This is a draft version. Full version available at:

https://doi.org/10.1016/j.j55.2016.04.060
Journal of Systems and Software. :

Automated Design of Multi-Layered Web Information Systems

Fébio Paulo Basso, Raquel Mainardi Pillat, Toacy Cavalcante Oliveira

Federal University of Rio de Janeiro (UFRJ) - COPPE
Rio de Janeiro, RJ - Brazil +55 21 2562-8672

{fabiopbasso, rmpillat, toacy} @cos.ufrj.br

Fabricia Roos-Frantz, Rafael Z. Frantz

UNLJUI University, Department of Ezact Sciences and Engineering
Ijui, RS, Brazil
{frfrantz, rzfrantz} Qunijui.edu.br

Abstract

In the development of web information systems, design tasks are commonly used in approaches for Model-Driven Web
Engineering (MDWE) to represent models. To generate fully implemented prototypes, these models require a rich
representation of the semantics for actions (e.g., database persistence operations). In the development of some use case
scenarios for the multi-layered development of web information systems, these design tasks may consume weeks of work
even for experienced designers. The literature pointed out that the impossibility for executing a software project with
short iterations hampers the adoption of some approaches for design in some contexts, such as start-up companies. A
possible solution to introduce design tasks in short iterations is the use of automated design techniques, which assist
the production of models by means of transformation tasks and refinements. This article details our methodology for
MDWE, which is supported by automated design techniques strictly associated with use case patterns of type CRUD. The
novelty relies on iterations that are possible for execution with short time-scales. This is a benefit from automated design
techniques not observed in MDWE approaches based on manual design tasks. We also report on previous experiences
and address open questions relevant for the theory and practice of MDWE.

Keywords: Model-Driven Web Engineering, Rapid Application Prototype, Domain-Specific Language, Prototyping,
Automated Design, Mockup, Experience Report.

1. Introduction details using a design language, focusing on the specifica-
tion of semantics in models that formalize the knowledge
about software requirements [8]. Before the source code
generation, these models can be further refined by design-
ers, enabling clients to experiment an executable prototype
in the end. This approach is known as multi-view [8], and
the model is created and enriched taking as input high-
level abstractions of other models that map implementa-
tion details through model transformations.

The execution of a multi-view approach for MDWE
may use design tasks that require months of work [9, 10].
Depending on the size of the software project and the

adopted schedule in software process iterations, the effort

Model-Driven Engineering (MDE) [1] is a paradigm for
model-based software development implemented by several
techniques and wised in several industrial contexts. In typ-
ical MDE-based processes, model transformations should
receive a highly detailed model to generate working pieces
of applications [2]. To generate full source code, several
parts of an application design are detailed in Domain-
Specific Languages (DSLs) [3] and/or decorated with an-
notations added to model elements represented with the
Unified Modelling Language (UML) [4], a general-purpose
modelling language commonly used. In any case, this

makes the software construction dependent of design tasks.

In the development of web information systems, web
front ends such as layout composed of Graphic User Inter-
face (GUI) components [5] and behavioural diagrams [6]
are usually represented. To allow the generation of full
source code with an approach for Model-Driven Web Engi-
neering (MDWE) [7], these models are manually decorated
with semantics for the actions of users, screen flows and
business logic. It is possible to abstract implementation

Preprint submitted to Journal of Systems and Software

invested in detailing models is seen as a reason to avoid
the adoption of some of MDWE approaches [11]. There-
fore, the ability to execute these tasks in short time-scales
is a desirable feature in some contexts, such as in start-up
companies [12, 13].

A possible solution to speed-up the modelling phase,
thus helping in the execution of iterations in short time-
scales, is the use of techniques for automated design [14,
15]. In this article, we suggest the use of three different

April 26, 2016

phases for constructing models for MDWE, namely: evo-
lutionary, architectural, and functional. Models are based
on the Model-View-Controller (MVC) architectural pat-
tern [16]. Although each prototyping phase is handled by
some DSL and tools found in the literature, their inte-
grated use is still a challenge in MDWE.

‘We present a methodology for MDWE named Mockup-
ToME Method, which includes tasks supported by (semi-

Jautomated design techniques for some use case patterns [17].

We extend previous contributions [18], by detailing tasks
and artefacts that include many DSLs, developed to sup-
port the design of many layers of MVC-based application
models, and the tools associated with these tasks for au-
tomated design. We also summarized data collected from
two software projects, the first considering mostly manual
design tasks and the second considering the use of tasks
based on automated design techniques.

A partially assisted design through Wizards was used
in the first software project, with iterations planned for one
month or more. In the second project, we used Mockup-
ToME Method with iterations planned and executed with
one to two wecks. Both approaches are based on use case
patterns of type CRUD [19], and use the same DSLs for
representation of MVC-based application models, which
are used in the end of a lifecycle for model transformations
by the same source code generators. Differently, Mockup-
ToME Method includes DSLs and tools for designers to
work in high-level of abstraction than in MVC-based ap-
plication models.

The use of short iterations is a benefit observed in
MockupToME Method, but not in our previous approach,
i.e., in manual design of these models. The reasons why
short time-scales are feasible in MockupToME Method has
to do with the automated design techniques discussed in
this article. Thus, we also derived interesting research
questions as a result from these two software projects.

The rest of the article is organized as follows: Sec-
tion 2, conceptualizes this work and Section 3 motivates
this research; Section 4 exemplifies the representation of
preliminary requirements, which are the input for the auto-
mated design approach introduced in Section 5; Section 6,
describes the methodology, which is complemented in Sec-
tion 7 with implementation details-and in Section 8 with
activities performed after the source code generation; Sec-
tion 9, summarizes the two software projects, with lessons
and insights for future research; Section 10, points out lim-
itations; Section 11 presents the related work; and, finally,
Section 12, reports on our main conclusions and possible
future work.

2. Concepts

In the context of the development of web information
systems, the following concepts are important for the un-
derstanding of this article [16, 19, 20]:

e Model-View-Controller (MVC). Is an architec-
tural pattern [21] frequently used in the construc-
tion of web information systems [22]. This pattern
is important to modularize and structure the source
code in three layers, thus facilitating the mainte-
nance [23] and avoiding the erosion of architectures
as they evolves over time.

e Conceptual model. A class diagram composed
of analysis classes, also named entities, which rep-
resents the Model layer of the MVC [16].

e GUI Templates. Facilitate the development of
standardized structures for GUI [24] allowing devel-
opers to focus on the logic layer, while layout details
and actions are managed by a template engine. By
means of templates, developers focus on the content
that is placed inside a template structure.

e CRUD. A type of GUI template and an acronym for
create, read, update, and delete [19] characterising
frequent. set of use cases developed in information
systems that allow to persist, retrieve and remove
objects to/from a database. Different structures for
CRUD can be used, and may include a specific GUI
template.

¢ Domain-Driven Design (DDD). The Model layer
is used to represent all the other application layers
using a DDD approach [16]. In MDWE, DDD drives
the generation of a detailed MVC-based model, guid-
ing the refinement of multiple layers associated with
a particular use case scenario and a paper prototype.

e Master/Detail. A well-known concept among soft-
ware developers, which allows the classification of use
cases for use case patterns [17]. These concepts of
Master and Detail are well discussed in approaches
for DDD [16] and the object oriented method [17].

The following concepts are important to contextualize
our work:

e Use case scenario. Is one of possible flows from
a use case [25] or user story [26]. Use case scenar-
ios are important both for design and for tests with
clients [25], which evaluate models, prototypes and
also the final version of an application piece with ac-
ceptance tests.

e Paper prototype. A hand drawing on a paper
showing user interfaces with user interactions that
represents use case scenarios [25]. It is a software
artefact represented in a high-level of abstraction
than a mockup. A paper prototype is not a model,
but a document usually associated with user sto-
ries specified in initial brainstorming meetings for
the requirements elicitation. It is also called as pre-
prototype [27] and, sometimes, as throwaway proto-
type [25].

e Mockup. A model for a GUI, which is not pos-
sible to be fully implemented in functional proto-
types [28, 12. 29]. In our understanding, mockups
are abstractions in a high-level than the business
logic needed in the development of web information
systems, focusing on GUI components specification.
Mockups may also be called sketches [30].

¢ Round-trip engineering. A set of activities aim-
ing at synchronize generated source code with man-
ually developed code [31]. It is performed automat-
ically with the support of tools or, sometimes, man-
ually, when it is required to update the model based
on changes from source code.

e Full source code generation. Is the ability to
generate 100% of what is designed, not 100% of all
the application [32]. Kelly and Tolvanen [32] claim
that full source code generation is a possible solution
that mitigates the execution of changes in generated
artefacts.

The Java platform is important for the implementation
of web information systems and is divided in J2EE, J2SE,
and J2ME editions. Burke and Monson-Haefel [22] state
that:

1. For the development of forms to desktop platforms,
developers adopt J2SE and APIs such as AWT and
Java Swing.

2. For the development of forms to mobile platforms,
developers adopt J2ME and APIs for MIDP such
as Connected Limited Device Configuration (CLDC)
and Connected Device Configuration (CDC). The
latter API focuses on devices that allow for rich GUI
components and rich user interactions, whereas the
former is quite limited. For this reason, CDC is sup-
ported by GUIs developed with the AWT, similarly
as in J2SE edition.

3. For the development of forms on the web, develop-
ers adopt J2EE, which can include: a) tools for the
database management system such as PostgreSql;
b) web frameworks such as Spring Framework and
frameworks for Object Relational Mapping (ORM)
such as Hibernate; and, ¢) APIs for the development
of the View layer including JSP, JSTL, Dojotoolkit,
jQuery, and so on.

Finally, some software projects may require all these
editions in the development of multi-layered systems. This
is the case of the systems that we have developed, which
we discuss in the next sections.

3. Motivation and Context

We have been in an effort to introduce model-based
solutions in start-up contexts in an initiative for “MDE as

‘Analysis of the Target Companies for MDE Adoption

Target Context

A/\]/\A_ (1 N (AMDA)
MDE Resources Adapted for ERP and CRM
54 Company Context for Online
i Auction

o [Company A] (Scrum)

 MDEas | b

Service MDE Resources Adapted for ERE fc_”’
) F Company Context Financial
[Adapit] Management

Figure 1: Implemented scenario for MDE as Service considering con-
texts from two software projects; one executed by Adapit and the
other by Company A.

a Service”, as illustrated in Figure 1. In this scenario, re-
sources developed for MDE (e.g., model transformations,
DSLs and tools) are applied in different contexts. We
have implemented MDE as a Service by means of company
Adapity founded in 2007 and supported for three years by
a business incubator, hosted in one of the biggest scien-
tific and technological parks in Brazil. Through Adapit,
we have introduced resources for MDWE in five software
projects, three out of them developed by teams from Adapit
and two out of them by teams from other start-ups.

The motivation for the advent of a new methodology
and tool support came in 2007, from the internal appli-
cation of our first approach for MDWE. It is a software
project for the development of an web information system
for online auction, hired on demand by another start-up,
i.e., by an auction agency. This project needed the ex-
ecution of iterations lasting one month due to distances
between these start-ups. This time-scale implied in vali-
dations with clients carried out too late and, consequently,
requiring a considerable rework in model and source code
due to changes in requirements. Following the instruc-
tions from the software engineering discipline [25], we con-
cluded that with shorter time-scales we could obtain feed-
back from clients in an early stage. However, due to a
sum of factors such as the time invested in manual repre-
sentation of models, issues in source code generation and
bad practices for manual coding, hampered the execution
of shorter time-scales.

As a solution to surpass these issues, between 2008 and
2010 we planned and developed an approach for automated
design. It includes a tool named MockupToME and other
DSLs in a methodology named MockupToME Method. It
is the result of three years of industrial innovation, in-
cepted exclusively for the application of MDWE in target
software projects for web information system. Moreover,
this approach is limited to assist the design of models for
use case patterns such as CRUD, List, Filter, and Report.

We observed that MockupToME Method speed-up the
specification of detailed MVC-based models within itera-
tions planned in short iterations. In 2010 we implemented
a feasibility study for MDE as a Service, by introducing
our new approach to other start-up, referred to in this

article as “Company A”. Differently from Adapit, Com-
pany A adopts Scrum [33] as the reference model for the

software development process. Likewise, we adapted our
resources for the target context [34], analysing issues as-
sociated with this specific reference model in combination
with MDE [35, 36].

As illustrated in Figure 1, our approach for MDWE
has been used with different frameworks for management
of software processes: Scrum and AMDA [37]. The Mock-
upToME Method is agnostic to the framework adopted by
the target software project and can be introduced in any
model for software development process. We also repre-
sented our methodology with the BPMN [38]. However,
it is also agnostic to the BPMN representation. Thus,
the reader can consider it as flexible for inclusion of other
tasks.

We present a contribution for the theory and practice
of MDWE, discussing elements from methodology and tool
support that configures our best approach for two start-
up contexts. Likewise, considering mostly the worst-case
scenario for design, we present some elements that we con-
sider essential and optional for application of design tech-
niques, tasks for validation with clients and coding issues.
In the end, we also summarized a report of two systems,
one developed with the automated design proposal and the
other using mostly manual design (some wizards), and dis-
cuss on open questions associated with the MockupToME
Method.

4. Running Example

We illustrate our methodology considering the devel-
opment of an e-commerce application, for the use case
diagram shown in Figure 2. Two actors, Customer and
Manager, can perform the following use cases: 1) Main-
tain Account, which allows users to persist their personal
data, preferences for categories of products and associate
credit cards; 2) Maintain products, which allows users to
persist data associated with products (e.g., a category); 3)
List products by preferences, which allows customers
to list products based on their preferences for categories;
4) Generate billet, which allows customers to pay for
products using banking billet/slip. In the next sections, we
demonstrate the automated design of the use case Main-
tain products.

The use case Maintain products, adopted for exem-
plification, also includes the following use case scenarios:
Success Scenario, 1) - Find and Select a Category
- the category of a product is already available in the
database, thus requiring the development of a complemen-
tary mockup to Find and to Select the category for inclu-
sion in a product, or; Alternative Scenarios, 1.1) -
Create a Category - the category was not found, it must
be created, then the end-user re-execute the success sce-
nario.

Although we focused on the exemplification of a form
and filter for CRUD, it is also possible to automate the

/

Generate hillet
= / =<CRLUDWithDetail==
Te— Manager Maintain products
Custome ==3mpleCRUD==
Maintain account d

v

’

=<FilterBy=> —
List products by Success Suenario-Find and Selecta Categary
preferences Aternative Scenario-Craate a Categary

Figure 2: E-commerce use cases designed manually conforms to the
CRUD UML Profile. This is a use case view that illustrates a func-
tionality considered for implementation in a unique iteration of the
software development process.

design of reports, lists;” and other variations of user in-
teractions with CRUD operations. Likewise, the unique
use case that is not target for the presented techniques
is the Generate billet, which requires manual develop-
ment. The other use cases are possible to be automated
similarly as the use case Maintain products. A reason for
exemplification of Maintain products is its use case sce-
narios: besides the implementation of CRUD operations,
the user can Find and Select the category for inclusion in
a product.

Differently, the type of use case associated with Gen-
erate billet implies in the development of a scenario
composed of the following implementations: 1) a mockup
for list the products from a web shop kart; 2) a class to
generate the PDF file. Due to limitations in our tool sup-
port to assist the design of Generate billet, the first
implementation can be generated, but not the second one.
Therefore, for didactic reasons, the reader should assume
that Generate billet is manually developed, allowing us
to exemplify the use of round-trip engineering.

5. Approach

Our MDWE approach is illustrated in Figure 3 and
includes the design of mockups with the MockupToME
DSL!. A screenshot of MockupToME metamodel is shown
in Figure 4 (A). Models in conformity with such DSL are
refined and transformed into other representations, thus
following a multi-view design approach [8]. In the following
sections we introduce our approach.

5.1. Tool Support for the Design

In a previous lifecycle adopted in 2007 for the devel-
opment of the online auction system, the first represen-
tation adopted for the View layer was a representation
in conformity with the GUI Profile [28], illustrated in a
UML representation in Figure 5. The literature recom-
mends the usage of use case patterns and Master/Detail
as a solution to facilitate the development of web infor-
mation systems [17, 16]. To improve our previous practice

IMockupToME web page. Available at:
<prisma.cos.ufrj.br/wct/projects/mockuptome_home.html>.

Textual Paper Not

Requirements | Use Cases + Prototype Models!
©
2
@— Conceptual =
s P = umML 2

Model CF 0
2 CRUD UML
Use Cases I Profile

Product Malntenance Form

Preliminary . MockupToME
Mockup searen - DSL
Mode| Detail = Category

A) MockupToME DSL model B) Concrete GUI Comp. DSL Metamodel

mockip v @ concretegui

» T AlignAds % BackgroundHarizontalAlign
© BorderType ackgroundVerticalAlign

» Bl Windowl - SereenL.

