emerge from potential cor-
rupted data and faulty web services in WS-BPEL orchestrated processes is dis-
cussed in [22]. The central idea is to regard WS-BPEL processes as discrete event
systems and map them onto coloured Petri nets. The Petri net model is then in-
tegrated into additional WS-BPEL processes that are triggered when exceptions
are thrown. Although the authors believe that this approach can be extended
to handle choreographed processes, they do not discuss how this can be done.
In [4], the authors study runtime error detection in business processes specified
in BPMN and discuss a framework that includes a diagnosis layer that runs in
parallel and independently from the main BPMN process. The authors consider
that a BPMN process is composed of several activities that might deliver in-
correct output, for instance, due to incorrect inputs provided by humans. The

8

correct functionality of each activity is specified by means of compliance rules
that are later mapped onto constraint satisfaction problems; errors are detected
by means of a constraint solver. The diagnosis layer is conceptually similar to the
monitor in our proposal. This proposal seems to focus on functional errors (also
called business errors); in contrast, we focus on non-functional errors related to
the computer infrastructure. A limitation of this proposal is that, in its current
state, it can handle only a single instance of a BPMN process.

Error detection has also been intensively studied by designers of controllers
that automate the operation of manufacturing plants, which can also be viewed
as discrete event systems. These controllers need to process events that arrive
from different sensors. Consequently, to determine whether the plant is operating
correctly, the controller needs to perform intensive event correlation. In [21], the
authors explain how one can detect errors in manufacturing plants that can be
specified and controlled by means of Petri nets. They focus on place faults (for
instance, tokens that are not removed after firing a transition) caused by sensor
failures and bit flips. To provide the controller with error detection capabilities
they embed it into a larger controller that provides additional redundant places,
tokens and transitions that are used to specify correctness invariants. Errors
are detected by linear parity checks at run time. The similarity between this
proposal and ours lies in the use of event correlation for error detection. This
proposal aims at choreographed applications. Our criticism is that it addresses
only a single class of errors, namely, place errors. Neither is it clear how these
ideas can be ported to business processes that are not modelled as Petri nets and
involve a large amount of events and process instances executing simultaneously.

A core feature of our proposal is that we assume that all of the events pro-
duced by an EAI solution are notified (in other words, observable to the error
detector). Several authors have studied error detection in discrete event systems
that are considered to be in failure when they do not produce one or more ex-
pected events, cf. [30]. The challenge here is to analyse the observable events to
infer what unobservable event or events drove the system into an abnormal state.
This kind of systems is outside the scope of our current work. In [33, 34], the au-
thors suggest to re-use the body of knowledge about error detection in industrial
discrete event systems. They discuss runtime error detection of orchestrated web
services. A salient feature of this proposal is that, similarly to [30], the authors
assume that failure events are not observable. The granularity of execution in
this approach is at the process level. Our criticism against this proposal is that
it focuses only on orchestrated web services and the process-based execution
model.

3 The Meta-Information database

In this section, we report on the meta-data we use to represent the infor-
mation our proposal requires about the artefacts it monitors. This meta-data
are stored in the Meta-Information database. We do not provide many details on
how this database is managed since this is a typical information system with

9

EXIT
ENTRY

<<enumeration>>
Direction

value : String

<<datatype>>
Name

name : Name

Rule

max : Integer
min : Integer

Atom

Process

direction : Direction
name : Name

Port

ports
2..*

{unique}

port
1

atoms
2..*

{unique}

Solution

<<utility>>
Meta-Information

timeOut : Integer
name : Name

<<abstract>>
Artefact

rules
0..*

{unique}

{disjoint, complete}

solutions
0..*

{unique}
processes

1..*

{unique}

Figure 3. Model of the Meta-Information database.

V

Atoms regarding entry ports Atoms regarding exit ports

P [n ..m] & P [n ..m] ... P [n ..m]1 2 i j1 2 P [n ..m] & P [n ..m] ... P [n ..m]i+1 i+2 i+qj+1 j+2 i+r1 2 k k+1 k+2 k+lRule =

Figure 4. Textual syntax for rules.

an interface in which administrators can register, unregister, or list informa-
tion about the solutions to be monitored. Instead, we focus on the meta-data it
stores, whose model is presented in Figure §3, and provide a few hints on our
implementation.

Note that we use term artefact to refer to both solutions and processes. A
solution must be composed of at least one process, and every process must have at
least two ports with different directions (Direction::ENTRY or Direction::EXIT).
Every artefact, port, or rule has a name that identifies it uniquely. In addition,
artefacts have a time out, which denotes the maximum time they may require
to process a set of correlated messages, and a set of rules, which help verify the
correlations in which they are involved.

Rules are very important in our proposal. Figure §4 presents the syntax we
use to write them textually. They are composed of two groups of atoms that are
separated by means of an arrow. The left hand side refers to entry ports and the
right hand side to exit ports. Each atom is of the following form: P[min..max],
where P refers to a port name, and min and max are natural numbers that
represent the minimum and the maximum number of messages that are allowed
at port P in a given correlation (min ≤ max). For the sake of brevity, we use the
common syntactic sugar depicted in Figure §5.

10

P[] = P[1 .. Integer.MAX_VALUE]+

P[] = P[0 .. Integer.MAX_VALUE]*

P[] = P[0..1]?

P[] = P[n..n]n

a)

b)

c)

d)

Figure 5. Syntactic sugar for rules.

R5 = P1[1] V P4[*]

Solution1

Solution2

P5[1] & P6[1] P4[+] VR6 =

R1 = P1[1] P2[?] V

R2 = P3[1] P4[+] V

P5[1] & P6[1] P7[2..4] VR3 =

Prc1

Prc2

Prc3

P5[1] & P6[0] P7[1] VR4 =

Figure 6. Sample rules.

Figure §6 presents a few rules for the artefacts in the sample solutions we
introduced in Figure §1. For instance, Rule R1 is associated with process Prc1
and involves entry port P1 and exit port P2; it states that it validates a given
correlation as long as there is one message at port P1 and zero or one correlated
message at port P2. Similarly, Rule R6 is associated with Solution2; it states that
it validates a given correlation as long as there is one message at port P5, one
correlated message at port P6, and one or more correlated messages at port P4.