@ PathMade
{5 Screenires -> AbstractScreenArea, DataType, [Event, Ty
£ ActionableCompenent -> SereenAreaComponent, [Even
[ScreenhreaComponent -» Screenfrea
5> [Button - ActionableComponent
[CheckBax-> ActionableCompanent, EntityMapging
E Menultem -> ActionableComponent
[} EditebleCompanent -> ScreenArezCompanent

[l CaseadeAction -> ActionSpecification

[Listhem -> AbstractCompanent, EntityMapping

El LeyoutSpecification -> AbstractLayoutSpecification

] Abstractl -

|:| Sereenl rl fication -> Abstractl P i

Ef LayoutOption

] ElementReference -> Element

MockupComponentReference -> AbstractlayoulSpecification, B
Formitem -> Mockupltern, SenviceMapping. TypedCemponent

] ImageComporient - ScreenAreaCompanent

 DateChooser -> TextField

& TextField -> ActionableCompanent, EntityMapping, Edit
H DislogBox-> MockupPane), SereenlO

[Treettem -> Mockupltem, ServiceMapping 5 [KeyStroke -» Element

InneiWindowSpecification -> Element] Label-> ScreenAreaComponent

| TableL: > Abstraetl & MenuBar-> ScreenAreaComponent, Screenl0

£ Tableltem -> Mockupltem, ServiceMapping o E} Menu-> SaeenAreaComponent

1 Mockup -> AbstractScreenres, MackupContainer ___.-==""| " f v,

mpiatel -> Abstractl

=]
[TemplatelnsertionPoint -> AbstractComponent
B Treelayouts, > Abstractl

Model Refinement
; Engine

Refined
= = MockupToME
8 Mockup =
@ DSL
2— Model
<

M2M Execution
Engine

MVC-Based Several DSLs:
Application GUI DSLs
Models Action Profile
ORM Profile

Service Profile

M2C Execution
. Engine

"~ Functional
Prototype

Figure 3: Model transformation lifecycle adopted in the automated
design approach.

based on manual design of MV C-based application models,
we adopted this recommendation. Besides, for the sake of
offering for designers a better conceptualization than the
one available in GUI Profile [28], we developed the Mock-
upToME DSL considering these recommendations [17. 16].
Thus, our DSL is'introduced after the representation of the
conceptual model shown in Figure 6 and use cases, which
are located at the top-part of Figure 3 as the first repre-
sentation associated with models in the lifecycle.

We found that the GUI Profile is limited to the rep-
resentation of GUI components and does not require con-
cepts for Master/Detail. This limitation was surpassed
using MockupToME DSL, which is used as front end for
the representation of GUIs together with relationships of
Master/Detail. However, the GUI Profile is not discarded.
Instead, we considered it as a generic DSL for GUI com-
ponents that follows other representation specific of target
platforms.

In the lifecycle of our proposal, the GUI Profile is im-
plemented through the metamodel illustrated in Figure 4
(B) and belongs to a set of representations called MVC—
Based Application Models. This DSL is included in the
second level of representation for GUIs called Concrete
GUI metamodel, which in fact is generic and built on top

C) WEB DSL Metamodel D) Mobile DSL Metamodel

& web # midp
2 AletType [Command -» Event
[AlertBox -> MockupPanel, CssCompe] » [Form -> Canvas

» 2 FormMethod B Alert-» ScreenArea
£ Form-> MockupPanel, CesCompaneq » [List -» Canvas, FormComponent
& Frame -> MockupPanel, CssCompond >] TedBox-> Canvas, FormComponent
£] Link-> Screenfres, ActionsbleCompd + [WhaitScreen -> Canvas

» [l PaddingPanel > MockupPanel, CssC » @ CommandType
[RichContainer - MackupPanel, Cssc| » [ChoiceGroup -> Canvas, FarmCompo
£| ToolTipDialsg -> MockupPanel, Cssc{ E] FormCamponent
[TitledPane -> MockupPanel, CssCom| » [Canvas-> NamedElement

» [l CssComponent H Midp -> Package

E) Desktop DSL Metamodel

i desktop
(] MockupPanel-> Cantsiner, MockupCant
[CheckBoxMenulterm -> Menultem, Check
[l ComboBox-> ComboBex
£ ComboBoxModel > Element
{ Frame-> MockupPanel
{l FileChooser > Button
E InternalFrame > MockupPanel
£ ImageChooser-> ActionableCompanent,
[ListComponent -> List, EditableCompane|
Bl ListModel - Listitem
{l PopupMenuButton -> ActionableCompot

Figure 4: DSLs for representation of the View layer in different ab-
straction levels.

of other DSLs for platform dependent GUIs as follows: a)
Web DSL metamodel is illustrated in Figure 4 (C) and al-
lows the representation of details for components based on
W3C/HTML 5 % b) Mobile DSL metamodel is illustrated
in Figure 4 (D), which is based on the Java J2ME Com-
ponents [22] programmed in MIDP and CDC-AWT 2; and
¢) Desktop DSL metamodel is illustrated in Figure 4 (E)
allows the representation of details for components based
on the Java J2SE/Swing components [22].

HTML properties such as css, class, background,
etc., can be represented in components from the Web DSL,
which is not possible to be specified in components that
conforms to the MockupToME DSL. The same is valid for
Mobile and Desktop DSLs. To focus on the methodology,
this article does not provide details on such metamodels
neither the conservatives UML extensions that belong to
our UML Profiles.

To assist the representation of such models, our method-
ology includes tasks supported by (semi-) automated de-
sign techniques, which speed-up the specification of the
detailed MVC-based models, allowing the use of iterations
lasting one to two weeks. Thus, through an specification in
conformity with MockupToME DSL, we included (semi-)
automatic transformations from mockup models to other
models in conformity with MVC-based architectures.

5.2. Lifecycle of Model Transformations

In the following we discuss some conceptual specificities
used in Figure 3:

2<https://www.w3.org/TR/html5/>
3 <http://www.oracle.com/technetwork/java,/index-jsp-
138820.html>

DSL = UML (GUI Profile + Action Profile)
Model
Transformation
Engine

Model
=i

=<FunctionlScreenArea==
Client Maintenance Dialog

<<Menu=> ==Form==
CRUD Operations Client Data

<<News> =<Image>> <<Taptss
New Picture Name:
<<Gavee> <<Taut>> View
Save Email:
<<Remave>> =<list>>
Remave Preferences

Annotated Mockup

= =% Code

Controller
Multi-Layered Architecture

Figure 5: Illustration of an annotated mockup, manually designed
in the Astah UML modelling tool with stereotypes from the GUI
Profile [28] and our extensions from Action Profile, as part of the
view layer of a multi-layered architecture based on MVC.

Preliminary specifications. Are textual use cases/user

stories and paper prototypes, the minimum input for our
approach to automate the design in MDWE. These arte-
facts are not model specifications and serve as guide for
the designer that works in a use case, such as those illus-
trated in Figure 2. In preliminary software development
phases, a requirement engineer draws user interfaces in a
paper, based on use cases or user stories. The engineer is
free to select techniques and tools to perform these tasks,
such as use case augmentations [39], inspections, and pre-
prototypes [27].

Mockups are models. In the modelling of web in-
formation systems, a mockup is a GUI whose components
are associated with operations for CRUD, data filter and
reports [39]. Following the motivating example, Figure 7
(2) shows the simplest structure for CRUD available in our
prototyping tool* for the design of a mockup that imple-
ments the use case Maintain products. The design in a
mockup is semantically connected with one or more lay-
out structures, e.g., with-a GUI template for CRUD, that
are commonly used in the development of web information
systems.

Annotated mockup. As illustrates Figure 3, mock-
ups are represented and refined in conformity with the
MockupToME DSL. This language allows the representa-
tion of annotated mockups, as illustrated in the left-side
of Figure 7 (2) through tags and stereotypes. Through
annotations, the proposed mockups own semantics for ac-
tion, as in the proposals by Ricca et al. [39] and Rivero
et al. [12]. Mockup designs are annotated with semantics
associated with standard actions, which are expanded in
new mockups that implement the diverse scenarios of a
use case. Thus, it is possible to infer the user interaction
in these type of functionality, allowing to perform simu-
lations in web browsers without the need to detail flows
between GUIs.

Assisted design of models. In previous experiences

1A demo from MockupToME tool is available at:
<https://www.youtube.com /watch?v=TrjuqLIMy8M>.

Product Person o1 ==zgnumeration==
: CreditCardKind
-1d zint -id ¢ int
- name : String - name . 5trna =WISA:int
- hirth : Date -GOLD_CARD * Int
1 - categary - MASTER_CARD ' int
- preferences ?
Catego CreditCard
it 0 Client - creditCards
- id;int —id;int
- name ; String - phone ; String g~ | -number: String
- freeText : 8tring : - kind ; CraditCardKind

Figure 6: Conceptual model designed manually with the Astah UML
tool. This is a logical view of the Model layer, illustrated as part of
the scenario associated with the use case view shown in Figure 2.

we always looked for ways to speed-up the design of mod-
els, making them less dependent from specialists. For ex-
ample, the set of artefacts found in our MVC-Based Ap-
plication Models (see Figure 3) are divided in some lay-
ers represented with specific EMF-based DSLs and UML
Profiles. Figure 5 illustrates some annotations based on
the GUL Profile 28], applied manually for the view layer.
However, several other layers and annotations from other
UML Profiles are necessary to represent the set of arte-
facts. This requires a considerable time for design that
should not be ignored in software projects conducted with
short iterations. Through the execution of the overall au-
tomated design lifecycle illustrated in Figure 3, we can as-
sist the representation of these model specifications, some
generated automatically, refined by the designer in each
phase of prototyping.

Start templates. The difference between template-
based development and our approach is that templates
are model transformations, thus not just as a source code
facility. Likewise, we propose to use model transforma-
tions of type start templates to generate preliminary
mockups. A start template is a classification of model-
to-model transformations that allows the generation of a
Preliminary Mockup Model, such as the one illustrated
in Figure 7 (2). Mockups embed the structure for one or
more start templates. This is illustrated in Figure 7 (1),
which shows a start template executed against input entity
classes designed in a class diagram shown in Figure 6. This
allows the automatic generation of the mockup shown in
Figure 7 (2). Therefore, a start template follows the same
principles from GUI templates, but it is applied specifically
to generate a model in conformity with the MockupToME
DSL.

Refinement templates. A refinement template is
similar, although strictly applicable to generate mockup
structures for Details in representations for use case sce-
narios. For example, a Detail from the entity Product is
Category. Considering the success use case scenario for
Maintain Products, refinement templates are applicable
to the entity Category in association with Product, al-
lowing the generation of a Refined Mockup Model in the
lifecycle. This is because a refinement template is asso-
ciated with the Find pattern (see the button just above
the Remove button in Figure 7), which allows to generate

o [CreditCard
o _J =
=1 Rename the selected element
o—J Perzon - i
& =] Role © Open in a new tab
o = Seller 4 Edit L JH) :
o =] State |) Graphical User Interface ¥/ =3 Generate a CRUD form for the entity
= Aadreae\ Transformations 4+ *| 5] Generate a list screen / table to the entity
l UML Model I
DSL (MockupToME) Resources for model A:eﬁngrrt\e:l T_E:n__pFl_at;_is
Model transformations ssoctated with Hin:
|/ ¥
we| £ampleTutorial | & Scheduled Tasks |
¢ |1 | Product Msitenance Form [org.\\l:_‘:‘ |s=) ProductMaintenanceForm
O~ @l Assigned Stereotypez
¢ (i@ Product Baze DataPanel [ProductMaintenanceForm 5 oF X
LSl File View C ypes L T i
name = = I — 4
¢ BB Cicsier gl | |H||D Layout: | Tableless Layout | ¥
o g Assigned Stereotypes A A) [200 | 30
| & BN Assigned Taps =T ’ ' ' '
<L > bl
,,Jv m Py Product Maitenance Form
[Stereotypes | | Name: :
| Mapping And Validation _ | jrgs;‘ o
| |s_| Base Properties Layout L od _ —
| New l |=] saive [© Remove ‘
C mapped . - &
|—] Product ° | 1]
|~ #name o |

Figure 7: Screen-shots of models and start templates.

A) ORM DSL + ORM Profile B) Service DSL + Service Profile

v @] glatform; gowet.amdsl/ vecare |v @) platferm:/resource/org wct.servicedsl/medels/service ecore
v @ om ~ @ semvice
2 MaskType < QueryKind
. 2 Tableindeskind . 2 QueryClauseKind
TableRelationType [QueryTree -> Operation, QueryTreeNode
2 TableType [l QueryClause-> NamedElement, QueryTreshods

El TableColumn -> NamedElement
E PropertyMask -> Stereotype
Table -> NamedElement

[Tablelndex -» NamedElement

QueryRetum -> NamedElement, QueryTreeode
GueryTreeMade -> NamedElement
Servicelayer-> Package

ServiceOperstion -» Operation

m
10 [00 (10 [0

[l TebleRelation -> NamedElement SecurityConstraint -> NamedElement
H EntityRelationship © SecurityDesignPrinciple

[] Entity > Package 2 ValidationScope

E] TebleModel -> Model E] SecurityPackege > Packege

&) platform:/resource/org.ufiumi/model/umlZ.ecore

&) platform:/resotirce/org.uf.umlZ/model/umiZ score

C) Action DSL + Action Profile i
v] plat e/argawet actiondsl factiondslecare| & v
v o :‘"’" ~ @ uml
£ CommandType [l Element => XmiParser, conifiable, Observable,
B Actiontvent:-> Event 5 Taggedvalue -> NamedElement
H ActionSpecification -> NamedElement

Stereotype -> NamedElement
Comment -> Element

ActionHandler -> Classifier, DatsType

H SimpleActionHandler -> ActionHandler

MultiActionHandler -> ActionHandler

- ServiceMapping-> Element 5
BehavioralMapping -> Element

5 CommandActionHandler -> SimpleActionHandler

1) [Im (00 O [T

Generalization -> DirectedRelationship
Censtraint -> PackageableElement
PersistentElement

1 [0 {0 [0 [
o

Expression > ValueSpecification, Element
5 TagDefinition -> NamedElement
StereotypeDefinition -> Stersatype
Elntarray (intl]]

EStringArray [java.lang String]]]

% ECharArray [charf]l

1 @

ScreenAreaMapping -> Element
SystemAction -> ActionHandler
o SystemActionEvent > Event

= Controller-> Package

Remote -> Package

linfuil
“h
s 3

o m

D) UML Metamodel as a Core DSL

#) platform/resource/orgavetimockuptamedsl.ecore

&) platform:/resource/argaufii.uml2/model/umiZ.ecore

Figure 8: Metamodels for the representation of MVC-based Applica-
tion Models.

automatically other mockups for Search. The generated
mockup can also be refined in another specifications to
Create a Category and so on.

MVC-based Application Models. An annotated
mockup is an input for model-to-model transformations,
that allows the generation of other specifications in confor-
mity with DSLs, as illustrates Figure 8, used to represent

m ecintemfages>
- TN Sernvice
web View ontrofier
+ save(entty Model | void
S
Model fasstiss i 1
i) [msacteaf [t |
& |
maobile View

Figure 9: Structures for multi-layered application based on MVC.

MVC layers, as illustrated in Figure 9. Figure 8 (A) illus-
trates the metamodel for the representation of Object Re-
lational Mappings (ORM) [22], the DSL for the represen-
tation of business logicand database queries is illustrated
in Figure 8 (B), and Figure 8 (C) illustrates the meta-
model for the representation of actions for the Controller
layer. These DSLs extend the UML metamodel shown in
Figure 8 (D), allowing the representation of annotations
such as tags and stereotypes in conservative extensions.
The Action DSL also extends the MockupToME DSL, al-
lowing the connection between mockups and MVC-based
Application Models.

Multi-layered MVC. Some companies promote the
usage of more layers for better structuring the source code
than those known in the MVC pattern [20]. As illustrated
in the bottom-part of Figure 3, MVC-based Application
Models are structured in multi-layers shown in Figure 9
using some DSLs shown in Figure 8. Likewise, apart from
the Model, the View, and the Controller layers, our archi-
tectural models and the generated source code are divided
in: a) Remote layer - it is a UML Class whose opera-
tions are annotated with tags and stereotypes from the
EDOC UML Profile [40], used to integrate business logic
in a web server with client applications such as mobile and
desktop; b) Validation layer - it is a UML Class whose
operations contain semantics for server-side logic to val-
idate entities and properties, i.e., persistence constraints
and regular expressions represented with metaclasses such
as PropertyMask and MaskType shown in Figure 8 (A);
¢) the Data Access Object (DAO) layer - it is a UML
Class whose operations are conformity with ServiceOp-
eration shown in Figure 8 (B), which allows the represen-
tation of semantics to apply database queries from CRUD-
related actions.

Functional prototype. A functional prototype is a
fully implemented prototype that can be tested in itera-
tion cycles of acceptance with clients. In a multi-view de-
sign approach, a functional prototype is obtained through
the representation of models in a Platform-Specific Model
(PSM) view [8]. Thus, our functional prototypes are gener-
ated after the architectural prototyping phase, after map-
ping mockup designs for an MVC-based model. A func-
tional prototype is result from model-to-model transforma-
tions, manual model refinements and generation of source
code through model-to-code transformations.

WCTSample. This is a web framework that imple-

ments a multi-layered architecture. The framework has 18
basic entity classes to support access control, customizable
CRUDs and filters, functionalities to handle files, and im-
ages that are common features in many web information
systems. This framework was used in the development of
the two systems reported in Section 9.

5.8. Final Remarks

Although we focused and exemplified the design for a
complex use case scenario associated with Maintain prod-
ucts, it is also possible to generate CRUDs for simpler
scenarios [36]. For example, to persist a Category, the
resultant mockup could be as simple as the one illustrated
in Figure 7 without any information of Detail. Thus, the
designer uses a start template and ignores the refinement
templates. Moreover, for the design of simple mockups,
some tasks included in our methodology can be ignored or
partially used. Besides, it is always possible to represent
components in mockups manually, detailing use case sce-
narios with annotations that are not supported in Mockup-
ToME tool. Thus, our contribution for automated design
of mockups is complementary to manual design techniques
introduced by Brambilla and Fraternali [41], Rivero et al.
[12], and Ricca et al. [39].

6. MockupToME Method

Models are represented in different abstraction levels
following a multi-view lifecycle in the MDWE scenario
shown in Figure 3. This approach is discussed from the
perspective of stakeholders interacting with the Mockup-
ToME Method, as illustrated in Figure 10.

Our methodology allows to work with four abstraction
levels of artefacts associated with user interfaces: paper
prototype, mockup model, concrete GUT models (platform
specific), and functional prototype. Because we use more
than one DSL in our approach, its systematization requires
the following four different phases for prototyping:

1. Paper prototyping, which is executed in a require-
ment engineering discipline and represents the first
view from the client about a functionality to be de-
veloped.

2. Evolutionary prototyping [25], which considers the
worst-case scenario about the uncertainty of require-
ments as those found in start-up contexts [13]. This
phase targets the exploratory development [42] of
mockups with different options for clients to evalu-
ate and decide which ones have to be used in his/her
applications.

3. Architectural prototyping [20], which explores mod-
els that represent the MVC layers besides the View
such as business logic, object relational mapping,
and property validators.

4. Functional prototyping [25], which is the implemen-
tation of the source code for a functional prototype
in which clients can perform acceptance tests.

Requirement Engineering Phase

Part | y

Reqguirement Enginesr =
Cllent
Interaction 1

2 @

&=

Use case madels, ”

user story, glossary, .(?” paper

supplementry req. \W prototype
N

Evolutionary Prototyping Phase '

Part Il Q .‘- '
Mockup @& :‘ , Conceptual Model "
Designer \\”é)' . o e ik A Cllerjt

&, : S b Interaction 2
4 H é<'<'/ {for the Worst
Annotated rppaenrend : Start and Refinement ; Case Scenario)
Mockup . Tt GUI Transformations !
Model L L] - S ———
Architectural Prototyping Phase Functional Imple-
Prototyping :
parnnnmneesecanaaann mentation
Part |11 : M2M : Phase
'-:ﬁ : Transformations :
[S Part IV
T SEESED .
% ..<’;<'< A Working
e L Piece
Designer qafts ! of
oy
A i Functional Prototype s Application
| m— : | W
MVC-basea o @& i o
Application — '.'.-.._'_ -
Models o) e i Ttedamaimnavanan -
1 e
—————— : CC€ Client
Client H M2C Interaction 4
Interaction 3 “ Transformations (Acceptance)

Figure 10: Overview of steps proposed for rapid application proto-
typing in four interactions with client in the MockupToME Method.

Not all tasks presented in this methodology are manda-
tory. Thus, the software engineer must decide in each task
about optional elements, such as the representation of al-
ternative mockups for the implementation of a given use
case scenario. The design of mockups for some use case
scenarios associated with CRUD can be complex, involving
a set of specifications for GUIs, actions and entities that
should be represented in synchrony. For example, the use
case Maintain products illustrated in Figure 2 includes
at least two scenarios that should be implemented: Find
and Select a Category, or Create a Category. These
semantics for actions are commonly found in use case sce-
narios for the development of CRUDs and present a stan-
dard workflow. Likewise, we found interesting to assist
the design and refinement of these scenarios through au-
tomated design techniques.

Figure 11 presents our methodology in BPMN. It is
used in every iteration by a designer and developer to per-
form many cycles of validation, allowing iterative and in-
cremental steps towards the development of working pieces
of application. The designer, which is a specialist in mockup
and MVC, refines a generated mockup model choosing mu-
tually exclusive mockup structures from Tasks A to D.

Tasks A and B are fully executed independently of the
complexity of the use case. Considering the worst-case
scenario for use cases, Tasks C' and D are fully executed.
In these tasks, different structures of GUI components can
support alternative implementation strategies, for exam-

‘ 5 L Textual use

e - Case/ user
: : stary

Template Prefimifian:
latalogue riey Maockup

A Firid "Master’ '-E] Use-a Start] Refine the
Entities Template ‘Detalls
Brouser
Prototype .
Ccrnceptual
model [ook B B Generate H_h —
Jaaaa Strateay for Mockup Saurce @
M ‘Details’ Code

Paper
prntntype

. Accepted
: Mockup

kupToME)
Designer

I Layers

Refined
Mockup

............................
Corcrete Ll nmpu:lerﬁs :

i3] Detail the Hj Apply LML “ I| Generate complete
business Logic Profiles “source code

’(_........_._._.-..‘..........“ ;
UL T :
Structural and- FunEl’nnal i
Behavioural . ST b atype [T TTTTTI IR

Diagrams | . Watking

application

Design
' —

plece

¢ < =
I implement Developer } L
{ Tests) ImplementSolution }_O

Developer

Figure 11: MockupToME Method with tasks assisted by tool, allow-
ing the generation of models in different abstraction levels.

ple, different components, layouts and GUI templates for
the same use case scenario. Finally, mockups are refined
to support new suggestions.

A first executable prototype is obtained in Task E: Gen-
erate Mockup Source Code. The generated prototype is
evaluated by clients to ensure that GUI flows and forms
are in conformance with the expected behaviour to a given
functionality specified in a textual use case scenario. Task
F starts the Architectural Prototyping Phase, includ-
ing the generation of models annotated with tags and stereo-
types for business logic. An accepted mockup model is
transformed into a concrete GUI model that is composed
of DSL components supported by specific web technolo-
gies and APIs, e.g., an image chooser component. Con-
crete GUI components are refined in multiple views for
cach target platform.

A functional prototype with is generated from Tasks F
to I shown in Figure 11. The source code is changed to
adjust details, and usability tests are executed by clients.
Differently from the first executable prototype that sup-
ports only the simulation of flow screens, the functional
prototype is fully implemented in MVC layers.

Tasks J and K, performed by the developer, are dis-
cussed in Sections 7 and 8.

6.1. Part I: Requirement Engineering Phase

Use cases and paper prototypes are elicited in late
phase of the software development process and are used as
input to decide whether and how the MockupToME tool

FollectionPanel

Tigwas 1. lmazem e G inla CRUD ¢ List Grrads pela WOT

1 - Manutengdo de Projeto (CRUD) - T

Esterestipn: s Boifes
Mo Rnttpdisom, iUk Enimydotion Deeec Bimdovom, LA stion, (e dztinn Y

oot Fomtd ||| e

Tags mo Cumpaz

Figmra 2t ru.u.n..zmm,.n-\nmi_

irgetDetailCollectionPanel

iy LSt canbend).

ot PrpentL s b

Fteresnpas Nos Batfe:
Meteheresusn ¢ i

Dokt minfmnedsnton, &epedcsim

Taz: nes Bathes
By, Frpesriit

Tags ua Tabela
Ll (A s v | Bt o Tttt B Laad

Figure 12: Template catalogue, used as a guidance for execution of
an assisted design approach through the MockupToME tool.

should be used to automate the design of mockups. Our
methodology starts, in fact, with a planning performed by
a requirement engineer after the first client feedback from
the designed paper prototype and use case.

In case of acceptance from these initial requirements,
the requirement engineer will decide if the inputs are tar-
get for our automated design approach. This is possible
due to a catalogue of templates that give instructions for
design of some structures for CRUDs, List, Filters, and
Reports named Template catalogue. This catalogue is
illustrated in Figure 12 and presents screen-shots of GUI
structures for each classification of use case patterns to-
gether with annotations for Master/Detail. A template
catalogue is used by designers to decide which start and
refinement templates must be used for the assisted design
of a mockup model. The design is performed considering
a paper prototype, making a semantic association among
these three artefacts: template catalogue, paper proto-
type, and mockup model. The mockup is the unique model
from these artefacts, thus this association is not physically
established among them.

The generation of a preliminary mockup occurs by means
of Start templates. In this task the engineer seman-
tically links use cases with start templates. Differently
from the previous case, this link is physically established
through a property of metaclass Mockup, available in the
MockupToME metamodel illustrated in Figure 4. This al-
lows the connection of representations in conformity with
MockuptoME DSL and UML, as shown in Figure 8 (D).

6.2. Part II: Evolutionary Prototyping Phase

In this section, we include a systematization of the us-
age of MockupToME tool in our methodology, by describ-
ing the interactions of the client/product owner with the
designed mockups and its construction.

Figure 11 illustrates the methodology that automates
the tasks between requirement analysis and source code

generation, and this section systematises such tasks. To
perform these tasks, end-users are assisted by tutorials and
supported by tools discussed along the next sections, in
which each task is detailed with: a) artefacts represented
as input and output; b) a description of the associated
model-based tool for design, refinement or transformation;
c) client interactions with the artefacts; and, d) exemplifi-
cations.

6.2.1. Task A: Find Master Entities

Input: Textual use case, Use case diagram, Class dia-
gram, Paper prototype, Template catalogue.

Output: Master entities are included in textual use
cases and related with a use case diagram using a tag.
This is required to keep traces between artefacts.

Description: After a textual use case is elaborated,
the designer analyses the domain classes looking for those
that are characterised as master entities by the domain-
driven design [16] and the object oriented method [17].
Based on the paper prototype, the designer selects the
Master entity from a class diagram shown in Figure 6, for
cach use case to be developed from the use case diagram
shown in Figure 2.

Exemplification: After identifying the Master en-
tity, the designer accesses inputs from Task A to identify
which of the templates from the Template Catalogue is
more adequate to start a design of GUI form. In order to
automatically generate a mockup of type form, Mockup-
ToME takes as input a domain class diagram and, op-
tionally, use cases. Forms are automatically generated
through Start templates, selected in conformity with the
use case scenario selected for development. For example,
use cases shown in Figure 2 stereotyped with «FilterBy»,
«SimpleCRUD», and «CRUDWIithDetail» are target for
start templates, described in the artefact Template Cat-
alogue. Use cases are not-mandatory for the generation
of a mockup because they are used only to instruct and
document, differently from the Master entity. Thus, to
design the solution for the use case Maintain product,
the designer will use the start template Generate CRUD
form, activated on the entity Product, as shown in Fig-
ure 6. The execution of this task is illustrated in Figure 7

(1).

6.2.2. Task B: Use a Start Template

Input: Textual use case, Use case diagram, Class dia-
gram, Paper prototype, Template catalogue.

Output: Preliminary mockup.

Description: As in some web frameworks, many tem-
plates are available as a facility for codification of CRUDs:
some are used to generate a mockup based on forms, other
ones for list and filters, others for reports, between other
structures. Instead of code facility, a start template is
facility for the generation of preliminary mockup models.
The artefact Template catalogue illustrates for the de-
signer possible structures for generation of a Preliminary
mockup. Likewise, this task aims at deciding which start

10

template is directed for the generation of a mockup that
must be developed in each iteration of the software de-
velopment process. Thus, the designer choose the start
template that best meets the structures drawn in the Pa-
per prototype.

Exemplification: The activation of start templates
will display the wizard illustrated in Figure 13: 1) the ex-
ecution of the first step named Select the associated
use cases establishes automatically a link between the
mockup with the selected use case. Note that it was se-
lected the use case Maintain products; 2) The second
step is to select the associations of the master class Prod-
uct that will be included in the preliminary version of the
mockup, i.e., the Details that will be included into the
preliminary mockup. It was selected the association with
Category; 3) The third step is to configure for each se-
lected association a Layout Strategy. A layout strategy is
a template for Details, and it is independent from start
templates and is used to provide a particular layout that
will handle the selected association, thus implementing the
relationship between Master and Detail. It is important
to note that, as long as the paper prototype represents
exactly what the client needs, this step is effective be-
cause the selection of a layout strategy will generate the
mockup with the structure as represented in the paper pro-
totype. However, the effectiveness of step 3 is not always
true, which imply in some cases in which the client will re-
quest another layout strategy. MockupToME is ready for
this situation, allowing changes after the execution of start
templates through refinement templates (see Task C); 4)
The last step is to specify some properties of the mockup
that will be generated after the mockup designer activate
the button Finish.

Considerations: For the generation of a mockup with-
out details, the designer should not select associations in
the step 2. The non selection of at least one association
will make the step 3 unnecessary. The result is a Prelim-
inary Mockup Model with or without details.

6.2.3. Task C: Refine the Details

Input: Preliminary mockup, Master and Details, Tex-
tual use case, Paper prototype.

Output: Refined mockup.

Description: The refinement of the preliminary mockup
is exemplified in Figure 14. The goal is to reach the rep-
resentation of a Paper prototype in a mockup specifi-
cation through refinements. This can happen if the de-
signer selects wrongly the strategy for a Detail in the
screen (3) from the wizard shown in Figure 13 or due
to changes requested by the client/product owner. Like-
wise, after the generation of a preliminary mockup, the
designer can change, if needed, the structure used to per-
sist the Detail = Category inside a CRUD for the Mas-
ter entity (Product), using other alternative structures
for Master /Detail. In case these changes of structures are
not necessary, then the designer apply adjustments in the

% CRUD : ProductMaintenanceform — & —
L ERUDRroduciMeln e CRUD : ProductMaintenanceForm ~ =
Steps. Select th i | I

 Steps Sefect the "Details'

1, Select the associated usa cases I
2. Salectthe Detalle! = e |
3. Specity he strategy

4 Speciy otk propeies

‘ 1, Belectthe associated use tasas
2. Select the "Details”

2 Boecify the stratsuy

& Specify mackup properties

e

[] Sefectall

&) Maintain account
UE Add preferences
V& Maintain products

U mmAnE |

‘

|9

=]

[<prev |[mext> || fwen |[cancel |

°

|[ext>]| smisn \‘ Cancel ‘

5] CRUD : ProductMaintenariceForm = & Ex
Steps Specify mockup propesties

— - category : Category [1.1] || g,

Le| CRUD : ProductMaintenanceform ~ = M| 1 Salettthe sacoriated uss odges
Stops =l Socciy thesiratoey 2 Sefectthe Deails' e
3 Spesifthe strateay

4. Specify mockup properties

Froducthlainten|

Instance name: [productilockup |

1 Selectine associaled se tages
2 Select the Details’

| 3.Specity eay

4 Spedity mockup propeities

Mockuptype: |CRUD ‘v

Assaciation| Layout Strategy

cotegory [ENBEDDED_FORN PANEL] ‘ Designstage: [WTAL |~

x| ¥

‘ Position;

J_o o Widih | Height

[_<prev |[ext> || tuwish || cancel \‘

Documentation:

‘_o [<prev || s> |[Cmsn || cance

Figure 13: Wizard executed by start templates.

mockup specification and follows to Task E. In the worst-
case scenarios, where the designer is not 100% sure about
the acceptance of preliminary requirements represented in
textual use case and paper prototypes, this task may intro-
duce alternatives for implementation of a use case scenario.
Thus, the goal in this task is, in the worst-case of a software
project that presents some uncertainty on the preliminary
requirements, the generation of alternative structures to
support the same master/detail relationship.

Exemplification: In the current format, a product
and its category are persisted in different transactions,
each one having its own Form and Save button, as il-
lustrated in the top-part of Figure 14. This structure
should be changed by the one illustrated in the bottom-
part. Our tool facilitate the application of this refinement.
The transformation of one structure into another is an
easy task since model transformations are available in pop-
up menus executed over each of the elements of designed
mockup shown in Figure 14 (1). Using the drawing area
one can undo transformations to decide what strategy best
fits to express a specific part of functionality. Assume that
the mockup designer selects the option Find and Attach
in the second step and that panel titled Category with a
component to Find something is automatically generated
and configured. In this example, a refinement generated
two mutually exclusive Layout Strategies i.e., Figure 14 (1)
and (2).

Strategies to Refine Details in Associations of
Type (0..1): The use of different strategies to handle the
same master/detail relationship are shown in Figure 15.
Given that compositions between master and detail, enti-
ties can be implemented with different structures as well
as using different GUI components. Templates for De-
tail are called refinement templates and support flexi-
ble mockup constructions. Figure 15 (1) shows the struc-
ture generated using a refinement template called Embed-
ded Form, Figure 15 (2) shows the structure generated us-
ing another called Select Single and Attach and the
third is called Find and Attach. The original strategy il-
lustrated in Figure 14 (1), whose template is called Inde-
pendent Form, will persist data from Product and Cate-
gory in different database transactions. The strategy used
in Figure 15 (1) owns semantics for actions (i.e., annota-
tions) that dictates that, when the Save button is pressed,
then the data from the Detail = Category is persisted in

Preliminary

Detail = Categor
Mockup gory

Master = Product

Product own data| catego-ry I Product own datai‘ category "

MName: li Name: L ; |
———— R FreeText: | |
i (BB Le & i [a8] '

Changing strategies of the association » (RSN TURIN

. Position
i Up position
I Down position

Embedded Form
Find and Attach
Select and Attach

Properti frqm aegprv:

{11 ‘

[name Master = Product
Mapped Property to the Field: Product Maintenance Form
i product.category Name: § q
I Category
Refinad Search o
Annotated Detail = Category
Mocku, M = =0
o - N = N]iJ
. # Chan ratagiss of he association b
) Independent Form «,* Position
' Embedded Form I Up position

® Find and Aftach
1 Select and Attach

I Down posiiion
‘ {7 copy

Figure 14: Steps to refine annotated mockups: changing refinement
strategies to handle associations.

the same transaction as the data from the Master = Prod-
uct. The Select Single and Attach, shown in Figure 15
(2), owns semantics that dictates that all the Details = in-
stances of Category will be loaded from the database, in-
serted into the combo-box, and the selected one is merged
with the Master after the button Save is pressed. The last,
shown Figure 15 (1), owns semantics that allow the user
to specify a filter for the Detail, merging the detail into
the master. These annotations and the associated UML
Profiles are discussed in Section 10.

Success Scenario: Assuming that in the Paper pro-
totype the drawing is similar to the strategy shown in Fig-
ure 15 (3), the designer must now detail the actions from
end-users derived from this mockup. Thus, the use case
Maintain products presents the success scenario namely
Find and Select a Category that must be detailed. Task

11

o Select Single and Attatch o
| ProductBase Data |

Category Category
Hame: [setect | -l
- Name: |’7|

|Mame: | |
o - " |l Category [CONTAINER trus]
¢ B Assigned Tag:
{ } LayoutSerategy vlue=SelectSingleFromDerai
{) GurByld value=PropartyTd=1len o5 EntityTd
{ } Propertyld value=llonce @l Assigned Stereotype:
&3 DulosdAstion
¢ > DisplayablsLocation

Embedded Form
| Product Base Data |

i | Category [CONTAINER truc]
¢ Wl Assigned Tag:

{ } LayoutStrategy valus=
EMBEDDED_FORM_PANEL
¢ i) categoryPanel
PaddingLayaut
¢ [i| Selacr: [COMBO_BOX.trug]
Find and Attach — - category : Cazegory [1.1]
o Ge

S ——— Hiesarchy valua=#El Byld=
| Product Base Data | i

{ } Propertyld value=Ilon-ce3
{ } AsescistionEntityld value=36d-ce3

| Catesory [CONTAINER true]
¢ 8 Assioned Tag:
{)} LayourStratesy value=FIND_SINGLE_FROM_DETAIL
{ } GerByld value=PropertyTd=1lon-ce5ecaB36c1523013a505d
{) Propertyld velue=1lon-ce5c2f936c1523013a505db2

Category
P || da]

Hame: i |

Figure 15: Layout strategies for 0..1 relationships.