Regarding our implementation, the Meta-Information database is a simple
set of data, and none of our queries involve joining information from other
databases. In our prototype we use a hash function to index the entries of the
Meta-Information database, and we have implemented maps from port names
onto processes, processes onto solutions, and so on. The space required by this
design is proportional to the number of artefacts, ports, and rules. As a conclu-
sion, it is possible to retrieve information from the Meta-Information database
in O(1) time. The Work Queue database relies on a Brodal’s priority queue [5],
which allows to insert entries or retrieve the next to be analysed in O(1) time,
whereas removing an entry takes O(log n) time, where n denotes the size of the
queue.

4 The Event Handler

Figure §7 depicts the model we have devised for the Event Handler. Roughly
speaking, it handles events that inform about a port reading or writing a message,
either successfully or unsuccessfully. The events are used to build a graph that
is maintained incrementally in the Work Graph database. This graph records
information about the messages being exchanged in an EAI solution and their
parent-child relationships, i.e., which messages originate from which ones. In

11

WE
RE
OK

<<enumeration>>
Status

handle(in e : Event) : void

<<utility>>
EventHandler

<<abstract>>
Event

TransferShipment

{disjoint, complete}

status : Status
messageID : Identifier
portName : Name
instant : Instant

Binding

sources
0..*

{unique}

target
1

Graph

nodes
1..*

{unique}

Edge

edges
0..*

{unique}

parent
1

child

1

<<utility>>
Meta-Information

processes

reads

Reception

Correlation

value : String

<<datatype>>
Identifier

value : Integer

<<datatype>>
Instant

updates

{disjoint, complete}

<<singleton>>
WorkGraph

<<singleton>>
WorkQueue

bindings

0..*

updates

Figure 7. Model of the Event Handler.

addition, it updates the Work Queue database in order to schedule the activation
of Error Detector appropriately.

An event can be of type Reception, which happens at ports that read data
from an application (either successfully or unsuccessfully) and other ports that
fail to read data at all, Shipment, which occurs when a port writes information
(either successfully or unsuccessfully), and Transfer, which happens when a port
succeeds to read data that was written previously by another port. Every event
has a target binding and zero, one, or more source bindings. We use this term
to refer to the data involved in an event, namely: the instant when the event
happened, the name of the port, the identifier of the message read or written,
and a status, which can be either Status::OK to mean that no problem was
detected, Status::RE to mean that there was a reading error, or Status::WE to
mean that there was a writing error. Recall that the only assumption we make is
that the clock resolution of the monitor is enough to distinguish between every
two messages that are read or written in a row. Thus, from now on, we assume
that no confusion regarding the same message being read from or written to the
same port may happen.

The Event Handler provides only one method that handles all types of events.
The algorithm for this method is presented in Figure §8. It gets an event e as
input and proceeds as follows: it first finds the process to which the event refers
and the solutions to which this process belongs. Then, it computes the minimum

12

1: to handle(in e: Event) do

2: p = find the process to which a port called e.target .portName belongs

3: in the Meta-Information database

4: s = find all solutions to which p belongs

5: in the Meta-Information database

6: notBefore = e.target .instant + maximum time out of artefacts in s ∪ {p}

7: g = WorkArea.getInstance()

8: q = WorkQueue.getInstance()

9: add e.target to g .nodes
10: add e.target with priority notBefore to q
11: for each binding b in e.sources do

12: r = new Edge(parent = b, child = e.target)
13: add r to g .edges
14: end for

15: end

Figure 8. Algorithm to handle events.

time at which the Error Detector should analyse the target binding, which is the
instant when the message in the target binding was read or written plus the
maximum time out involved; this is a safe deadline that guarantees that every
artefact should have enough time to process the corresponding correlation. Note
that the time we calculate is just a hint that must be interpreted as “the Error
Detector should not analyse that binding before this time”; obviously, the sooner
the binding is analysed after this time has passed, the better, but it is not a
real-time requirement. The algorithm then fetches both the Work Graph and the
Work Queue instances and adds the target binding to them both; then, it iterates
over the source bindings, if any, and adds then to the Work Graph together with
an edge to link them to the target binding.

Figure §9 illustrates a graph that results from executing the previous algo-
rithm on a series of bindings regarding the sample system in Figure §1. Ellipses
denote bindings and arrows denote edges that connect parent bindings to their
corresponding child bindings. For instance, n1 is the parent binding of n4, and
the latter is the parent of n6, which is in turn the parent of n8. Inside each
binding we represent the instant, the port name, the message id, and the status,
respectively. A snapshot of the Work Queue is also presented in this figure.

5 The Error Detector

The model of the Error Detector is presented in Figure §10, and the algorithm
to detect errors is presented in Figure §11.

The Error Detector executes a never-ending loop in which it fetches entries
from the Work Queue, finds the correlations in which the corresponding bind-

13

 59, P5, Q1, OK

n11

 64, P6, Q2, OK

n12

 25, P3, M2, OK

n6

 45, P4, M3, OK

n8

e5

 1, P1, M1, OK

n1

14, P2, M2, OK

n4

e1

e4

31, P3, X3, OK

n7

 6, P5, X1, OK

n2

 8, P6, X2, OK

n3

 21, P7, X3, OK

n5

e2

e3

e5

48, P1, Z1, OK

n9

53, P2, Z2, OK

n10

e7

e8

 67, P3, Z2, OK

n13

Work Graph

Work Queue

...n1

101

n2

107

n3

109

n4

115

n5

122

n6

126

Figure 9. Sample work graph.

verifyCorrelation(in c : Correlation) : void
findFailingRules(in c : Correlation, in a : Artefact) : Set<Name>
findSubCorrelation(in c : Correlation, in a : Artefact) : Correlation
findArtefactsInvolved(in c : Correlation) : Set<Artefact>
findCorrelation(in b : Binding) : Correlation
detectErrors() : void

<<utility>>
ErrorDetector

Graph

<<utility>>
Meta-Information

Correlation
artefactName : Name

Notification

updates

reads

creates

{disjoint, complete}

<<singleton>>
WorkGraph

remove(b : Binding) : void
findMin() : Binding

<<singleton>>
WorkQueue

reads

takes

correlation
1

Figure 10. Model of Error Detector.

ings are involved, and then verifies them. Recall that each binding in the Work
Queue is scheduled to be processed not before a given time; this implies that
this algorithm may need to block for some time in cases in which the earliest
binding is scheduled to be analysed after the current moment. After a correlation
is verified, its bindings are removed from the Work Queue, since analysing them
would not result in new correlations.