C is useful for detailing this success scenario for such a use
case, as illustrated Figure 16. This is because through the
refinement templates we can assist designers in the mod-
elling of the sequent mockup, designed for the implemen-
tation of another associated mockup that Find and Select
the category, required for inclusion in a product. In this
example, the mockup shown on the right side of Figure 16
(A) is automatically generated through a refinement tem-
plate associated with the button Find.

Alternative Scenario: Task C is important for de-
tailing alternative scenarios too. The use case Maintain
products presents an alternative scenario for the case when
the category is not found through the the mockup shown
on the right side of Figure 16 (A). Thus, the category must
be created so that the end-user re-execute the success sce-
nario. Assuming that the paper prototype presents a
GUI similar to the one shown on the right side of Figure 16
(B), the left side of this figure shows the popup menu from
MockupToME tool that allows the execution of the appro-
priate refinement template. This is possible because the
designer add a new button on the form for Filter. This
button is stereotyped as «EditEntityAction», which al-
lows for our tool to associate and recommend refinement
templates for detailing the action in a new mockup.

6.2.4. Task D: Select the Strategy for Details

Our tool support is important for the execution of a
creative and incremental design process in MDWE, allow-
ing for designers to explore use case scenarios. This is
important when some functionalities present uncertainty
on the requirements. For example, the case that the client
changed his idea about the implementation of a scenario
developed in a previous iteration and also along the same
iteration. This is a little bit common in start-up con-
texts [13]. In this case, the designer should consider changes
before starting the design of models associated with new
use cases or the architectural models, discussed in the Ar-
chitectural Prototyping Phase. When this worst-case sce-
nario occurs, then it is important to apply the changes

A) Implementation of the Success Scenario

Filter Category
i By name:
Master = Product —
| Fariner.. |
Product Maintenance Form : =
Name: § i Categories
Category 1a Name FreeTest
Search ‘ &
Detail = Category :
[=] | | & Attach Selocted With Product | (@)
B) Implementation of the Alternative Scenario
¢ |i | Add Cazegory [BUTTON rue]
< » EditEntityAction
=i Modify the text { Category Cadastre
L Rename the variable i Mame:

) Ungroup Free Text

2> Reload vision

[]

« Hide the component — =
|} New ‘_ [={ save [.. © Remove

L4 Options ...
4+ GUI refinement templates)‘ Specify GUI Flow
Layout transformations » Generate CRUD and Lisl:'

Category Filter

“1« Position | Generate CRUD Pro Keyword:
I up position Category name: [

Down position - 1
}VU = @ Search
] Copy :
d cut Category List
(i Pasto Neme | FreeTent \
= Delete

Figure 16: Implementation of scenarios for the use case Maintain
Products.

in models, starting by modifications in mockup specifica-
tions. Thus, Task D is defined in MockupToME Method
for designers to deal with this situation.

Input: Refined mockup (i.e., with different GUT struc-
tures).

Output: Refined mockup (i.e., with selected compo-
nents).

Description: This task is executed only if the de-
signer includes in Task C options for Master and Detail
that should be re-validated by the client, otherwise, the de-
signer should skip it and perform Task E. Task D is useful
for the worst-case scenario, when textual use cases and the
paper prototype present uncertainty from the point of view
of client. The designer may alternate between strategies
used to structure each association owned by the Master
entity. Then, options available for the designed mockups
are accorded between client and designer in a second cycle
of validation. Besides, considering the worst-case when re-
quirements change with frequency among iterations, thus
needing to change models designed in previous iterations.
It possible to undo a refinement performed in Task C and
also to select which strategy better meets to the requested
change in a new iteration.

Exemplification: Tasks C and D allow the execution
of an iterative and incremental design approach, always
updating previously designed models and keeping them
synchronized along the execution of iterations. Consider
the mutually exclusive layout strategies shown in Figure 14
(3). Each menu item will select one of the layouts shown in
Figure 15, which may occur in worst-case scenarios. Tag

LayoutStrategy=xyz shown in Figure 15 (1-3) provides
semantics that links to the adopted refinement template.
Note that, after the selection of a strategy for each Detail
relationship, mockup components are not removed, but de-
activated. These elements allow to group and select strate-
gies for Master and Detail. In case a sequent refinement
is needed after a selection, than the mockup designer will
detail the sequent actions, starting a new instance of the
proposed methodology. For example, if the selected strat-
egy is the one illustrated in Figure 17 (2), the warning icon
associated with the button decorated with the Find icon
suggests that this component needs refinement. In this
case, a new mockup annotated with «FilterBy» must be
specified and associated with the Find button. This is a
very similar situation to the use case List products by
preferences, shown in Figure 2. MockupToME assists
the designer in the representation of the sequential refine-
ments, allowing the automatic generation of new mockup
shown in Figure 17 (3) and the specification of the Filter
operation shown in Figure 17 (4) with the help of a wizard.

Client Evaluation: Through the popup menu items
shown in Figure 14 (3), and together with the mockup de-
signer, the client can interact/simulate with the mockup
before the source code is generated, deciding the best struc-
ture for a mockup. In the case of non-acceptance or correc-
tions in mockups, previous tasks are executed again until
the client decide for a specific structure. In the case of
acceptance, the next task is executed. Thus, following
the motivating example, assume that the client has se-
lected the option Find and Attach, resulting in an accepted
mockup as illustrated in Figure 14 (2).

Final Steps: After client acceptance, GUI compo-
nents are more detailed, components are standardized in
size, position, font, etc.

0.2.5. Task E: Generate Mockup Source Code

A choice made by the client about strategies in mock-
ups will allow the mockup designer to generate the source
code. This codeis used to apply the first test of a runnable
prototype (a Browser prototype generated directly from
a mockup). Thus, associated with the previous tasks,
only active mockup components are considered during the
source code generation.

Input: Refined mockup (i.e., with different structures).

Output: Browser prototype, accepted mockup.

Description: The execution of Task E implies in the
use of a model-to-code transformation that generates source
code for HTML 5 directly from mockup. This transforma-
tion is simpler than others performed in Task F, which
includes model-to-model transformations from mockup to
multi-layered model elements named UML Structural and
Behavioural Diagrams. In this case, only the view layer
is generated as source code. In the next phase it is also
possible, using model-to-model transformations, to gener-
ate what we call Concrete GUI Components, character-
ized by other models in conformity with three other DSLs

13

for GUI (Desktop, Web and Mobile). Both transforma-
tions enable the simulation of GUI’s flows and user inter-
actions in a web browser. Thus, the client evaluate the
Browser prototype and, in case of acceptance, the next
prototyping phase is executed.

6.8. Part III: Architectural Prototyping Phase

Tasks A to E are used to generate the first compiled
prototype based only on mockups. Tasks F to H aim at
generating other model specifications that connect GUI
DSLs and business layers implemented with MVC-based
models. Therefore, instead of using only the Mockup-
ToME DSL and entity classes/use cases discussed in the
previous phase, the architectural prototyping phase in-
cludes model specifications considering heterogeneous DSLs.

In this section; we introduce the underlying architec-
ture that implements the MVC pattern. We separate the
business logic from the controller layer to better modular-
ize the source code. Thus, the semantics for business logic
is placed in a UML interface stereotyped as «Servicey.
This interface is implemented by other layers such as: a)
Remote; b) Validation; and, ¢) DAO.

The architectural prototyping phase represents the tran-
sition from mockup specifications illustrated in Figure 17
(2 and 3) to other MVC-based layers illustrated in Fig-
ure 17 (4-9) which, follows the structures of a multi-layered
MVC. In this phase, models in (4-9) are generated and re-
fined, e.g., detailing properties of GUI components that
are not possible to be represented in mockups. In our
first MDWE approach dating back 2008 [43] we used to
represent these models manually. Due to the introduc-
tion of evolutionary prototyping, these models are now
automatically generated. Besides, in this stage, the client
has already accepted the designed mockups. Thus, this is
the correct moment to detail elements associated with the
MVC.

6.3.1. Task F: Generate MVC Layers

In this task, mockups are transformed into MVC-based
model application layers as follows.

Input: Accepted mockup.

Output: Concrete GUI components, controllers and
services, UML structural and behavioural diagrams.

Description: Once the mockup model is validated
and a structure for a mockup is decided, the process to-
wards generating a functional prototype can be executed.
This implies in generating all web information systems lay-
ers considering the selected domain features. Figure 17
presents the generation of other layers of the MVC from
mockups. Some of these layers are represented with UML
Profiles (Entity and Service) and others with DSLs that
extends the UML metamodel (Controller and View). The
execution of this task outputs the following artefacts:

Concrete GUI Components. MockupToME DSL
have few properties to set GUI components, thus in a
high-level of abstraction than target platforms, e.g., Mo-
bile, Desktop, and Web. To represent a GUI in a target

Filter Category —
L ' o Mockup 1 |l o~ CategoryServiee]
o Model Master” P By name: n _— b B Assiged Sressotypes o Service 2
Master = Product — o il Assisned Tag=
] 4 Filter ... + BlterCategoryByName(:String)- Category[0. *
LR = Product Product Maintenance Form | e e | ® -t Ei © ‘;‘j”B?" (String)-Category[0.1]
m ¢ @ Assioned Stereotypes
name Name: § 3 Categories or 1o,
~—+ . category :Category [1.. Category 1d Name - F;ee}.’eq ¢ # argh-Sering
Search 7 : \ b B Assigned Tass
| I - - o Mockup 2 B N { } PropertyldRefvalue=8g3-ce5oef
Detail = Category 1 N {) QueryKind velue=Tike

9] Category

|.. # attach selected With Product

i @uiewt
¢ [E] Product Bass Dats

namsTEXT_FIELDProduct |
A# namelabel :

o Controller 1

% ProducrMultidctionController .~
o |l Ascigned Tage o [en
¢ i shovProducznzegeicaForm

9 i 2aveProductiction

¢ W Assioned Stersotypes
¢ > SeveDrUpdateEntityAction
9 il Assigned Tege :
{ } FormlId value=IFSim23r3] L+ ww TeavedndMerge(-Product Categary} Product
=] Product] = 9 ¢ > SuveDrUpdateAndMerse
@— ProduetService " ¢ # product:Product

o Service 1

©— ProduetService

« » Servies

i = sveOrUpdatsipraduct: Product { } SaveMaster value=trus
Event saveProduct Action [

¢ DEFAULT VIEW : DEFAULT_VIEW

+ category=Category
{)} Propertyld value=1lon-cedcef
¢ » EmbeddedEntity

ProductMaintenanceForm

o Controller 2

{ CategoryMultidctionControllar *

¢ mee GlterCategoryByName_ CategoryFilterAttatchToPr

o View 2

[B] Fiteer Caregory

PaddingLayout
| Category ¢ w memeTEXT FIEIDCarsgory
©—= CategoryService 9 Bl Assigned Taez

{)} OperationParsmeterld value=0hL B4=P3i
#name : Sering

A# nameLabel

7 [B] SterFicldAndSearchButtonPanel
[F] Flow Layouz

¢ [®] searchButton

wm + filterCatagoryByNams(-String)-Category[0. %]
[ZZ] Event flterCotegoryByName
¢ DEFAULT_VIEW : DEFAULT_VIEW

[_a managerauth

(73, customerauth

Autharity, | Actor |vis, | Edi.|Enai Logar.] Event flterCategoryByName

JmanagerAuthi-

M. W [| B [O
clb [LT[0I] [

customerauth 'i

Figure 17: Design elements represented through the methodoloegy in support for the use case Maintain Products.

platform, mockups must be transformed by means of spe-
cialized DSLs. Thus, three DSLs for GUI can be used
and are supported in our set of model-to-model transfor-
mations: 1) the Web DSL; 2) the Desktop DSL; and, 3)
the Mobile DSL. Figure 17 (6 and 9) shows the elements
generated from mockups (2 and 3) conforms to the Web
DSL.

Controllers and Services. The buttons specified in
mockups own semantics for actions. For example, the Save
button allows to persist entities and the button Filter al-
lows to query a database. These buttons allow us to infer
the flow between the user interfaces. For example, Mock-
upToME keeps a trace/flow that connects the mockups
shown in Figure 17 (2 and 3). Another example of in-
ference is the button Save, that for the success view will
show the List Form and for the error view will show the
Crud Form. Based on these inferences, Controllers (see
Figure 17 - 5 and 8) and Service interfaces (see Figure 17
7) are automatically generated. Controllers are in confor-
mity with the Action Profile, a DSL that extends the UML
we have developed to handle actions commonly associated
with the Spring Framework, e.g., simple form controller,
multi-action controller, command controller. Service inter-
faces are in conformity with the Service Profile, a DSL that
extends the UML to represent database query semantics.

UML Structural and Behavioural Diagrams. Each
application layer derived from the Service or Controller
models belongs either to validation, or to persistence, or to
remote operation calls, and are generated only when Desk-
top and Mobile DSLs are used. Figure 18 shows three lay-
ers derived from the interface ProductService represented
in a UML sequence diagram. This diagram is optionally
represented for use cases that are automated through our

methodology, because the model, view, controller and ser-
vice layers are already linked during the transformation
from a mockup (see Figure 17 - 5, 6 and 7). For manually
designed functionalities, the messages between these layers
must be manually annotated. The exemplified messages
define flow and business logic operations related to entity
Product: < (ProductRemote or ProductMultiActionCon-
troller) + ProductServiceValidator + ProductSer-
viceDAOHibernate.

Generation of Platform-Specific Models for GUI.
The GUI components represented in a mockup model are
conform to the MockupToME DSL, and must be trans-
formed to one or more platform-specific models for GUI.
For example, if requested by the client, the designer must
select a mockup model and execute a specific model-to-
model transformation to generate a specification in confor-
mity with the Web DSL. Thus, the designer can transform
a mockup to one or more DSLs for GUI: Web DSL, Mobile
DSL and Desktop DSL. Each platform-specific model for
GUI must be manually enriched with details from each
DSL. If transformations for desktop and/or mobile plat-
forms are executed, then the generation and refinement of
a class from the Remote Layer is required [44], which al-
lows to apply remote connections between devices and the
web server. Therefore, this approach allows for designers
to represent details from each platform supported in the
underlying implementation framework.

Exemplification. For applications that run in a desk-
top platform, the designer generates a model in confor-
mity with the Desktop DSL, used in the end of our model
transformation lifecycle to generate source code mapped
into the Java Swing API. The multi-layered architecture
allows remote connections from client platform (Desktop)

14

| ProductServiceRemote | | ProduciSeniceValidatar | | ProductServiceDAOHIbernate |
Ulser Deskl‘up\flew T
| 1 save() | }

Py 1.1 saveAndMerge() ‘Vﬂld
.

1.1.1: saveAndMergs() void
B

Validation « Persistency Efception

Remoting + Validatibn + Persistency Exception |

| |
1.20[excepfion] doProcessUserFriendlyMgssage()

[|

[

I

Figure 18: Message call to process the action saveAndMerge in the
underlying multi-layered architecture.

with the server platform. In case of platform-specific mod-
els for GUT in conformity with the Mobile DSL, the archi-
tecture works in the same way. We have already tested
it through remote http connections, linking mobile devices
programmed with J2ME API and the web server with re-
mote calls, as exemplified in Section 7.3. Thus, the Remote
layer delegates operations to a validation layer which is
hosted by the web server. In the case of exchange of View
platforms in the client side, e.g., instead of GUI developed
for Desktop use GUIs developed for Mobile devices, at least
the validation layer and persistence layer are reused.

Client Evaluation. Two model elements generated
in this phase are important for client evaluations. A) the
concrete GUI components which, for the reported expe-
riences in the next sections, uses the Web DSL. The model
associated with the artefact concrete GUI components
is, therefore, a DSL in a platform-dependent model view
for GUI in a lower abstraction level than a mockup, which
is a platform-independent model for GUI. This model owns
a unique structure, does not have deactivated components
neither master/detail properties, and its components are
able to store specific properties that the mockup does not
support, such as events, layout, and appearance proper-
ties. B) the controller layer, in which action/event compo-
nents are defined also as a domain-specific models. Thus,
with these two generated elements and considering only
the use of Web DSL, a second browser simulation can be
performed by clients considering the View and Controller
layers.

6.3.2. Task G: Detail the Business Logic

Input: Concrete GUI components, controller, master
and detail entities.

Output: Controller and GUI components with au-
thority mappings, service UML interface.

Description: This task intends to generate other spe-
cific model layers that are mostly mapped into the DAO
layer, to constraint controller layer access, and to con-
straint GUI fields with security details. The bottom-part
of Figure 17 shows a piece of the wizard to annotate the
Controller model responsible to represent access constraints.

[® orRM Wizard

| Mapping from class to table

[@ Category Annotated With the ORM Profile

] Category
| Attributes OR mappings 9 BB Assigned Stereotype:z
o <> entity

9 B Assigned Tage

{) InheritanceType value=TablePerConcreteClazs|

{) Serializable value=true

{)} TableName value=TB_CATEG_DS

{) IdClazeId value=UUpGOTCEn0Fgcd5ymjeU6]]

? #id:int

Select The Primary Key
|| Auto Incremental
[_] Auto Incremental
Defina as restricoes nas colunas que possam ser (indi...
Property Index Is Primary K. Unique |
|freeText |] | [m]]
lid J v

[name | | v] v

9 BB Assigned Stereotypez

> PrimaryKey

o [l Assigned Tage

{ } AutoIncrement value=falze

° Generated Id Class

v O T

9 E# Assigned Stereotypes
> IdClazz

° # name : String

9 B Assigned Stereotypez

o <> UniqueKey
? #id:int) £

Asiignsd & < > PrimaryKey

Aszigned Stereotypes

B Assigne oAty o @ Assigned Tage
<> PrimaryKey
) { } AutoIncrement value=falze

? # name : String

o # freeText : String
9 KB Assigned Stereotypez - -

) - — - client : Client
<> PrimaryKey

«— - product : Product

Figure 19: Entity layer annotated with the ORM Profile with the
help of a wizard.

For an example related with the controller operation, as-

sume that functionality = elements 4, 8, and 9 from
Figure 17. This example shows that the actor Manager has

full access to the functionality Filter Category, while

the actor Customer can only visualize it.

6.3.3. Task H: Apply UML Profiles

This task is assisted by wizards such as the one exem-
plified in Figure19.

Input: Domain-Specific Models (Concrete GUI com-
ponents and Controller layer), Elements Annotated With
UML Profiles (Model layer and Service Interface).

Output: Input elements with more annotations to al-
low the execution of platform-independent model to platform-
specific model transformations.

Description: This task is optional, since one can be
interested in transform domain-specific input models into
UML models. Besides, aiming at generating a more com-
plete source code, the designer can specify some details
such as annotations, not generated by previous transfor-
mations. To represent annotations for ORM, it is used
a wizard to decorate entities. This is exemplified in Fig-
ure 19 (1), where a wizard allows the generation of an Id
Class in Figure 19 (2) followed by a guided annotation,
resulting in the annotated entity named Category as illus-
trated in Figure 19 (3).

Source Code Generation: Model-to-code transfor-
mations are applied against the input elements to map
them to the Java architecture used by the development
team. This transformation enables the generation of a
functional prototype, since all layers are generated as source
code. Afterwards, source code is refined by programmers
and then tested. For example, ORM annotations are used
to generate Java classes decorated with the JPA [22], as
exemplified in Section 7.

Client Evaluation: Finally, the client performs his/her
forth interaction for the acceptance test. Then, improve-
ments and corrections are made in the generated functional

prototype, delivering a working piece of application, the
last software artefact as shown in Figure 11.

6.4. Part IV: Functional Prototyping Phase

A fully executable piece of software is obtained in this
phase, where generated prototypes are target for accep-
tance tests. These artefacts are then detailed and used
by a development team. Using model-to-code transfor-
mations it is possible to generate functional prototypes,
which can be tested by clients in web browsers. Therefore,
a functional prototype is a fully implemented functionality,
e.g., considering the implementation of database transac-
tions and queries, which must be tested by clients in a
real-world scenario.

6.4.1. Task I: Generate Complete Source Code

Input: All aforementioned models.

Output: Source code for MVC-based layers.

Description: The result is a fully testable platform-
independent model prototype. This is achieved after the
usage of a platform-independent model to generate platform-
specific model transformations. This means that all strate-
gies used in annotated mockups imply on the use of dif-
ferent transformations from platform-independent models
to platform-specific models. Currently, model transforma-
tions enable the generation of source code for the following
layers:

1. Model-Entity layer with support of object-relational
mapping details;

2. Controller-Business layer with support for transac-
tions involving the service/business layer and calls
for a remote access layer;

3. Controller-Persistence layer with the layer for han-
dling the data access object;

4. Controller-Actions layer to handle GUI events;

5. View layer in the client side application.

Figure 20 illustrates components that, except for the
Model-Entity, implement aforementioned layers of a func-
tional prototype. Thus, as part important of the Func-
tional Prototyping phase; Section 7 provides information
about the implementation of these components.

0.5. Final Remarks

It is important to mention that the usage of model
transformers to refine mockups is a practice that can also
be used by other MDWE proposals. Thus, the concepts in-
troduced in MockupToME for semi-automated refinement

of mockups are general and useful for researchers and prac-
titioners of MDWE.

7. Implementation

The aforementioned automated design tasks were used
in the development of real-world web information systems.
In this section, we present implementation details, includ-
ing artefacts generated in the Functional Prototyping Phase.

16

Client-Side Application Server-Sids Application

WehGlls &) Web Confrollers &7

; Pr ViCH i
I
EDOC LML Profila ! Validator Classes 8]

:7 Service

Desktop GUIs - &7 & Remating Classes & |

R =

| #1
|
I
} ProductServiceDAOHibernate
I

Mobile/MIDP GUIs &7 N Limited Remoting &7 | DAO Classes -]

Figure 20: Component diagram describing the architecture.

7.1. Underlying Architecture

Following the motivating example, this section exem-
plifies the classes that are generated from the models rep-
resented in the Architectural Prototyping Phase. These
classes are connected in a logic flow illustrated in Figure 18
as a UML sequence diagram. For GUIs developed for
Desktop or Web platforms, these method calls are similar.
Both GUIs will delegate the processing of business rules for
a Validator class hosted in the web server which, in turn,
delegates the task of persistence for the persistence layer.
This flow between layers is performed/injected by Spring
Framework. When one need to change something in the
application regarding the business layer, it will be made in
the control layer xxxMultiActionController, and/or in
the validation layer xxxServiceValidation, and/or in the
persistence layer xxxServideDAOHibernate, where xxx is
the name of the associated entity. Actions found in screen
flows will be handled in the controller, or in action lis-
teners developed for Swing or in commands developed for
J2ME/MIDP.

The generated source code includes the GUI layer for
Mobile, Desktop and Web platforms, data access layer,
entity layer, integration/remote layer, xml configuration
files, text files, Java classes, data base scripts, models, etc.
The following configuration of technologies from the un-
derlying target platform are used in WCTSample, the pre-
configured MVC framework for web development used in
our experiences, which is composed by: Hibernate, JPA,
jQuery, JSTL, Swing, PostgreSql, Apache Commons Vali-
dation, and Spring Framework. This architecture is flexi-

ble and supports changes through the FOMDA Approach [34].

For example, the following technologies were changed in
the underlying implementation of WCTSample across soft-
ware projects: 1) first, software projects dating back 2008
used HBM files to apply Hibernate mappings (ORM) and
in recent projects JPA was used; 2) the first software
project was developed at Adapit adopting Dojotoolkit API
as web technology to write rich GUIs, and in the second
project we used jQuery.

7.2. Generated Source Code

Figure 21 shows the resultant GUI from the overall
methodology. This GUI is executed in a web browser and

Product Maintenance Form

Mokille/MIDP GUIs - &

Name!

‘ Category
’7 Search

save |5

—— 1 ‘| Limited Remating E|| | Wb Gontallers &]

Exit ‘

Figure 21: Resultant GUIs executed in a mobile emulator and in a
web browser.

represents the functional prototype for the use case Main-
tain products. Behind this simple GUI, several applica-
tion layers based on the MVC connects GUI components,
action and flow handling, field validation and database
persistence. These layers are presented in the following.
The source code generated for the entity Product is
illustrated at the center of Figure 22. Note that a dashed
line includes the mapping from tags and stereotypes from
our UML Profile for ORM to the JPA representation. Be-
sides, XDoclet comments such as the operation getName
are also mapped into the Apache Commons Validator API,
which automatically validate GUI form fields. As long as
the MVC designer specifies ORM annotations using the
wizard shown in the right side of Figure 22, the source code
generated for Entities will not require manual changes.
Figure 23 exemplifies the source code generated for
the Validation layer located in the server-side. Each ac-
tion/button specified in a mockup that semantically sub-
mits a form, e.g., «SaveOrUpdate» and «FilterBy», also
presents an implemented operation into the xxxValidator
class. The implementation of the operation saveAndMerge
delegates for the Spring Framework API the checking if the
data from the instance of Product are valid. In the case
it is valid, then the operation delegates the task to persist
the instances of Product and Category to the DAO Layer
(injected into the property productService). In case of
invalidity, then an exception is thrown to be handled in
the client-side, where a GUI will presents a user friendly
message. The developer is free to include a specific valida-
tion in source code if he/she needs. Thus, this operation
do not require changes to work in a functional prototype.
Figure 24 shows the implementation of the DAO layer
with the Hibernate. Soon after opening a database trans-
action, the instance of entity Category is set to a persistent
state: session.refresh(category). This clean any in-
formation owned into the parameter category except the
primary key. This is due to the stereotype «Embedde-
dEntity» assigned by the parameter illustrated in the top
of Figure 24, automatically generated along the transfor-

17

mation from a mockup to the Service UML Interface. This
operation do not require changes to work in a functional
prototype.

Figure 25 shows the source code required to handle the
action saveProductAction. This action is mapped to the
button Save from the JSP source code presented in Fig-
ure 26. The operation saveProductAction first binds the
request parameters into the properties of the entities rep-
resented in the mockup, then it propagates the validation
and persistence for the other layers. The last part of the
source code is dedicated to process exceptions that came
from the Validator and DAO layers. Note that the valida-
tion is delegated to the Validator layer, which is injected
into the property productService. This controller has a
considerable amount of source code because it was gener-
ated based on the Multi-Action controller from the Spring
Framework, which have several operations.

The source code for JSP [22] is shown in Figure 26. The
top-part of Figure 26 (A) shows the header information in-
cluded in all root JSPs, e.g., the ones directly associated
with a mockup, with the information necessary to use the
access control functionality from the WCTSample frame-
work. The bottom part of Figure 26 (A) shows the source
code that maps the properties from entity Product, e.g.,
id and name. Figure 26 (B) shows the source code for
pane Category which associates the action of button Find
to the controller CategoryMultiActionController.

7.5. Implementation for Mobile

These source code illustrate the minimum artefacts gen-
erated by our approach in the development of a function-
ality for web information systems. However, other devices
can connect with these functionalities available on the web
server. For instance, the web server can provide access
to external components, such as GUIs developed to run
in mobile devices and in desktop applications. Thus, our
model transformation lifecycle supports the generation of
GUIs programmed with J2ME and, for desktop applica-
tions, programmed with J2SE. Thus, two other DSLs are
important besides Web DSL: the Mobile and Desktop DSLs.

We demonstrate the worst-case scenario on the refine-
ment of a model in conformity with Mobile DSL. The
connection between MockupToME DSL and Mobile DSL
is through transformations, as illustrates Figure 27. The
first DSL holds richer types of GUI components than those
available in the Mobile DSL. If a GUI for mobile platform is
needed, then the designer executes a transformation from a
model 1, which is in conformity with MockupToME DSL,
to another model 2, which in conformity with the Mo-
bile DSL. This transformation is illustrated in Figure 27
(1) and shows a piece of a model-to-model transformation.
The result is the model 2 shown in Figure 27 (2).

Mobile DSL represents the J2ME profile named CLDC,
thus for a limited GUI API. Because model 2 owns less
representative GUI components than the Mobile DSL, there
is lost of information about layout from transformation

Inharitancelype. JOINED)

ORM Wizard

ORM Profile : = = N T
. Happeng from class (o tadke | Altibutes OR Assocaton Ot
name = "PRODUCT GEN", allocaticnSize = 1, el Mt
- initialValue = 1, seguenceName = "PRCDUCT Seq”) Instractions. ~ EatityMagping - Dgeasator
b 5 Producr public class Product implements Serializable { Transszat ® Sequince
e Lot S ® Persistont Table
¢ M Assigned Stereotypea- Tl Used By Enttes
o <> entity st o . (strategy = GensrationIvpe.SEQUENCE, | T
. o7 +'generator = "PRODUCT GEN"
7 B Assigned Taga private Integer id; i T e b
: . oeralization Type Tal S
{) InberitanceType value=TablePerConcreteClasz .-* o ¥ Secializable
PR n (name = "PRODUCT NAME") Single Table (Large Table) N
{)} Serislizable value=true . SEeEHg HRREE % Creates a now Table fo Each Subciass
¢ #idsint) Creates a new Table With Constrasns to Each Subiclass
+ B Asigned Starsorypes i = (targetEatity = Category.class) e
i private Cavagory category: ‘ e
¢ > PrimaryKey.-" : Prefarred Table . TE
¢ B Assigned Tage public String getName() { Definia s restrighes as colunas que possam ser ind...
e v 2 r retarn name: IPA Progery | inds: _|isPomayK | Uriue |
{) AutoIncrement value=true-* i] g 0 ! i
= rame
¢ # name : String i |
9 Bl Assigned Stereotypes -
- - . peframsinn 5 - rom 10/ As! i AD(ER
<3 UniqueKey - g SRR i Wipyieg rom chiss lotatte [(NWINRS ORISR Associemon Ovimapetngs | Moars
¢ » Validation----"*" ; public void setName (String name) (’ JProperty K ma Momo Cusiomsizeton
o [l Asigned Tage 2 this.name = name; 15 Transieat
: ¥
§ —* -category:Category : Category [1..1] 1 7 Uses Vadation? Validation e M Sz M Sizz:
§ Assigned Ta, 2 y S - -
KLy, it o e = P -{f ¥/ 15 Required EMAL > e | 1=
{)} RelstionalAszociationMapping value=5ingleOneToOne | =
’ ¢ Progesy s Requred Mn Soe eS| VabdaonRule
& (strategy=InheritanceIype. JOINED) a . 1 |
‘., public class Category implements Seriaiizable{ oams 4 1 o TEMAL
v (targetEntity—Product.class, IPA
mappedBy="producc") Coavert to assaciation
private Collection<Product> products:|
Column Constraiats | Column Hamme Customization | Columa Details
¥

Figure 22: Generated source code for the Model layer implemented with JPA (2.0).

public class ProductServiceValidator implements ProductService {

private FroductService productService;
private BeanValidavtor wvalidator;

ref="prod

public ProductSsrviece getProductService() {
return productServices

de
public. Product savelndMerge (Product product, Category category)
throws FieldMsgValidationException, ValidationException,
NonUniqueGbjectException, ConstraintViclationException,
DataException, Exception{

BindException errorsl new BindExcept

validater.validate (product, errorsi);

if (errorsl.hasErrors()) {
throw errorsl:

Figure 23: Generated source code for the Validation layer imple-
mented with Springframework and Commons Validator.

from model 1 to model 2. For example, the transforma-
tion illustrated in Figure 27 (1) show that a component
instance of ScreenLayoutSpecification (in conformity
with MockupToME DSL) is transformed to another com-
ponent instance of Form, which is in conformity with Mo-
bile DSL for CLDC. While the first supports layout man-
agers such as a flow layout, used to centralize components
such as the button Save illustrated in Figure 21, the sec-
ond does not support layout manager. This component in
model 1 in conformity with MockupToME DSL is of type
Button, while for the model 2 it is instance of Command in

public olass ProductServiceDEOHibernate
extends HibernateDaoSuport implements ProductService {

]

towired

private SessionFactory sessionFactory;

public List listByCategory(String categoryName)
throws DataficcessException {
String name? = "%" + categoryName + "E";
return ocpen3ession() .createQuery(
"from Product product " +
"wners product.ctegory.name like ?7)
-SetParameter(0, name2).Ilist():

public Product savelndMerge (Product product,
throws FieldMagVzliidationException,
NonUnigueObjectException,
ConstraintViolationException,
DataException, Exception{
org.hibernate.Session session = openSession();
tryi
session.beginTransaction();

Category category)
ValidationException,

Sesaion,.refresh|{category) ;
product., setCategory{category) ;
session.saveOrUpdate (product);
3ession.merge (Category);
session.merge (product)
-getTransaction() .commit()
retorn product:
}eatoh (Exception ex){
ex.printStackTrace () :

sesslion

seasion,.getTranssction().rollback()
throw ex;
}finallyi
if (Session '= nunll && sSession,isCpen()) SsSession.wclose():

Figure 24: Generated source code for the DAO layer implemented
with Hibernate in HQL.

conformity with Mobile DSL, as illustrates Figure 27 (4).

18

publica class ProductMuitifictionComtrollerx

extends MultilActionController{

EResource {name="productierviceValidator®)

private FroductService productService:

public Product bindProduct{HttpServietRequest request)
throws Exception{
Product product = new Product():
product.setId(java.lang. Integer.parseInt|
regueat.getParameter ("product,.id")))
product,.setlame (request,.getParamecer("product.name")) 2
return product:

publie Category bindCategory (HeopSe
throws Exception{
Category category = new Category():
category, SetId(java,lang,Integer.parssInt(
request,getParameter | "product, category, 2d")))
return category:

ryletRequest request)

8Reqgue g ("/saveProductiction.html")

public ModelindView saveProductiiction(
HttpServlietRegquest request,
HrtplervietResponse response) {

sDialog:
essDialogMessage™) ;
kind) ;

requeat.sethttribute ("kind",
request, getAttribute ("citle", "SucessDialoglitle”):

stAllProductaView (request, response);
catech (FieldMsgValidationException exi) {
deProcessUaerFriendlvMessage (request;exl)

cateh (ValidationException =x2) {

return sho

Figure 25: Generated source code for the Controller layer imple-
mented with Springframework (2.5).

The best-case scenario for mobile is also supported.
Thus, although the information about the flow layout is
lost in the second model, this is a constraint from the
Mobile platform, not. a limitation in the MockupToME
Method. For example, for richer GUI components that
can run in other mobile devices, it is possible to include
in the model transformation lifecycle another package for
Mobile DSL. This package allows the designer to repre-
sent GUI components mapped for the CDC profile, which
allows the representation of GUIs programmed with Java
AWT. Likewise, for desktop platform we include the Desk-
top DSL, which is mapped for source code developed with
Java Swing. For CDC platforms, a transformation from
MockupToME DSL to Mobile DSL will not imply in lost
of layout information.