14

1: to detectErrors() do

2: q = WorkQueue.getInstance()

3: repeat

4: b = fetch minimum of q (waiting if necessary)

5: c = findCorrelation(b)

6: verifyCorrelation(c)

7: for each binding b in c.nodes do

8: remove b from q
9: end for

10: end repeat

11: end

Figure 11. Algorithm to detect errors.

In the following subsections, we report on the sub-algorithms on which the
Error Detector relies. In Section §5.1, we present our algorithm to find the cor-
relation in which a binding is involved; we then report on a number of ancillary
sub-algorithms, namely: an algorithm to find the artefacts that are involved in a
given correlation, cf. Section §5.2, an algorithm to find the sub-correlation that
corresponds to a given artefact, cf. Section §5.3; and an algorithm to find the
subset of sub-rules according to which a correlation is invalid, cf. Section §5.4; the
previous algorithms are used to implement the algorithm to verify a correlation,
which we present in Section §5.5.

5.1 Finding Correlations

A correlation is represented as a graph that has a single connected com-
ponent that represents a subset of messages that are correlated to each other,
cf. Figure §7 and [16].

The Error Detector provides a method called findCorrelation whose algorithm
is presented in Figure §12. It gets a binding as input and calculates the correlation
in which it is involved. The main loop navigates from the binding that is passed
as a parameter to all of the bindings that are reachable from it, either directly
or transitively, and to all of the bindings from which it can be reached, either
directly or transitively. In other words, it implements a breadth-first search to
calculate the expansion of a node in a graph [12].

For instance, if algorithm findCorrelation is invoked on bindings n1, n4, n6, or
n8 in Figure §9, it then would return the correlation in Figure §13.

5.2 Finding the Artefacts Involved in a Correlation

A correlation may involve several artefacts. This situation is very common
since typical EAI solutions involve several processes, some of which may be

15

1: to findCorrelation(in b: Binding): Correlation do

2: result = new Correlation(nodes = ∅, edges = ∅)
3: g = WorkArea.getInstance()

4: q = ∅
5: add b to q
6: whilst q <> ∅ do

7: d = take a binding from q
8: add d to result .nodes
9: cs = (children of d in g) \ result .nodes

10: add cs to q
11: for each c in cs do

12: h = new Edge(parent = d , child = c)

13: add h to result .edges
14: end for

15: ps = (parents of d in g) \ result .nodes
16: add ps to q
17: for each p in ps do

18: h = new Edge(parent = p, child = d)

19: add h to result .edges
20: end for

21: end whilst

22: return result
23: end

Figure 12. Algorithm to find correlation.

shared. This implies that an event reported from a port results in a binding that
actually involves several artefacts.

The Error Detector provides a method called findArtefactsInvolved whose al-
gorithm is presented in Figure §14. It gets a correlation as input and returns a
set of artefacts. The main loop of this method iterates over the set of bindings in
the correlation that is passed as a parameter. In each iteration, it firsts finds the
processes that own the ports from which the corresponding events were reported,
and the solutions in which they are involved. The loop simply adds all of these
artefacts to the result, and then returns the whole collection.

For instance, if we invoke method findArtefactsInvolved on the correlation
in Figure §13, the following artefacts involved would be returned: Solution1,
Solution2, Prc1, and Prc2, cf. Figure§16.

16

 25, P3, M2, OK

n6

 45, P4, M3, OK

n8

e5

 1, P1, M1, OK

n1

14, P2, M2, OK

n4

e1

e4

Figure 13. Sample correlation.

1: to findArtefactsInvolved(in c: Correlation): Set(Artefact) do

2: result = ∅
3: for each binding b in c.nodes do

4: p = find the process to which a port called b.portName belongs in

5: the Meta-Information database

6: s = find the solutions to which a process p belongs in

7: the Meta-Information database

8: add s ∪ {p} to result
9: end for

10: return result
11: end

Figure 14. Algorithm to find artefacts involved in a correlation.

5.3 Finding Sub-Correlations

By sub-correlation, we refer to a subset of a correlation in which the ports
involved belong to a given artefact. Note that there is not any structural dif-
ferences between correlations and sub-correlations: they both are represented as
graphs. In the sequel, we write (sub)correlation wherever we wish to empha-
sise that there is a single artefact from which all of the events represented in a
correlation were reported.

The Error Detector provides a method called findSubCorrelation whose algo-
rithm is presented in Figure §15. It gets a correlation and an artefact as input and
returns a (sub)correlation. The algorithm is straightforward: it first finds which
ports belong to the artefact, and then finds all of the bindings in the correlation
whose ports are in the previous set; to create the resulting sub-correlation we
just need to find the whole collection of edges that connect the previous bindings.

For instance, Figure §16 shows all of the sub-correlations we can find in the
correlation in Figure §13.

17

1: to findSubCorrelation(in c: Correlation, in a: Artefact): Correlation do

2: p = find all ports of artefact a in the Meta-Information database

3: b = find all bindings b in c.nodes such that binding b.portName
4: belongs to p.portName in the Meta-Information database

5: e = find all edges x such that {x .source, x .target} ⊆ b
6: return new Correlation(nodes = b, edges = e)

7: end

Figure 15. Algorithm to find sub-correlations.

Solution1

Solution2

Prc2

 25, P3, M2, OK

n6

 45, P4, M3, OK

n8

e5

Prc1

 1, P1, M1, OK

n1

14, P2, M2, OK

n4

e1

e4

Figure 16. Artefacts involved in a correlation.

5.4 Finding Failing Rules

A part of the verification of a (sub)correlation relies on a set of user-defined
rules. The Error Detector provides a method called findFailingRules that takes a
(sub)correlation and an artefact as input and returns a set of names that denote
the rules associated with the artefact according to which the correlation can be
considered invalid.

The algorithm to the findFailingRules method is presented in Figure §17. It
iterates through the collection of rules that are associated with a given artefact,
and then through their atoms. The algorithm basically counts the number of
bindings in the given (sub)correlation that correspond to events that were re-
ported from the ports to which each atom refers; if this count is not within the
limits that the atom specifies, then the corresponding rule does not validate the
correlation and can thus be added to the result of the algorithm.