For the design of Mobile GUIs, we prefer the use of Ma-
tisse Designer®, as shown in Figure 27 (4), instead of the
EMF editor shown in Figure 27 (2). This means that, dif-
ferently from the other DSLs included in our lifecycle, the
refinement of a GUI for mobile is performed with an exter-
nal tool. Because Matisse exports and imports the design

5Matisse Designer -
<https://netbeans.org/community /magazine/html/03/matisse/>

A) Content of the Master Product” in JSP Source Code
<%
UsuarioDT0 userDIQ =({UsuarioDI0) session.getAttribute ("usexr™);
LocalUsexrService localUserService = LocalUserService.getInstance():

1>
2 Aif("pulil".equals (request.getSession () .getAttribute ("login™))
| | null = reguest.getSession{).getAttribute ("login™)){%>

<scCripil

oginTnformacionForm.homl ', "‘general'):;

5. Product Vs
roduct) request.getBAttribute ("product®): >
if (product = nnll) product = new Froduct|) %>

N

import="sntitiss.latsgory
= (Category)request.getAttcribute ("category™) i

Category categor

iass="dafapl

B) Content of the Strategy Find and Attach in Association with the Detail “Category

<div id="findPan=1">

o code="Category"/>
"oroduct. category. 13"
="hidden"

e=n"¢istl:oaut value='S${product.category.id}'/>"/>
<ols> <1iz
«%if (product!=noll && product.getCategory()!'=noll
&& product.getCategory () .gecId() !=null

ry () .getiame () I=noll
y. £1nd">Find
egory. Find

¥ o=

name="csfegory. Find"

=12 {product . categary.name} ' />"/>

"1anerydoPost ('prodoctFarm’,
goryiction.html
£} s retorn
rai-birtbbon-te

produoct. id=<i=product.getid{) 2>',

Ises"o>

+n
S

=wimge/find. paghs>

19

Figure 26: Generated source code for the View layer in JSP.

in XML, this external tool is integrated with our support-
ing tool through operations of type import/export. This
means that the model 2 is transformed for the XML in
conformity with the Matisse Designer, resulting in model
2. As illustrates the piece of source code in Figure 27
(3), we also developed a model-based operation of type
text-to-model that reverses data from XML (model 27)
to the representation in model 2, which is in conformity
with Mobile DSL.

The limitation in user interactions from the CLDC pro-
file have no effect the model elements represented on the
web server. However, as illustrated in Figure 20, for es-
tablishing the connection of the mobile device with the
business logic available on the server side, it is needed to
use an API that deals with limited remote connections
in the client-side of the application. The design and im-
plementation of such connection are discussed in the next
subsection.

7.4. Remote Connection

As illustrates the component diagram in Figure 20, de-
vices on the client-side are connected with the business
logic available on the server-side through remote connec-
tions. Likewise, any DSL added for the View layer, i.e.,
which will not executes inside the web server, demands a

€] MockupToMidp.atl 22 o

% module MockupToMidp:
10 oreate OUT : Midp

from IN : MockupToME;

model 1

rule MockapContainerZ2Form {
from
mockup: MockupToME'!ScreenLayoutSpecification

class ScreenLayoutSpecification extends

to MockupToME!Abstracti ayoutSpecification

form: Midp!Form |
name <— mockup.name + 'Midp! o

|4 platform:/resource/Modelos/ product.midp model 2

w 4 Midp [Product Maintenance Form Model]
v < Form [Product Maintenance FormMidg]
<4 Label [Name:]
4 Text Box [nameTextField]
4 Label [Categony:]
4 Ted Box [categoryMNameTexdField]
<+ Command [Find]
w4 Form[buttonsPanelMidp]

loss of information
of layout

i < Command [New]
i <4 Command [Save]

) [J] ScreenAreaComponentimpl java &2 = O

bt b 0% see b orgawetumlexticoncreteguiimpl b Gﬂ ScreenAreaComponentimpl b
A
public void importForm(Node element) {
NodeList nll = element.getChildNodes|();
for (int 1 = 0y 1 < npll.gechength(); i++) &
o Node nodel = nii.item(i);
String taglame = nodel.getNodelName():
if (cagName.equalsIgnoreCase("Propercies™)) {
NodeList nl2 = nodel.getChildNodes():
for (int 3 8: 3 < nl2.getLength(): 3++) &
Node: nede?2-= nl2.item(j): v
o model 2°
[t ProductMaintenanceFormMIDetjava % |
Source Screen Flow Analyzer HEHFWN ~
~
- c
Assigned Commands
This isa generated GUI & newCommand
Product Maintenance Form

Fe— &l saveCommand

[] |& extCommand |

Category:

product category.nama

3 Commands
A findCommiand |

Figure 27: Generated models for the View layer on a mobile device
dependent from the CLDC platform: the source code in (1) allows
the generation of a model conforms to Mobile DSL shown in (2) and;
the source code in (3) allows to import/export such model for the
XML file associated with the Matisse (Mobile Designer) shown in

(4).

new layer in the MVC structure to handle the remote con-
nection between the device and the web server. This allows
that the whole source code for application logic remains
isolated on the web server, a good approach for modular-
ity and maintenance of source code [20].

As illustrated in the top-part of Figure 28, a class
named RemoteProductService is mapped for the Remote
layer, thus a piece of a multi-layered MVC structure. This
new class is generated from the representation of the Prod-
uctService interface. It holds semantics for connection in
conformity with annotations from the EDOC UML Profile,

such as «EJBImplementation» and «EJBRemoteMethod».

Such specification is transformed into the source code il-
lustrated in Figure 28 (2). The class RemoteProductSer-

20

©— ProductService

€3 Service % (=] RemoteProductService EROC
¥ s *zavedndMerge(-Product.:Category)Product <> HitpRemote 1
: Profile

¢ «> SaveOrUpdateAnddMerze
¢ = product-Producs

¢ » EJBImplemintation
? sl +eevedndMersel Product.: Category) P
¢ 5> EJBRembreMethod
+ product:Froduer

{ } Savelaster value=true
¢ < cetezory:Categary
{ } Propertyld valus=1lon-ceicst

+ tp‘iegﬂry:ﬂ.ntﬁ_gnr_\'
¢ > EmbeddedEntity 7 i

12 public glass RemoteProductSezvice :mplement‘s'l Produc\:s'.ervlce 1 e
private ProductService productSsrvicef
private statio RemoteProductService instance;

private RemoteProductService() { :
ig ¥XmiBeanFactory beanFactory = Ewingcam:ex:.ger.Ilhstancst)
p &) .getBeanFactory () H
24 productService = (Produst ice) beanfaghan

.getBean {"remoteP
: ¥

public statio Remnce?xoduc_,cﬁervi:e getInatance () {
if (insts nul.l];'" instance = new RemoteProductService() ;)

return instance;

3¢ de F,

public Product savelndMerge (Product product; Category category) {
retorn productService.savelndMerge (product, category);

3z ¥

[t ProductMaintenanceFormMIDletjava x| Generated Code

Source Screen Flaw Analyzer | [[& for Matisse
1146

T WElTe POSE—ACE 2

118 } elge if (commsnd == s=

119 Product product = bindProduct();
120 iilarm:e[-‘:nducr.sa-rvice. getInstans
121 : .saveAndMerge (product, ca
122

123 - igage 3

124 reverseBind (product);

125 ¥

Figure 28: Generated source code for the Remote layer in HTTP
Remote.

vice is also considered for the generation of the source
code shown in Figure 28 (3), which is used by the Matisse
plug-in for simulation of GUIs for mobile devices.

7.5. Final Remarks

The example shown in Figure 27 illustrates the flexibil-
ity promoted by a multi-layered architecture. In case the
designer needs to include a representation for an external
mobile GUI, such as a DSL mapped to Android SDKS, it
would be enough to: 1) develop a model-to-model trans-
formation from model 1 in conformity with MockupToME
DSL into a model 2 in conformity with the hypothetical
Android DSL; and 2) develop a model-to-code transfor-
mation from model 2 to the underlying implementation
associated with this API.

Each inclusion of a DSL in the lifecycle of model trans-
formation implies in a set of new models and refinements.
This is because MockupToME DSL is defined in a high-
level of abstraction than these platform specific DSLs for
GUI. The inclusion of the hypothetical Android DSL would
not imply in change for the Fvolutionary Prototyping Phase.
However, it would imply in inclusion of such new DSL into
the Architectural Prototyping Phase. For example, in this

6 Android SDK - <http://developer.android.com>

phase the use of CDC requires a different package from the
Mobile DSL and also a different model-to-model transfor-
mation in the lifecycle illustrated in Figure 27.

Through the FOMDA Approach [34] we add flexibil-
ity for the methodology in the implementation level. Al-
though we consider that this approach for MDE as Ser-
vice is not easy neither cheap, it is very flexible to include
new DSLs and model transformations as requested by soft-
ware factories. Thus, it is possible to evolve the presented
methodology in terms of new DSLs, new MVC layers, un-
derlying implementation frameworks and APIs. The gen-
eration of source code, strictly from what is designed, is
possible due to the development of some DSLs and the in-
tegration of several concepts considered in the literature
of the area. Other DSLs are not included in our lifecycle
for model transformations and methodology, which means
that the reader should consider this as a limitation of our
proposal. Despite this limitation, we provided an inter-
esting set of tools in support for automated design of web
information systems.

8. After Source Code Generation

This section describes activities recommended to exe-
cute after the functional prototyping phase.

8.1. Round-trip Engineering

Full source code generation is achieved in our experi-
ences. By full we mean from the perspective of what is
designed, not the overall application. Thus, the full gen-
eration is for few use case patterns.. This practice have
a drawback: for non generated functionalities, which are
programmed without the use of model transformations,
round-trip engineering can be necessary. This would im-
ply in an overhead to synchronize source code and mod-
els. For example, when functionalities developed without
MockupToME require the developers to change manually
an already generated source code. Round-trip engineer-
ing is necessary to ensure that re-generated source code is
correct.

To exemplify how this issue is tackled in our approach,
consider that, after the source code generation discussed
previously, the use case Generate Billet has to be man-
ually developed. We acknowledge that such use case is
possible to be abstracted in a model, demanding only an
increment in a DSL discussed previously. However, assume
that this is not the case and the developer must develop it
manually.

In the worst-case scenario, the implementation of the
controller layer follows as is illustrated in Figure 29. It
is composed of the following other implementations: 1)
assume that the developer has added the operation gen-
erateBilletAction inside the previously generated class
shown in Figure 25, representing the controller layer; 2)
line 152 shows a call for the DAO layer illustrated in Fig-
ure 24, which contains a manually implemented operation

21

to list products from a web shop kart; 3) line 167 shows an
operation that generates the PDF file with information for
payment, also developed manually inside the controller.

In this case, two previously generated classes where
changed manually, requiring the execution of a manual
round-trip engineering. As consequence, the developer or
designer needs to update the model elements (5) and (7)
shown in Figure 17. They need to specify manually one
operation in each model element with a tag BodyCode,
whose internal source code is represented as a string. This
is an issue when developers or designers are inexperienced.
Thus, whenever possible, this reverse and manual round-
trip engineering should be avoided.

Our recommendation to mitigate the need for reverse
manual round-trip is simple and also well-known in the
literature [32, 11]. Developers should not develop new fea-
tures inside the generated source code, thus developing
new classes and, preferably, locate it in a separate pack-
age. Instead of adopting an approach-that leads to the
worst-case scenario, we recommend that the developers: 1)
create a new package; 2) manually develop another class
for controller, e.g., ManualCodeMultiActionProductCon-
troller; and; 3) manually develop another class for DAO,
e.g., ManualCodeProductDAOHibernate.

These recommendations will keep isolated the gener-
ated classes from the manually coded ones, reducing the
chances for the execution of manual round-trip engineering
from code to model. The generation of source code must
obey the same rules. Of course, there are always excep-
tions to these rules. In our experiences, we observed that
entities, in the Model layer, are the unique source codes
were conflicts between manual and generated source code
occurs, independently from the aforementioned recommen-
dation. This is because entities are the centralizer source
code in a DDD approach. While other layers accept the
development of several classes, the Model layer is more
rigid. For example, we can develop two classes for the
DAO layer, namely ProductDAOHibernate and Manual-
CodeProductDAOHibernate, but they both refer a unique
entity class Product.

Changes in entities require round-trip engineering. How-
ever, this is not a big deal. We are not giving too much
credit in regard to process overhead when it is necessary to
apply specific changes in entity classes, e.g., into the model
element shown in the left side of Figure 22. That is because
the wizard illustrated in the right side of Figure 22 helps
in the execution of these manual round-trips. Moreover, as
illustrates Figure 30, we also developed a feature for auto-
matically reverse Java source code to model. This feature
is part of our tool support integrated with the Java plat-
form. It is connected with adaptive test cases and model
transformations, allowing the execution of operations of
type code-to-model [45].

It is important to mention that our tool support for
automatic reverse round-trip is limited and it is not ap-
plicable to the View layer (JSP source code). For the
worst-case scenario, whose changes are not supported by

wizards neither by automatic reverse engineering, the soft-
ware engineer must plan whether the execution of a man-
ual round-trip engineering is needed and when it should be
made. Manual round-trip engineering is not a mandatory
task for each iteration. For example, the software engi-
neer should plan whether its execution takes place in the
current iteration or in the next or only in the end of the
project [36]. This decision depends on the ability of the
teams to perform manual round-trip.

For those frequent changes observed along iterations,
another possibility to avoid manual round-trip is to in-
troduce them into model transformations. Likewise, our
tool allows extensions in model transformation compo-
nents, made on the fly, through specialization points [44].
Preferable, these extensions should be added before the
beginning of software project, when these components are
adapted in the pre-game phase [36]. However, they can
also be introduced along the execution of a software project.
To reach benefits and drawbacks that this approach intro-
duces for a software project, a future work will discuss how
a team received increments in components for source code
generation along the execution of iterations.

It is also good to remember that a version control sys-
tem helps developers to compare versions of the generated
source code. Developers trace overwritten artefacts in a
new source code generation (forward round-trip), making
punctual manual adjustments in source code when needed.
Artefact that is not fully generated implies on a big effort
for developers to apply adjustments. We are able to gen-
crate full source code, which mean that, when source code
generators are calibrated and without errors, developers
do not spent a big effort in making adjustments. There-
fore, even considering the worst-case scenario, developers
are capable to make punctual adjustments in source code,
which is also not considered in our experiences as a big
issue that hampers the execution of iterations.

8.2. Acceptance Tests

From the generation of functional prototypes, accep-
tance tests are conducted in iteration cycles following the
selected reference model for software development process.
Thus, it is important to test in a web browser or in a mobile
emulator, together with the client, each use case scenario
developed or not with the assistance of our tool support.

For a general guidance on the execution of acceptance
tests, we found very interesting the Acceptance Test-Driven
Development (ATDD) [46]. It includes some practices
for the execution of acceptance test cases, which can be
performed manually or automatically with the framework
JBehave”. After the development of the new use cases, au-
tomated test cases in JBehave can quickly detect whether
functionalities, developed in previous iterations, fails in the
new iteration due to the introduction of new source code.
For this reason, acceptance tests are complementary to the

7JBehave - <http://jbehave.org/>

g ("/generatefiliecAotion.homl")

publie ModelAndvView generateBilletAction|
HeopServiecRequest request,
HotpServietResponse response) {

try {
JBoletoBean jBoletoBean = new JBoletoBean();
ShoppingRart sk = new ShoppingRart();
sk.secId{request.getParaneter ("id shoppingkart”)):

List<Product> products = productService
. 1listProductaByShoppingRartId{sk) ;

: §- Vector<String>» items = new Vector<String>():
float total = §.0f;
for ([Product pa.od : preducts) |
String item "Item:" 4+ prod.getName[) + 7-=7

+ prod.getCategory() .getName () + " RE: "
+ prod.getWValuef);
icems ., add{icem) ;

total += prod.getValue|():

[T

iBolecoBean. setDescricoes {items) ;
jBoletoBean. setValorBoleto(total)
jBoletoBean. setDataVencimento (NEXT MONTH) :
retnrn generztePDF (jBoletoBean)

22

Figure 29: Manual implementation of Generate Billet in the con-
troller layer.

~ [reverseengineering @ addExcludedOperations(Collection<String>)
v [T} JaveReflectionltil jave 717 22/08/12 @ addExcludedOperations{String[]) : voud
v G JavaReflectionltil 717 22 @ addExcludedProperty(Collection<String>) - void
% CARD_MANY o addExcludedProperty(Stringl]) - void
% CARD_ONE @ getDepth(): it
& instance ® getScope(int) : Scapel
% MESSAGE_PART_CLASS gﬁTypEufG&nEn:ﬁypt Strmg String) : Class
% MESSAGE_PART_COMTAINS_A_GENERIC_TYPE getVisibility(int) : V
& MESSAGE_PART_FIELD o isCollection(Class) : hc
L1 MESSAGE_PART_GETTING_TP_CLASS m isEnumeration(Class<?>) : b
% MESSAGE_PART IS_A_NORMAL_CLASS @ isExcludeGetters Andﬁetterst) be
% MESSAGE_PART_IS_A_PARAMETERIZED_TYPE @ isloaded(Class) boolean
% MESSAGE REVERSE ENGINEERING_ATTRIBUTES & isReferencePurpos EC\asstC\assJ ko
4 MESSAGE_REVERSE_ENGINEERING FROM_CLASS @ isReverseExceptions() - b
% MESSAGE_REVERSE_ENGINEERING_FROM_ENUNM @ isReverseOperations() : b
% MESSAGE_REVERSE ENGINEERING_FROM INTERFACE parseAttribute(Class, Model, int, Class) . voic

parseClass(Class, Model) : Class
parseClass(Class, Model, int)
parseEnum(Class, Model} - £+
parseEnum(Class, Medel, int]
parseGenericinterfaces(Class, Model, int, (\ass] aid
parseGenericSuperclass{Class, Model, int, Class) : void
parselnterface(Class, Model) : I

& STEREQTYPE_ENUMERATION
% STEREQTYPE_FROZEN

@ getinstance()
& isMap(Type)
depth
excludedNamespaces
excludedOperations
excludedProperties
excludeGettersAndSetters
excludeOverride

s

parselnterface(Class, Model, int]
parseOperation(Class, Modl, int, Class)
parsePackage(Class, Model) : Package
procesTypedElement(TypedElement Class<

Madl, int, String, Class<73)
setDepth(int) : vord
setbxcludeGettersAndSettersiboalean) - void
id

e e O EEOOOO

a8 8 a.am

», boolean,

parsedClasses
reversebiceptions

reverseOperations

& JavaReflectionUtil()

@ addExcludedNamespaces{Collection<String>)
o aduExcludedNamespaces(String]])

a

a

id setReverseExceptions(boolean)

setReverseOperations(baolean)

o0 o0

Figure 30: The class developed for automatic reverse engineering.

tests/validations with clients performed in the Evolution-
ary and Architectural Prototyping Phases, which consider
only features developed in the current iteration.