Figures §18 and §19 illustrate the two situations in which a correlation can
be considered invalid due to a failing rule. The left side of the figures represent
the (sub)correlation being analysed, whereas the right side represent the times

18

1: to findFailingRules(in c: Correlation, in a: Artefact): Set(Name) do

2: result = ∅
3: for each rule r in a.rules do

4: for each atom t in r .atoms do

5: n = count bindings b in c.nodes such that b.portName == t .port .name
6: if n <= t .min or n >= t .max then

7: add r .name to result
8: end if

9: end for

10: end for

11: return result
12: end

Figure 17. Algorithm to find failing rules.

n1 n4 n6 n8 n20

not before

nowdeadline

 1, P1, M1, OK

n1

 25, P3, M2, OK

n6

14, P2, M2, OK

n4

 45, P4, M3, OK

n8

75, P2, M2, OK

n20

Solution1

e1

e4

e5

e17

Figure 18. Correlation which causes a rule to fail due to excess of bindings.

at which events were reported; now represents the instant at which the analysis
is performed, and deadline the maximum time at which a correlation is expected
to be produced (see more on this below); not before represents the time not
before which the initial binding in a correlation must be analysed. Consider, for
instance, rule R1 for artefact Solution1, which was introduced in Figure §6; it
states that it is expected zero or one correlated bindings at port P2 for each
binding at port P1. Note that in the (sub)correlation in Figure §18 there are two
correlated bindings at port P2, namely n4 and n20, which causes rule R1 to fail
due to excess of bindings. Contrarily, in Figure §19 the (sub)correlation contains
less bindings than expected.

19

n1 n4 n6

not before

nowdeadline

 1, P1, M1, OK

n1

 25, P3, M2, OK

n6

14, P2, M2, OK

n4

Solution1

e1

e4

Figure 19. Sub-correlation which causes a rule to fail due to lack of bindings.

1: to verifyCorrelation(in c: Correlation) do

2: artefacts = findArtefactsInvolved(c)

3: for each artefact a in artefacts do

4: s = findSubCorrelation(c,a)

5: status = for all binding b in s, b.status == Status :: OK
6: earliestInstant = minimum of s.nodes.instant
7: latestInstant = maximum of s.nodes.instant
8: deadline = earliestInstant + a.timeOut
9: isValid = (latestInstant <= deadline) and

10: (status == true) and

11: findFailingRules(s,a) == ∅
12: if not isValid then

13: n = new Notification(artefactName = a.name, correlation = c)

14: send n to the next fault-tolerance stage

15: end if

16: end for

17: end

Figure 20. Algorithm to verify correlations.

5.5 Verifying Correlations

Verifying (sub)correlations is the central task of the Error Detector since this
is the task that actually detects errors. A (sub)correlation can be either valid
or invalid. It is valid if all of its bindings have status Status::OK, no rule fails
to validate it, and all of the messages to which it refers where read or written
within a given deadline; otherwise, it is invalid. The deadline refers to the time
when the first message in a correlation was read or written plus the time out of
the corresponding artefact. Recall that each artefact is associated with a time

20

Notation Meaning

s Maximum number of solutions to which a process can belong.

u Maximum number of source bindings in an event.

b Maximum number of bindings in a correlation.

c Maximum number of child bindings of a given binding.

p Maximum number of parent bindings of a given binding.

r Maximum number of rules associated with an artefact.

t Maximum number of atoms in a rule.

a Maximum number of artefacts involved in a correlation.

n Number of entries in the Work Queue.

Table 2. Notation used in our complexity analysis.

out that represents the maximum time it is expected to produce a correlation,
cf. Figure §3.

The Error Detector provides a method called verifyCorrelation to perform this
task. The algorithm to this method is presented in Figure §20. It takes a corre-
lation as input, but does not return any results. The algorithm first calculates
the artefacts involved in the correlation and iterates through them to find their
corresponding (sub)correlations; each (sub)correlation is checked for validity ac-
cording to the definition in the previous paragraph. (Sub)correlations that are
found invalid are transformed into notifications that are sent to the following
fault-tolerance stage so that they can be diagnosed.

6 Complexity Analysis

In this section we analyse our proposal and characterise its complexity. It can
deal with an arbitrary number of processes and solutions, but we assume that
there is a sensible upper bound; this does not amount to loss of generality since
the number of artefacts of which a company’s software ecosystem is composed
must be necessarily finite. Table §2 summarises the notation we use in this
section.

The analysis proves that our proposal is computationally tractable since han-
dling events runs in O(1) time and detecting errors runs in O(log n) time for
a given ecosystem. This makes the proposal appealing from a theoretical point
of view since it is logarithmic on the size of the Work Queue database, which
is expected not to be monotonically increasing or decreasing, but to grow and
shrink as time goes by. Our experiments support this conjecture, cf. Section §7.

21

6.1 Handling Events

We first report on the complexity of the algorithm to handle events, and
prove that it is computationally tractable because it runs in constant time for a
given ecosystem.

Theorem 1. Algorithm handle in Figure §8 terminates in O(s + u) time.

Proof. Handling an event involves finding a process by means of a port name
and the solutions to which this process belongs. Finding this information can
be accomplished in O(1) time in our implementation, cf. Section §3 (lines §2
and §4). The computation of the maximum time out can be easily accomplished
in O(s) time (line §6). Getting the Work Graph and the Work Queue instances
can be accomplished in O(1) time (lines §7 and §8). Lines §9 and §10 add the
target binding to the Work Graph and to the Work Queue databases, respectively,
which can also be accomplished in O(1) time. The loop in lines §11–§14 iterates
u times at most. Lines §12 and §13 can be implemented in O(1) time since they
just create an object and add it to a set. As a conclusion, Algorithm handle
terminates in O(s + u) time.

Corollary 1. In a given ecosystem, there must be an upper bound to s + u
because the number of solutions in a company’s ecosystem must be finite, which
in turn implies that there must also be an upper bound to the number of source
bindings in an event. As a conclusion algorithm handle terminates in O(1) time
in a given ecosystem.

6.2 Detecting Errors

We now analyse the complexity of the algorithm to detect errors. Note that
this algorithm does not terminate, since it is a never ending loop. In this case,
the complexity refers to the complexity of an iteration of this loop.

Theorem 2. Every iteration of Algorithm detectErrors in Figure §11 terminates
in O(b (1 + c + p + a + log n) + a r t) time.

Proof. In each iteration, the algorithm first fetches an entry from the Work
Queue database, which is accomplished in O(1) time in our implementation,
cf. Section §3 (Line §4). According to Theorems §3 and §4 below, lines §5 and §6
run in O(b (c+p)) and O(b+a (b+r t)) time, respectively. The loop in lines §7–
§9 iterates b times at most; in each iteration, Line §8 removes a binding from the
Work Queue database, which is accomplished in O(log n) time, cf. Section §3. As
a conclusion, each iteration of Algorithm detectErrors terminates in O(1+ b (c+
p) + b + a (b + r t) + b log n) = O(b (1 + c + p + a + log n) + a r t)) time.

Corollary 2. In a given ecosystem, b, c, p, a, r , and t are constants because
there is an upper limit to the number of artefacts a company runs. As a conclu-
sion, each iteration of Algorithm detectErrors terminates in O(log n) time in a
given ecosystem.

22

Next, we analyse the complexity of Algorithm findCorrelation.

Theorem 3. Algorithm findCorrelation in Figure §12 terminates in O(b (c+p))
time.

Proof. The loop in lines §6–§21 iterates b times at most. In each iteration, the
algorithm executes two inner loops. The first one, iterates c times at most and
the operations inside terminate in O(1) time since they just involve creating
objects and adding them to a set. Similarly, the second one iterates p times at
most and the operations inside also terminate in O(1) time. As a conclusion,
Algorithm findCorrelation terminates in O(b (c + p)) time.

Now, we analyse the complexity of Algorithm verifyCorrelation.

Theorem 4. Algorithm verifyCorrelation in Figure §20 terminates in O(b +
a (b + r t)) time.

Proof. The algorithm first calculates the artefacts involved in a given correlation,
which terminates in O(b) time according to Theorem §5 below (Line §2). It then
executes a loop that iterates a maximum of a times (Lines §3–§16). In each
iteration, it first needs to find a number of sub-correlations, which terminates
in O(b) time according to Theorem §6 (Line §4); then, it calculates the status,
the earliest instant, and the latest instant, which requires iterating a maximum
of b times (Lines §5–§7); calculating the deadline can be accomplished in O(1)
time (Line §8), but determining if a sub-correlation is valid involves executing
algorithm findFailingRules, which runs in O(r t) time according to Theorem §7
below. Lines §12–§15 run in O(1) time since they just require creating an object
and sending it to another stage. As a conclusion, Algorithm verifyCorrelation
terminates in O(b + a (b + r t)) time.

In the following theorems, we analyse the complexity of the three sub-algorithms
on which verifyCorrelation relies.

Theorem 5. Algorithm findArtefactsInvolved in Figure §14 terminates in O(b)
time.

Proof. The loop at lines §3–§9 iterates b times at most. Lines §4–§8 can be
implemented in O(1) time, cf. Section §3. As conclusion, finding the artefacts
involved in a given correlation terminates in O(b) time.

Theorem 6. Algorithm findSubCorrelation in Figure §15 terminates in O(b)
time.

Proof. The algorithm first finds the ports that belong to a given artefact, which
can be accomplished in O(1) time, cf. Section §3 (Line §2). It then finds the
bindings in a correlation whose port belongs to the previous set, which requires
iterating through the bindings in the correlation (Line §2); this requires O(b)
time in the worst case. Finally, the algorithm find the edges that connect the
previous bindings, which also requires O(b) time (Line §5), and creates an object
in O(1) time (Line §6). As a conclusion, Algorithm findSubCorrelation terminates
in O(1 + 2 b) = O(b) time.

23

P0 Q0

I0 O0

Qn-2

In-2 On-2

Q1

I1 O1

C0
L0 Ln-3

Solution0

L1 Ln-2

Qn-1

In-1 On-1

Figure 21. Pipeline pattern.

Theorem 7. Algorithm findFailingRules in Figure §17 terminates in O(r t) time.

Proof. The loop at lines §3–§10 iterates a maximum of r times, and the inner loop
at lines §4–§9 iterates t times at most. As conclusion, Algorithm findFailingRules
runs in O(r t) time.

7 Experiments

We have conducted a series of experiments to evaluate our proposal in the
laboratory. We implemented them on top of a discrete event simulation layer that
allowed us to run the experiments in simulated time. In the following sections, we
first provide additional details on the patterns with which we have experimented,
and then on the experimentation parameters; later, we draw our conclusions
about the experimental results.

7.1 Experimentation Patterns

We set up four well-known patterns that lay at the core of many real-world
EAI solutions, namely: pipeline, dispatcher, merger, and request-reply [14, 15].
In the sequel, we use term producer to refer to the process or application that
produces the messages that are fed into a pattern; similarly, we use term con-
sumer to refer to the process or application that consumes the messages the
pattern produces. Furthermore, we use variable n to denote the total number of
processes involved in each pattern.

In the pipeline pattern, messages flow from a producer to a consumer in
sequence: the messages a process produces are consumed by the next process in
the pipeline, cf. Figure §21. There is a single producer and a single consumer,
i.e., changes to n have an impact on the number of intermediate processes only.
In other words, 2n events are reported to the monitor per message the producer
feeds into the pattern.

In the dispatcher pattern, there is a process that routes the messages it
produces to only a specific consumer, cf. Figure §22. Note that changes to n
have an effect on the number of consumers, not on the number of producers,
which is one. That is, 4 events are reported to the monitor per message the
producer feeds into the pattern.

The goal of the merger pattern is to gather messages from several producers
and route them to a unique consumer, cf. Figure §23. Changes to n have an

24

P0 Q0

I0 O0

Qn-1

In-1 On-1

Q1

I1 O1

C0

L 0

Cn-2

Solution0

Solutionn-2

Figure 22. Dispatcher pattern.

P0 Q0

I0 O0

Pn-2 Qn-1

In-1 On-1

Q1

I1 O1

C0
L0

Solution0

Solutionn-2

Figure 23. Merger pattern.

impact on the number of producers, not on the number of consumers, which
is one. Note that 4 events are reported to the monitor per message a producer
feeds into the pattern.