We have no clear position about whether these tests
should be developed in conditions of worst-case scenarios,
when requirements changes with many frequency such as
in start-ups [13].

8.3. Final Remarks

Worst-case scenarios, such as those found in start-ups,
need the execution of iterations considering features for
innovation [13]. Authors state that this can imply in re-
quirements that change very fast. This is an issue when
performing time-scales planned for one month or more [11].
Thus, other authors suggested the execution of tasks for

discovery and invention [42], which is a characteristic from

rapid application prototyping few understood in research
and practice of MDWE.

For these reasons, we recommend the execution of Tasks
C-E in the MockupToME Method. In our approach, de-
signers are free to explore alternatives for implementation
of one or more use cases/user stories. We believe that this
possibility influences positively the use of activities per-
formed after the source code generation. In this point, we
have some lessons and open questions, as discussed in the
next section.

9. Experience Report

This section reports on an industrial innovation ef-
fort developed in collaboration with the Brazilian start-
up company Adapit. Five applications were developed
using the automated design approach for MDWE (inte-
grally or partially) to the following domains: agribusiness
management, online auction, trainee management, quality
management, and financial management. We selected two
software projects, presenting a summary about the appli-
cation of these techniques in each one. Table 1 presents the
team configuration associated with the design and source
code generation tasks, where “SP! is a software project for
7 in 1-2”:

SP! - ERP and CRM for Online Auction. This
is a web/desktop application to apply online auction with
support for Enterprise Resource Planning (ERP) and Cus-
tomer Relationship Management (CRM). It was developed
between 2007 and 2008 by Adapit using AMDA as frame-
work for software process [47]. The team configuration
that was allocated to this project is'shown in Table 1 and
includes a developer and a designer. SP! was conducted
only with the Architectural Prototyping and Funectional
Prototyping phases because at the time we had not devel-
oped the MockupToME nor tasks associated with Evolu-
tionary Prototyping Phase.

SP? - ERP for Financial Management. It is a
web application to manage financial support for innova-
tion projects. The latter application has been developed
between 2010 and 2011 by Company A. This project was
supervised by the Adapit’s team. As shown in Table 1,
to perform the activities discussed previously, Company A
allocated in SP? a team with low design and development
experience. The team in SP? adopted integrally the tasks
and tool support discussed in this article.

In the following we discuss: 1) the experience that jus-
tifies the advent of MockupToME Method and tool sup-
port; 2) discrepancies of these software projects that sug-
gest improvements from our current approach in compari-
son to our previous initiative; 3) lessons learnt from these
projects; and, 4) open questions derived from these expe-
riences.

9.1. Justification

In 2007, the development of wizards in support to MDWE

was part of services added in a business plan proposed

by Adapit, incubated at RAIAR-TECNOPUC-Brazil be-
tween 2007 and 2011. The execution of SP! was far to be
considered as productive, leading to the conclusion that
this business plan failed due to difficulties to execute our
first approach for MDWE in start-up contexts. For ex-
ample, in SP' we observed issues associated with round-
trip engineering, which leaded to some good practices dis-
cussed previously. Our worst-case scenario in SP! occurred
when we performed an iteration lasting two months. Af-
ter five weeks, the client changed his idea about the re-
quirement in the first cycle of validation. This required
the re-execution of the phases Architectural Prototyping
and Functional Prototyping, resulting in changes in source
code and model. Because we had no tool support for re-
verse engineering, this experience in SP! suggested that
round-trip engineering should be executed manually. It
was executed before restart the Architectural Prototyping
phase, re-generating source code in Functional Prototyp-
ing phase and making manual adjustments in source code.
We concluded that manual design of MVC-based ap-
plication models is very tiring and expensive to the point
that, in 2008, Adapit considered the possibility to leave
the MDWE approach. We agreed that MDWE was not
productive for the company context: start-up and small
company, with few money and new in the market. How-
ever, it was decided to give for MDWE one more chance.
Likewise, issues observed in SP! leaded to the development
of the MockupToME Method. This allowed professionals
from Adapit to adopt a new perspective for implementa-
tion of MDE as Service based on automated design.
From the point of view of research and practice, these
experiences allowed a better understanding of contexts of
start-ups and issues for the MDE adoption. To improve
our design practices for the next software projects, we
looked for prototyping tools used in agile methods. We
concluded that designers should work in a high-level of
abstraction than MVC-based application models. More
importantly, in order to reduce risks of producing wrong
features, the method should also consider design tasks for
discovery and invention (tasks C and D). Thus, these are
the justifications for the introduction of the Evolutionary
Prototyping phase in our methodology for MDWE.
Experiences such as the one in SP' provided the rea-
sons why we included many interactions with clients in the
process. For the worst-case scenarios that present uncer-
tainty in requirements, besides the acceptance tests after
the Functional Prototyping phase, we introduced in Mock-
upToME Method two validations with clients that are as-
sociated with design tasks. In our position, it is a common
mistake to assume that interactions with clients will ever
“delay something” in the software development. In fact,
the opposite was observed in practice, with books sug-
gesting that frequent validations with clients is good for
shortening time-scales in worst-case scenarios [48, 49. 25].
Besides, frequent validations reduce the risks of producing
wrong features and, in consequence, reducing rework in
iteration cycles and also among iterations. Thus, consid-

Table 1: Attributes of the teams used in each software project

‘ Attributes of the team used in SPI

|

a Education Exp. in Exp. in Exp. in a
Num. Stakeholder Experience Leovel UML MDE J2EE Exp. in MVC
1 Designer Senior Master Degree Advanced Advanced Basic Advanced
1 Programmer Senior Master Degree Advanced Advanced Advanced Advanced

Attributes of the team used in SP2

q Education Exp. in Exp. in Exp. in 5
Num. Stakeholder Experience Level UML MDE J2EE Exp. in MVC
1 Designer Trainee Graduate Basic None Basic Basic
1 Programmer Trainee Undergraduate Basic None Basic Basic

Table 2: MVC-based layers used in each software project

| Application layers \ spl sp2

Entities and enumerations 64 13.44% 50 25,25%
Validation on the server side 20 4.20% 35 17,68%
Web controllers 11 2.31% 22 11,11%
Data Access Object (DAO) 16 3.36% 35 17,68%
JSP [web view layer] 100 | 39.91% | 56 | 28,28%
Java Swing [forms/tables] 112 23.53% 0 0%
Java Swing [window/dialog] 11 5.61% 0 0%
Remote layer 22 4.62% 0 0%
Lines of code (LOC) | spl sp2
Entities and enumerations 4.947 4,38% 5.477 14,95%
Validation on the server side 2.919 2,58% 4.152 11,33%
Web controllers 6.283 5,56% 11.652 31,81%
Data Access Object (DAO) 11.310 10,02% 5.441 14,85%
JSP [web view layer] 17.249 15,28% 7.266 19,83%
Java Swing [forms/tables] 60.876 53,92% 0 0%
Java Swing [window/dialog] 6.524 5,78% 0 0%
Remote Layer 2781 2,46% 0 0%

Table 3: Data from application in software projects

Where Automated Design Helped? \ spl | sp2
Total weeks to conclude each software project 58 44
Average of weeks that MDWE was used 22 20
Best performance for design 27 hours 8 hours
Average of time-scales in iterations >= 4 weeks 1-2 weeks
Generated source code 64% 82%

ering worst-case scenarios that we have experienced, our
methodology was also conceived to allows client interaction
in three phases of prototyping, each one aiming at reducing
the risk of producing wrong features for the next.

9.2. Discrepancies in Software Projects

These software projects present similar MVC layers, as
illustrated by the data in Table 2. Table 3 shows some
statistical data about each software project. SP! is a lit-
tle bit more complex than SP? due to the development
of some more complex use cases, such as Generate bil-
let, not supported by source code generators. Besides,
Table 2 suggests that SP' is more complex due to the fol-
lowing reasons: 1) it is larger and includes the support for
CRM besides functionalities for ERP that contextualizes
the type of system in SP2; 2) SP! includes a second DSL
for the View layer, the Desktop DSL that is implemented
in Java Swing, besides JSP that implements the Web DSL
used also in SP?; 3) SP! owns many Lines-Of-Code (LOC)
associated with the Desktop view and less source code for
Controller and JSP from the Web view than in SP?; 4) SP!

24

includes source code for the Remote layer, not included in
SP?; and, 5) In SP!, the MVC-based architectural models
were designed mostly manually with the help of wizards
and in SP? these models were automatically generated af-
ter the execution of the Evolutionary Prototyping Phase.

Table 3 also shows that MDWE was used in 22 weeks
for SP!, while it was used in 20 weeks for SP2. This only
means that MDWE is used in less than a half of the time
of the overall software projects that consumed a total of
57 weeks in SP! and 44 in SP2. Although not comparable
due to differences in underlying implementation technolo-
gies and processes, they have the following similarities: 1)
they were conducted with MDWE, allowing the generation
of many functionalities of type CRUD, and 2) they used
the Architectural Prototyping and Functional Prototyping
phases, with few differences in source code generators [34].

We acknowledge that we cannot compare these two
software projects. However, as suggests the data shown in
Table 3, these software projects presented different time-
scales adopted in each one when compared with the team
skills shown in Table 1. In this regard, discrepancies be-
tween time-scales are clear. Company A successfully ex-
ecuted SP? with iterations planned for one to two weeks,
with the best performance for modelling reported as eight
hours in the last iterations, i.e., after a learning curve pe-
riod [36]. With our first approach for MDWE our best
performance for design was 27 hours. It demanded in SP!
an experienced designer and developer, while Company A
used only non experienced stakeholders. Based on such
information, one could expect that, in SP?, the MDWE
approach would present a worst performance than in SP*.
However, the opposite was observed. Other discrepancy is
in regard to the activities performed after the source code
generation. Company A did not reported issues associated
with round-trip engineering. These are benefits/effects
that we have not a clear understanding about the causes,
as discussed in the next subsection.

9.3. Lessons Learnt

Round-trip engineering is still a challenge in regard
to tool support [31]. However, from our newest experi-
ence, we confirm that it is not a big issue, as suggested
by Hutchinson et al. [50]. We have learned that a multi-
layered architecture associated with the good practice of

separating what is generated from manual coding mitigates

this overhead. Kelly and Tolvanen [32] make these recom-
mendations too. Besides, based on an industrial survey,
Whittle et al. [11] agrees in this respect. They have not
considered this as an “Achilles heel” for the MDE adoption.
Thus, through the assimilation of good practices for the de-
velopment of manual code, Company A did not consider
the round-trip engineering a big issue for the execution of
our methodology.

Another important good practice is discussed in the
literature by Kelly and Tolvanen [32]: generate 100% of the
overall application is difficult, if not impossible; instead,
teams should focus on full source code generation, i.e.,
generate 100% of what is designed. They suggest that
lifecycles for model transformations will always present a
delimited scope of DSLs and a delimited scope for source
code generation. These limitations are not considered as
reasons for a non adoption, which means that software
factories can benefit from MDE without the generation of
100% of final application [11].

These experiences allowed us to observe some benefits
promoted by this methodology as follows.

1. To reduce the risks of producing wrong features be-
tween iterations, Schwaber [42] suggests to acquire
feedback about what is being produced in cycles of
validation. Thus, short time-scales for iterations are
preferred to quickly get feedback from clients, as the
ones allowed in our approach.

A rich set of CRUD templates to generate diverse

GUTI structures, besides allowing non-experienced mod-

ellers to be included in MDWE-based processes, also
allows the design of annotated mockups with action
semantics that, for some use case patterns, allowed
producing working pieces of software that did not
required adjustments in source code.

Mockups are helpful to get feedback from clients of
requirements in the Evolutionary Design phase and,
similarly as Rivero et al. [12], we also noticed that
clients feel more comfortable to opine about require-
ments when experimenting mockups than visualising
UML diagrams representing MVC-based models.

Because our proposal requires the use of transformation
templates to generate and refine mockups, there are some
drawbacks as follows.

1. Model transformations can fail, meaning that the
proposed methodology is only effective if transfor-
mation templates are perfectly working.

Client can request CRUD structures, or other use
case scenarios, not yet developed as transformation
templates.

(a) This would require a manual design of annotated
mockups, implying in the development of the use
case without the automated design techniques in-
troduce in the Evolutionary Prototyping phase.
This could also imply in issues for execution of
MDWE, such as those observed in SP', instead of
benefits observed in SP2.

(b)

25

3. This methodology is only effective if enough transfor-
mation templates are available and if they meet the
client needs. Otherwise, it became a manual design
approach for MDWE, which we did not considered
interesting for start-up contexts.

9.4. Open Questions

In a previous work we reported some issues and open
questions to implement MDE as Service considering the
pragmatical aspect of combination of MDWE and Scrum [36],
summarized as follows: 1) The literature of the area lacks
information on how to introduce MDE in specific contexts;
2) Some authors claim UML-based MDWE approaches are
“counter agility”, but are they really?; 3) The “good” and
“bad” on the combination of MDE and Agile should be
associated with a context; 4) There is no requirement for
“agile tools”; 5) There is no empirical information in the
literature on incompatibilities between MDE and Agile
Methods/Principles; and 6) Which are the suitable MDE
techniques for dealing with round-trip?

The last open question is discussed in this article with
the techniques that we considered interesting. In the fol-
lowing we complement the aforementioned work with re-
search gaps for technical-level issues. For example, the ex-
ecution of SP? presents some benefits not observed in SP!
such as short time-scales and the mitigation of reverse en-
gineering. For instance, we concluded that such benefits
are associated with our methodology for automated design
and tool support when executed integrally. However, the
reasons for such benefits are not totally clear, thus raising
the following open questions:

Is full source code generation the unique rea-
son for mitigation of issues associated with reverse
round-trip engineering in SP2? In our tool support,
full source code generation allow to perform changes from
model to code following an iterative and incremental pro-
cess. This is possible only for specific types of use case
patterns for web information systems: CRUD, List, Fil-
ter, and Report. Since the execution of SP? we concluded
that, for this type of functionalities, changes performed
along iterations would not require the execution of manual
round-trip engineering, since they are changed in models
and re-generated. Besides, Company A did not considered
round-trip engineering as an issue. Currently, we are ask-
ing ourselves whether the full source code generation is the
unique reason why round-trip engineering is not an issue.

Is our approach good for improve the quality,
modularization, and maintenance of source code?
Related works present such benefits as promoted by their
approaches [51, 52, 41, 12]. Analysing the data shown in
Table 2, we conclude that the introduction of tool support
in Evolutionary Prototyping phase, adopted in SP2, may
have influenced the generation of more elements in the
MVC layers than in SP!, thus resulting in more modular
and maintainable source code. Paradoxically, this would
mean that the automated design techniques, introduced

on the top of our method, could lead inexperienced stake-
holder to produce an application with more quality than
the produced by the two first authors of this article, which
are “experts”. This question needs further investigation.

Is the multi-layered architecture good to mit-
igate round-trip engineering? In our approach, de-
velopers commit changes quickly from models to the im-
plementation without overriding the manual work made
in previous iterations. Allier et al. [20] state that a de-
sign directed to the MVC-based architecture helps on the
modularization and organization of the source code. The
regeneration of source code includes as input model ele-
ments designed conforms to MVC-based application layers.
Based on principles of modularity, we recommended that
manual coding must be allocated in isolated modules from
the generated source code. In this sense, this recommen-
dation associated with a multi-layered design may be re-
sponsible for the non existence of big issues for round-trip
in Company A. However, although not prepared with good
practices discussed above, with the same multi-layered ar-
chitecture we observed round-trip issues in SP!. Thus, this
is a paradox that must be investigated.

Is our approach good for requirement discovery
and validation? One of the reasons for the development
of a new approach for MDWE was our incapacity to_per-
form validations of models in short time-scales in SP!. Qur
clients feel comfortable to opine about requirements repre-
sented in paper prototypes, but they have many difficulties
to understand and opine about the UML models. Besides,
they wanted to click in buttons from real prototypes be-
fore provide a feedback of “100% sure” about validity of
paper prototypes. We could not do-this in SP'. The Evo-
lutionary Prototyping Phase was introduced to bridge the
requirement engineering and the representation of models
associated with MVC layers. In Adapit we observed this
as a benefit for the requirement discovery and validation
promoted by MockupToME Method. However, Company
A reported that they have not experienced a case where
requirements changed radically, as occurred with in SP*.
We consider observations made internally in Adapit few to
answer the aforementioned question, mainly because there
is a tendency to consider this important. Thus, an open
question is whether and where tasks associated with dis-
cover and invention (C-E) help designers in this transition
from the Requirement Engineering Phase to the Evolu-
tionary Prototyping Phase in other software projects.