In the request-reply pattern, there are a number of processes that require a
service from another process, cf. Figure §24. Changes to n have an effect on the
number of client processes that send requests to the single server process. Every
message fed into the pattern results in 6 events that are reported to the monitor.

7.2 Experimentation Parameters and Variables

Each experiment consisted of running an instance of a pattern with a fixed
number of processes (n) and a fixed mean message production rate (t); we varied
n in the range 3..15 processes, and t in the range 100..1000 milliseconds, with
increments of 100 milliseconds. In total, we ran 520 experiments to draw our
conclusions

We sampled the production rate from a negative exponential with parameter
t . Similarly, we sampled both the time to transmit messages and the time each
process took to produce a correlation from a negative exponential with parameter
250 milliseconds; the time out of every artefact was set to 5 minutes. We carried
out additional experiments with other values for these parameters and found

25

P0

Q0

I0 O0

Pn-2

Qn-1

I2(n-2)+1

Q1

I2
O1

C0

L0

L2(n-2)

Solution 0

Solution n-2

L1I1

O2

Cn-2

O2(n-2)+1

O2(n-2)+2
I2(n-2)+2

L2(n-2)+1

Figure 24. Request-Reply pattern.

that they did not have an impact on the conclusions. Each experiment was run
for a duration of 24 hours.

In each experiment, we measured the following variables: the time to handle
an event (THE), the size of the Work Queue (QS), the time each binding spent
in the Work Queue after it was scheduled to be analysed (TSQ), and the time
the detectError algorithm took to perform each iteration of its main loop (TDE).
(In the sequel, we report on the averaged values of these variables.)

We ran the experiments on a cluster of virtual machines that were equipped
with four-core Intel Xeon processors running at 3.00 GHz, 16 GB of RAM, Win-
dows Server 2008 64-bit, and the 1.6.0 version of the Java runtime Environment.

7.3 Experimentation Results

Figures §25, §26, §27, and §28 present the results we have gathered regarding
variables THE , QS , TSQ , and TDE for each pattern.

The time to handle events (THE) remains low in all of the experiments,
and the changes to n or t do not seem to have an impact on it. According
to Theorem §1, the time to handle an event depends on the maximum num-
ber of solutions to which a process can belong and on the maximum number
of source bindings in an event, which are fixed constants for a given ecosys-
tem. In Corollary §1, we argued that there is an upper bound to these figures,
and we concluded that the time to handle events might be considered O(1) in
practice. The experiments corroborate this idea, since THE seems to be totally
independent from n or t in practice.

The size of the Work Queue (QS) is important insofar is has an impact on the
memory footprint and the time required to complete an iteration of Algorithm
detectErrors. It depends on the number of events reported in each experiment. In
most cases, it behaves linearly in the number of processes and the slope depends
on the mean message production rate (it decreases as this parameter increases).
The only exception is the dispatcher pattern, in which QS seems to be a constant
that depends on the mean message production rate only. The reason for this

26

99

99,1

99,2

99,3

99,4

99,5

99,6

99,7

99,8

99,9

100

3 4 5 6 7 8 9 10 11 12 13 14 15

T
im

e
 (
m

il
li
se

co
n

d
s)

Number of processes

Pipeline: Time to Handle Event

100ms

200ms

300ms

400ms

500ms

600ms

700ms

800ms

900ms

1000ms

0

500.000

1.000.000

1.500.000

2.000.000

2.500.000

3.000.000

3 4 5 6 7 8 9 10 11 12 13 14 15

S
iz
e

Number of pocesses

Pipeline: Queue Size

100ms

200ms

300ms

400ms

500ms

600ms

700ms

800ms

900ms

1000ms

2

2,5

3

3,5

4

4,5

5

5,5

6

3 4 5 6 7 8 9 10 11 12 13 14 15

T
im

e
 (

h
o

u
rs

)

Number of processes

Pipeline: Time Spent on Queue

100ms

200ms

300ms

400ms

500ms

600ms

700ms

800ms

900ms

1000ms

1000

1100

1200

1300

1400

1500

1600

3 4 5 6 7 8 9 10 11 12 13 14 15

T
im

e
 (
m

il
li
se

co
n

d
s)

Number of processes

Pipeline: Time to Detect Error

100ms

200ms

300ms

400ms

500ms

600ms

700ms

800ms

900ms

1000ms

Figure 25. Results of the experiments for the pipeline pattern.

99

99,1

99,2

99,3

99,4

99,5

99,6

99,7

99,8

99,9

100

3 4 5 6 7 8 9 10 11 12 13 14 15

T
im

e
 (
m

il
li
se

co
n

d
s)

Number of processes

Dispatcher: Time to Handle Event

100ms

200ms

300ms

400ms

500ms

600ms

700ms

800ms

900ms

1000ms

0

50.000

100.000

150.000

200.000

250.000

300.000

350.000

400.000

450.000

3 4 5 6 7 8 9 10 11 12 13 14 15

S
iz
e

Number of processes

Dispatcher: Queue Size

100ms

200ms

300ms

400ms

500ms

600ms

700ms

800ms

900ms

1000ms

2

2,5

3

3,5

4

4,5

5

5,5

6

3 4 5 6 7 8 9 10 11 12 13 14 15

T
im

e
 (

h
o

u
rs

)

Number of processes

Dispatcher: Time Spent on Queue

100ms

200ms

300ms

400ms

500ms

600ms

700ms

800ms

900ms

1000ms

1000

1100

1200

1300

1400

1500

1600

3 4 5 6 7 8 9 10 11 12 13 14 15

T
im

e
 (
m

il
li
se

co
n

d
s)

Number of processes

Dispatcher: Time to Detect Error

100ms

200ms

300ms

400ms

500ms

600ms

700ms

800ms

900ms

1000ms

Figure 26. Results of the experiments for the dispatcher pattern.

behaviour is that changes to n do not have an impact on the number of events
that are reported. Note that every new process in the pipeline pattern contributes
with 2 additional events, new processes in the merger pattern contribute with 4
additional events, and new processes in the request-reply pattern contribute with
6 additional events. Contrarily, adding a new process to the dispatcher pattern

27

99

99,1

99,2

99,3

99,4

99,5

99,6

99,7

99,8

99,9

100

3 4 5 6 7 8 9 10 11 12 13 14 15

T
im

e
 (
m

il
li
se

co
n

d
s)

Number of processes

Merger: Time to Handle Event

100ms

200ms

300ms

400ms

500ms

600ms

700ms

800ms

900ms

1000ms

0

1.000.000

2.000.000

3.000.000

4.000.000

5.000.000

6.000.000

3 4 5 6 7 8 9 10 11 12 13 14 15

S
iz
e

Number of processes

Merger: Queue Size

100ms

200ms

300ms

400ms

500ms

600ms

700ms

800ms

900ms

1000ms

2

2,5

3

3,5

4

4,5

5

5,5

6

3 4 5 6 7 8 9 10 11 12 13 14 15

T
im

e
 (
h

o
u

rs
)

Number of processes

Merger: Time Spent on Queue

100ms

200ms

300ms

400ms

500ms

600ms

700ms

800ms

900ms

1000ms

1000

1100

1200

1300

1400

1500

1600

3 4 5 6 7 8 9 10 11 12 13 14 15

T
im

e
 (
m

il
li
se

co
n

d
s)

Number of processes

Merger: Time to Detect Error

100ms

200ms

300ms

400ms

500ms

600ms

700ms

800ms

900ms

1000ms

Figure 27. Results of the experiments for the merger pattern.

99

99,1

99,2

99,3

99,4

99,5

99,6

99,7

99,8

99,9

100

3 4 5 6 7 8 9 10 11 12 13 14 15

T
im

e
 (
m

il
li
se

co
n

d
s)

Number of processes

Request Reply: Time to Handle Event

100ms

200ms

300ms

400ms

500ms

600ms

700ms

800ms

900ms

1000ms

0

500.000

1.000.000

1.500.000

2.000.000

2.500.000

3.000.000

3.500.000

4.000.000

4.500.000

3 4 5 6 7 8 9 10 11 12 13 14 15

S
iz
e

Number of processes

Request Reply: Queue Size

100ms

200ms

300ms

400ms

500ms

600ms

700ms

800ms

900ms

1000ms

2

2,5

3

3,5

4

4,5

5

5,5

6

3 4 5 6 7 8 9 10 11 12 13 14 15

T
im

e
 (

h
o

u
rs

)

Number of processes

Request Reply: Time Spent on Queue

100ms

200ms

300ms

400ms

500ms

600ms

700ms

800ms

900ms

1000ms

1000

1100

1200

1300

1400

1500

1600

3 4 5 6 7 8 9 10 11 12 13 14 15

T
im

e
 (
m

il
li
se

co
n

d
s)

Number of processes

Request Reply: Time to Detect Error

100ms

200ms

300ms

400ms

500ms

600ms

700ms

800ms

900ms

1000ms

Figure 28. Results of the experiments for the request-reply pattern.

does not contribute with new events. The reason is that adding a new consumer
implies that there is a new process that competes for the messages the producer
feeds into the pattern; in other words, the events are reported from different
sources, but the total number of events remains constant.

28

Variable TSQ is very important for our conclusions. Recall that this variable
measures the time a binding spends in the Work Queue after it is scheduled to
be analysed by the Error Detector. Spending too much time in this queue is not
problematic insofar the goal is to detect errors so that they can be diagnosed
and recovered. There are no real-time constraints involved. However, generally
speaking, the less time, the better since this implies that errors shall be detected,
diagnosed, and recovered sooner. Our experiments prove that TSQ seems to
behave logarithmically in the number of processes in all cases, except for the
dispatcher pattern, in which it behaves constantly. This implies that a change to
the number of processes does not usually have a significant impact on the time
bindings spend in the Work Queue. Neither does the mean message production
rate seem to have a negative impact on this variable.

Regarding the time to detect errors (TDE), we proved that it behaves loga-
rithmically in the size of the Work Queue, cf. Theorem §2. This theoretical result
was promising as long as the size of the Work Queue was not monotonically in-
creasing, as we conjectured in Section §6. Our results support this conjecture
since variable TDE ranges in the order of seconds in all of our experiments.

8 Conclusions

In this article we have addressed the problem of detecting errors in EAI
solutions. We have reported on a monitor that receives events with information
about the messages that are read or written at each port. These events are
used to build a graph that keeps record of the messages exchanged within the
EAI solutions being monitored. We have reported on a series of algorithms to
analyse this graph and find invalid correlations. Our failure semantic includes
communication, structural and deadline errors.

In our analysis of the related work we have found out that the majority
of the proposals in the literature focus on EAI solutions that are specified as
orchestrations and build on the process-based execution model. There are a few
that take choreographies or take the task-based execution model into account,
but they have important limitations that hinder their applicability in practice.

We have analysed our proposal from a theoretical point of view and our con-
clusion is that it is computationally tractable. We have also carried out a series
of experiments that proof they can be used in settings in which the workload is
very high (15 processes and 100 milliseconds as the mean message production
rate).

Acknowledgements.

The first author conducted part of this work at the Newcastle University,
UK as visiting member of staff. His work is partially funded by the Evangelis-
cher Entwicklungsdienst e.V. (EED). The first and the second authors are par-
tially funded by the European Commission (FEDER), the Spanish and the An-
dalusian R&D&I programmes (grants TIN2007-64119, P07-TIC-2602, P08-TIC-

29

4100, TIN2008-04718-E, TIN2010-21744, TIN2010-09809-E, TIN2010-10811-E,
and TIN2010-09988-E). The third author is partially funded by UK EPSRC
Platform Grant Number EP/D037743/1.

30

Bibliography

[1] G. Alonso, C. Hagen, D. Divyakant, A. E. Abbadi, and C. Mohan. Enhanc-
ing the fault tolerance of workflow management systems. IEEE Concur-
rency, 8(3):74–81, 2000

[2] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts and
taxonomy of dependable and secure computing. IEEE Trans. on Depend.
and Secure Comp., 1(1):11–33, Jan-Mar 2004

[3] L. Baresi, S. Guinea, R. Kazhamiakin, and M. Pistore. An Integrated Ap-
proach for the Run-Time Monitoring of BPEL Orchestrations. In Towards
a Service-Based Internet, volume 5377 of LNCS, pages 1–12. Springer, 2008

[4] D. Borrego, R. M. Gasca, M. T. Gómez-López, and L. Parody. Contract-
based diagnosis for business process instances using business compliance
rules. In Proc. 21th Int’l Workshop on Principles of Diagnosis (DX’10),
2010

[5] G. Brodal. Worst-case efficient priority queues. In 7th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 52–58, 1996

[6] R. Campbell and B. Randell. Error recovery in asynchronous systems. IEEE
Trans. Soft. Eng., 12(8):811–826, 1986

[7] M. Chen, A. Accardi, E. Kiciman, J. Lloyd, D. Patterson, A. Fox, and
E. Brewer. Path-based failure and evolution management. In Proc. Int’l
Symp. Netw. Syst. Des. and Impl., page 23, 2004

[8] D. Chiu, Q. Li, and K. Karlapalem. A meta modeling approach to workflow
management systems supporting exception handling. Inf. Syst., 24(2):159–
184, 1999

[9] V. Ermagan, I. Kruger, and M. Menarini. A fault tolerance approach for
enterprise applications. In Proc. IEEE Int’l Conf. Serv. Comput., volume 2,
pages 63–72, 2008

[10] A. Erradi, P. Maheshwari, and V. Tosic. Recovery policies for enhancing
web services reliability. In Proc. Int’l Conf. on Web Serv. (ICWS’06), pages
189–196, Sept 2006

[11] J. Goodenough. Exception handling: Issues and proposed notation. Com-
munications of the ACM, 18(12):683–696, December 1975

[12] J. Gross and J. Yellen. Handbook of Graph Theory. CRC Press, 2003
[13] C. Hagen and G. Alonso. Exception handling in workflow management

systems. IEEE Trans. Softw. Eng., 26(10):943–958, 2000
[14] G. Hohpe. Enterprise Application Integration. In Proc. 9th Conf. on Pattern

Language of Programms, page #14, 2002
[15] G. Hohpe and B. Woolf. Enterprise Integration Patterns - Designing, Build-

ing, and Deploying Messaging Solutions. Addison-Wesley, 2003
[16] J. E. Hopcroft and R. E. Tarjan. Efficient algorithms for graph manipula-

tion. Communications of the ACM, 16(6):372–378, 1973
[17] G. Khanna, I. Laguna, F. A. Arshad, and S. Bagchi. Stateful detection

in high throughput distributed systems. In Proc. 26th IEEE Int’l Symp.

31

on Reliable Distrib. Syst. (SRDS 2009), pages 275–287. IEEE Computer
Society, 2007

[18] G. Khanna, P. Varadharajan, and S. Bagchi. Automated online monitoring
of distributed applications through external monitors. IEEE Trans. on
Depend. and Secure Comp., 3(2):115–129, Apr–Jun 2009

[19] I. Laguna, F. A. Arshad, D. M. Grothe, and S. Bagchi. How to keep your
head above water while detecting errors. In Proc. 10th Int’l Middleware
Conf. 2009, volume 5896, pages 205–225. Springer, 2009

[20] N. Levenson. Software safety in embedded computer sustems. Communi-
cations of the ACM, 34(2):34–46, February 1991

[21] L. Li, C. Hadjicostis, and R. Sreenivas. Designs of bisimilar petri net con-
trollers with fault tolerance capabilities. IEEE Trans. Syst. Man Cybern.
Part A: Syst. Humans, 38(1):207–217, 2008

[22] Y. Li, T. Melliti, and P. Dague. A colored petri nets model for diagnosing
data faults of BPEL services. In Proc. 20th Int’l Workshop on Principles of
Diagnosis (DX’09), pages 267–274, 2009

[23] A. Liu, L. Huang, Q. Li, and M. Xiao. Fault-tolerant orchestration of trans-
actional web services. In Proc. Int’l Conf. Web Inf. Syst. Eng., pages 90–101,
2006

[24] A. Liu, Q. Li, L. Huang, and M. Xiao. A declarative approach to enhancing
the reliability of BPEL processes. In Proc. IEEE Int’l Conf. Web Serv.,
pages 272–279, 2007

[25] C. Liu, M. Orlowska, X. Lin, and X. Zhou. Improving backward recovery in
workflow systems. In Proc. 7th Int’l Conf. Database Syst. Adv. Appl., page
276, 2001

[26] D. Messerschmitt and C. Szyperski. Software Ecosystem: Understanding an
Indispensable Technology and Industry. MIT Press, 2003

[27] M. S. Mouchaweh. Decentralized fault detection and isolation of manufac-
turing systems. In Proc. 21th Int’l Workshop on Principles of Diagnosis
(DX’10), 2010

[28] OASIS. Web Services Business Process Execution Language Version 2.0
Specification, 2007. Available at http://docs.oasis-open.org/wsbpel/2.0/OS/
wsbpel-v2.0-OS.html

[29] C. Peltz. Web services orchestration and choreography. Computer, 36(10):
46–52, 2003

[30] M. Sampath, R. Sengupta, and S. Lafortune. Failure diagnosis using
discrete-event models. IEEE Trans. on Control Syst. Technol., 4(2):105–
124, march 1996

[31] W3C. Web Services Choreography Description Language Version 1.0 Spec-
ification, 2005. Available at http://www.w3.org/TR/ws-cdl-10/

[32] Q. Wu, C. Pu, and A. Sahai. DAG synchronization contraint language
for business process. In IEEE Int’l Conf. on Commerce and Enterprise
Computing (CEC’09). IEEE Computer Society, 2006

[33] Y. Yan and P. Dague. Modeling and diagnosing orchestrated web service
processes. In Proc. IEEE Int’l Conf. on Web Serv. (ICWS 2007), pages
51–59, July 9-13, Salt Lake City, Utah, 2007. IEEE Computer Society

32

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.w3.org/TR/ws-cdl-10/

[34] Y. Yan, Y. Pencole, M.-O. Cordier, and A. Grastien. Monitoring web service
networks in a model-based approach. In Proc. Third European Conf. on
Web Serv. (ECOWS’05), Nov 14-16, Vajxo Sweden, 2005. IEEE Computer
Society

[35] L. Zeng, H. Lei, J.-J. Jeng, J.-Y. Chung, and B. Benatallah. Policy-driven
exception-management for composite web services. In Proc. IEEE Int’l
Conf. E-Commer. Technol., pages 355–363, 2005

33