When developers should not automate accep-
tance test cases? This question is relevant because we
consider that in worst-case scenarios the automation of
acceptance test cases may add overhead to the iterations.
Likewise, due to frequent changes on some requirements
from the worst-case scenarios observed in SP!, the devel-
opment of automated acceptance test cases may be non
effective. Anyway, assuming that requirements changed,
that models must be changed, that the source code must
be regenerated, acceptance tests need to be re-executed in
a new cycle of acceptance. Our doubt is whether devel-

26

opers should automate the acceptance test cases for this
cases. The automation would imply also on the redevelop-
ment of the algorithm for behaviour and, as consequence,
adding overhead for the execution of iterations in short
time-scales. Thus, we are investigating whether these tests
can also be generated.

10. Limitations

Limited to some use case patterns. This method-
ology and tool support are limited for use case patterns of
type CRUD, List, Filter and Report. Examples of what
we have not yet considered in the automated design in-
cludes: top-level layouts for web sites, features from HCI
(rich menus, navigation, flows, responsive design), integra-
tion with web services, enterprise application integration,
and others. Although our work is limited in this regard,
several DSLs have been proposed in the literature to rep-
resent such abstractions. Thus, they may be included in
this methodology conform requests.

No silver bullet. Although MDE is not new, i.e., an
MDWE approach dates 2000 [53], putting it into practice
remains a challenge. Mussbacher et al. [31] have pointed
out issues that would be fixed only in the next thirty years
from 2014. MDE can work on certain conditions and con-
texts [51, 52], such as for the contexts of the reported
software projects. However, any MDE approach presents
several “Achilles heel” that should be explored in research
and practice [54, 55, 11, 31]. For example, this work is
limited for some use case patterns supported by the pre-
sented automated design techniques, which means that it
is_ineffective for other types of use cases. Therefore, this
work should never be considered as a silver bullet for soft-
ware development, needing investigation of feasibility for
each context.

11. Related Work

We present the related works with the methodology
and tool support, considering three phases for prototyp-
ing: 1) Evolutionary Prototyping, which is classified
as an approach for exploratory design; 2) Architectural
Prototyping, which is classified as a modelling phase ded-
icated to represent models with more details and in con-
formity with layers of the MVC; and, 3) Functional Pro-
totyping, which is characterized by the generation of full
source code for all the layers of the adopted underlying
architecture.

The evolutionary prototyping is dedicated to the design
of mockups. Balsamic Mockups Company [30] provides a
software tool to represent sketches, without the support
for annotations that embed business logic. Blankenhorn
[28], Vanderdonckt [5] and Kavaldjian [56] provide similar
tools to support the design of mockups with UML Profiles,
also without embedding the business logic into GUI com-
ponents. WebML [53] and its commercial implementation

named WebRatio [41] also presents contributions for this
phase, allowing the transformation from BPMN flows rep-
resenting the business model of the application into GUI
mockups represented with the WebML. Other DSLs are
closer to the MockupToME DSL, such as those provided
by Rivero et al. [12] and Forward et al. [29], which use an-
notations in mockups to represent the semantics for busi-
ness logic. In this sense, Stary [57] suggests that transfor-
mations started from mockup are the key to improve client
feedback in preliminary phases of a software process, since
they verify acceptance of a given requirement using paper
prototypes. Our differential is the introduction of tech-
niques for automated design that speed-up the design of
annotated mockups.

To visualise and modify intermediate specifications be-
tween mockups and executable prototypes for GUI, Molina
et al. [58] propose an interesting tool namely CTAT-GUI
that allows to test information system models in different
abstraction layers of application. CIAT-GUI can also be
classified as implementing these three phases of prototyp-
ing. The differences are that their approach uses a unique
DSL while ours use many (e.g., MockupToME DSL, Web
DSL, Desktop DSL, Mobile DSL). Although we have not
yet tested other DSLs in our tool support than those dis-
cussed in this article, we hope that this feature will enable
us to explore/include other possibilities for DSLs and de-
sign tools in isolated phases of prototyping. On the other
hand, the use of a unique DSL simplifies the execution of
the three phases of prototyping, connecting elements based
on the same metamodel.

Our methodology also includes resources for model trans-
formation to help designers in the transition from the evo-
lutionary to the architectural prototyping phase. Rivero
et al. [12] present a similar proposal to ours, since that an-
notated mockups are used as input to generate other appli-
cation layers. The differences are: 1) we applied the gen-
eration of a mockup using start transformation templates,
while these authors suggest to manually design mockups;
2) we included a richer support for the execution of auto-
mated design techniques; and, 3) we used mockups in the
evolutionary phase to explore different possibilities of im-
plementation, while the authors considered a static struc-
ture for mockups without options for selection.

Related with the architectural prototyping phase, some
works proposes DSLs for the design of web information
systems based on the MVC. Souza et al. [19] presents an
approach for MDWE using UML interfaces very similar
to those used in our methodology to represent the busi-
ness logic. Nunes and Schwabe [6] propose the HyperDE,
an environment to produce web information systems by
specifying models and transforming them into functional
prototypes, starting by a domain model. Similarly, Vara
and Marcos [59] propose a framework composed of a set of
model transformations that allows to develop information
systems through DSLs. An experience report with the We-
bRatio [41] also presents positive results associated with

the source code generation based on architectural models

27

manually specified: a small difference is that WebRatio
uses as input a conceptual model representing the data-
model for a database while we use a class diagram. Thus,
as a small contribution to the practice, our methodology
includes wizards that help the designer on the representa-
tion of details for MVC-based models.

All these works allows the generation of prototypes.
However, only those that are classified as part of the archi-
tectural prototyping can also generate fully implemented
prototypes.

Yulkeidi, Martinez, Rivero and Brambilla concluded
that, in a comparison of MDWE with manual coding, a
model-based process improves the productivity and soft-
ware quality through modularization and maintenance of
source code [51, 52,12, 41]. We have not yet reached
these benefits through our analytical studies, more related
with the execution of approaches for MDE as Service than
specificities of results from MDWE.

Finally, other type of proposal aims at starting proto-
typing with the specification of many web information sys-
tems details with textual DSLs. Itis the case for Forward
et al. [29], whose approach is similar to modern frame-
works to develop web applications such as Ruby on Rails.
These frameworks are used on development phase, not in
the evolutionary prototyping. Our methodology is differ-
ent from theirs since it implements three phases of proto-
typing based on MDWE, while Forward et al. [29] used a
more direct approach for prototyping. To the best of our
knowledge, there is no experimental evidences that sug-
gests that the use of textual DSLs in preliminary software
phases is a better solution to perform a requirement anal-
ysis than using architectural designs. Thus, this is also
an open question that should be investigated in empirical
studies.

Rossi [7] discusses on existing web DSLs, highlighting
the importance of a new standard proposed by OMG to
design web applications: the Interaction Flow Modelling
Language (IFML). IFML standardises several of the repre-
sentations included by the aforementioned DSLs. This lan-
guage, as well as WebML and WebRatio, are complemen-
tary to MockupToME and overlaps some representations
used in the UML Profiles from the Architectural Prototyp-
ing phase. A future work will explore this complementar-
ity, presenting our profiles with appropriate comparisons
with the state-of-art in MDWE.

Our contribution complements the literature of the area
with an integrated approach by methodology and tool sup-
port for MDWE. In addition, the reported experiences sug-
gest that the implemented automated design techniques
can promote the introduction of MDWE in contexts that
present issues for adoption. Thus, we present improve-
ments in practices and tools with fully assisted design tasks
for web information systems, which is only partially ex-
plored by related works.

12. Conclusions and Future Work

This article presents a new MDWE methodology to
automate the design of multi-layered web information sys-
tems called MockupToME Method. Along the develop-
ment of some web information systems, we noticed that,
for the worst-case scenarios on the requirement engineering
(i.e., in start-up contexts), paper prototypes themselves do
not ensure the validity about requirements along software
process iterations. These specifications change along the
iterations, which makes difficult the execution of a MDWE
approach. To deal with these chaotic scenarios, we con-
cluded that short duration iterations should be adopted.
However, the manual design of MVC-based application
models hampers the execution of short time-scales. Thus,
we proposed the automation of design tasks.

The MockupToME Method suggests the execution of
design tasks and client evaluations about the designed mod-
els in three phases: Evolutionary Prototyping, Architec-
tural Prototyping and Functional Prototyping. This exe-
cution includes the following features for rapid application
prototyping that we consider as benefits for the state-of-
practice in MDWE: 1) designers specify annotated mock-
ups with semantics for actions in the Evolutionary Pro-
totyping with the assistance of automated design tech-
niques, supported by model transformations and refine-
ments allowed in a mockup drawing tool; 2) the adoption
of concepts such as Master/Detail, DDD, Multi-view, and
other, allows the development of different templates for
construction and refinement of models represented in dif-
ferent abstractions levels, thus allowing the use by non
experienced designer; 3) these techniques are limited for
use case patterns of type CRUD, List, Filter and Report;
4) for the worst-case scenarios regarding requirements un-
certainty, client and designer interact in tasks for discov-
ery and invention, e.g., while constructing and updating a
model specification, they are allowed to visualise different
implementation options for a use case to decide which of
them fits best to the needs of the iteration; 5) the discov-
ery and invention is considered as important for clients to
reach more necessities, which is good in MDWE, allowing
designers to quickly change designed models before execute
the Architectural Prototyping and Functional Prototyping
phases; and, 6) these features, added to other elements
such as source code generation and practices discussed in
this article, allowed for the execution of iterations lasting
one week.

We summarised two industrial experiences in the devel-
opment of web information system using our proposal in
piece and integral. In the first experience, which adopted
mostly a manual design approach, we observed many is-
sues for execution of the software project including the long
time invested in manual representation of models, issues
in source code generation and bad practices for manual
coding. Moreover, changes in requirements, motivated by
misunderstanding or simply because the client decided to
adopt other features for innovation, consumed too much

28

time from the overall software project. We concluded
that MDWE issues associated with these changes such as
round-trip engineering and rework in two levels of abstrac-
tions (models and code) could be related with the execu-
tion of iterations, planned and executed with more than
one month. However, due to the incapacity in our tool sup-
port and practices adopted in 2007, we could not perform
shorter iterations than a month.

The need for execution of shorter time-scales is the
main reason for the development of the proposed method-

ology. Likewise, the most recent experience presented promis-

ing results promoted by our proposal, such as the possi-
bility of execution of iterations lasting one to two weeks.
The reasons for such a benefit are not totally clear for us.
However, automated design techniques are clearly related.
Other features that can be related include our recommen-
dations for manual coding, client validations executed in
three phases of prototyping, full source code generation,
modularity promoted by a multi-layered MVC structure,
the introduction of a phase for discovery and invention
and the context of the developed system. Thus, we also
addressed these features as open questions relevant for the
theory and practice of MDWE.

To have a clear notion about the reasons why Mockup-
ToME Method is capable for execution of short duration
sprints, we will conduct new works as follows:

e Conduct astudy in retrospective considering projects
executed with different approaches for MDWE. Ac-
cordingly, we will mine repositories from five software
projects that used partially and integrally the tasks
and tools associated with the MockupToME Method.
We believe that, by mining these repositories, we can
find answers for our open questions.

Execute a second study for evaluation of the quality
attribute “productivity” in agile teams. In a previ-
ous study that aimed at compare the productivity
of two agile teams [35], one adopting our methodol-
ogy and tool support and the other developing the
software without MDWE, we could not reach strong
conclusions. This is because the study presented con-
founding factors such as differences on the underly-
ing implementation framework and lacks of quan-
titative data. Thus, a future work will apply this
methodology in another agile context to measure this
quality attribute.

Highlight our technical contributions, presenting de-
tails of associated scripts for model transformations
and metamodels. So far, our contributions discusses
only aspects associated with the management and
reuse of model transformation components [34]. Our
long-term goal for future works is to discuss particu-
larities from our metamodels and tool support, thus
presenting some contributions for the state-of-art in
MDWE.

References

(1]
(2]
(3]
(4]

(5]

[6]

[7]

(8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]
(22]

(23]

S. Kent, Model Driven Engineering, in:
Methods, 286-298, 2002.

D. C. Schmidt, Guest Editor’s Introduction: Model-Driven En-
gineering, IEEE Computer 39 (2) (2006) 25-31.

M. Voelter, Best Practices for DSLs and Model-Driven Devel-
opment, Journal of Object Technology 8 (6) (2009) 79-102.

G. Booch, J. Rumbaugh, I. Jacobson, The Unified Modeling
Language User Guide (2nd Edition), Addison-Wesley, 2005.

J. Vanderdonckt, A MDA-compliant environment for developing
user interfaces of information systems, in: Proceedings of the
17th international conference on Advanced Information Systems
Engineering, 16-31, 2005.

D. A. Nunes, D. Schwabe, Rapid prototyping of web applica-
tions combining domain specific languages and model driven
design, in: Proceedings of the 6th international conference on

Web engineering, 153-160, 2006.
G. Rossi, Web Modeling Languages Strike Back, Internet Com-

puting, IEEE 17 (4) (2013) 4-6.

R. B. France, J. M. Bieman, Multi-View Software Evolution: A
UML-based Framework for Evolving Object-Oriented Software,
in: ICSM, 386-395, 2001.

V. Kulkarni, S. Barat, U. Ramteerthkar, Early experience with
agile methodology in a model-driven approach, in: 14th Inter-
national Conference on Model-Driven Engineering Languages
and Systems, MODELS 2011, 578-590. 2011.

Y. Zhang, S. Patel, Agile Model-Driven Development in Prac-

tice, Software, IEEE 28 (2) (2011) 84-91.
J. Whittle, J. Hutchinson, M. Rouncefield, H. Burden, R. Hel-

dal, Industrial Adoption of Model-Driven Engineering: Are the
Tools Really the Problem?, in: Proceedings of the 16th Interna-
tional Conference on Model Driven Engineering Languages and
Systems, MODELS’13, 1-17, 2013.

J. M. Rivero, J. Grigera, G. Rossi, E. R. Luna, F. Montero,
M. Gaedke, Mockup-Driven Development: Providing agile sup-
port for Model-Driven Web Engineering, Information and Soft-
ware Technology 56 (6) (2014) 670-687.

C. Giardino, M. Unterkalmsteiner, N. Paternoster, T. Gorschek,
P. Abrahamsson, What Do We Know about Software Develop-
ment in Startups?, Software, IEEE 31 (5) (2014) 28-32.

P. F. Linington, Automating support for e-business contracts,
Int. J. Cooperative Inf. Syst. 14 (2-3) (2005) 77-98.

D. Batory, E. Latimer, M. Azanza, Teaching Model Driven En-
gineering from a Relational Database Perspective, in: Proceed-
ings of the 16th International Conference on Model Driven En-
gineering Languages and Systems, MODELS’13, 121-137, 2013.
E. Evans, Domain-driven design: tackling complexity in the
heart of software, Addison Wesley, 2004.

P. J. Molina, S. Melid, O. Pastor, JUST-UI: A User Interface
Specification Model, in: Computer-Aided Design of User Inter-
faces III, 63-74, 2002.

F. P. Basso, R. M. Pillat, R. Z. Frantz, F. Rooz-Frantz, Assisted
Tasks to Generate Pre-prototypes for Web Information Systems,
in: 16th International Conference on Enterprise Information
Systems., ICEIS’14, 14-25, 2014.

V. E. S. Souza, R. D. A. Falbo, G. Guizzardi, A UML Pro-
file for Modeling Framework-based Web Information Systems,
in: 12th International Workshop on Exploring Modelling Meth-
ods in Systems Analysis and Design EMMSAD 2007, 153-162,
2007.

S. Allier, O. Barais, B. Baudry, J. Bourcier, E. Daubert,
F. Fleurey, M. Monperrus, S. Hui, M. Tricoire, Multitier Diver-
sification in Web-Based Software Applications, Software, IEEE
32 (1) (2015) 83-90.

D. Parnas, Software Aging, in: 16th International Conference
on Software Engineering, ICSE 16, 279287, 1994.

B. Burke, R. Monson-Haefel, Enterprise JavaBeans 3.0: Devel-
oping Enterprise Java Components, O’Reilly, 2006.

J. Bosch, Achieving Simplicity with the Three-Layer Product
Model, IEEE Computer 46 (11) (2013) 34-39.

Integrated Formal

29

(24]

25]

(26]

(27]

28]

29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

(42]

H. Han, B. Liu, Problems, solutions and new opportunities: us-
ing pagelet-based templates in development of flexible and ex-
tensible web applications, in: Proceedings of the 12th iiWAS’10,
679-682, 2010.

1. Sommerville, Software Engineering (9th Edition), Addison-
Wesley, 2010.

E. Landre, H. Wesenberg, J. Olmheim, Agile enterprise soft-
ware development using domain-driven design and test first,
in: Companion to the 22nd ACM SIGPLAN conference on
Object-oriented programming systems and applications com-
panion, 983-993, 2007.

F. Davis, V. Venkatesh, Toward preprototype user acceptance
testing of new information systems: implications for software
project management, IEEE Transactions on Engineering Man-
agement 51 (1) (2004) 31-46.

K. Blankenhorn, A UML Profile for GUI Layout, Master’s the-
sis, University of Applied Sciences Furtwangen. Department of
Digital Media, URL http://www.bitfolge.de/pubs/thesis/,
2004.

A. Forward, O. Badreddin, T. Lethbridge, J. Solano, Model-
driven rapid prototyping with Umple, Software: Practice and
Experience 42 (7) (2012) 781-797.

Balsamic Mockups Company, Balsamiq Mockups Company,
URL https://balsamiq. com/products/mockups/, 2015.

G. Mussbacher, D. Amyot, R. Breu, J.-M. Bruel, B. H. Cheng
P. Collet, B. Combemale, R. B. France, R. Heldal, J. Hill,
J. Kienzle, M. Schéttle, F. Steimann, D. Stikkolorum, J. Whit-
tle, The Relevance of Model-Driven Engineering Thirty Years
from Now; in: Model-Driven Engineering Languages and Sys-
tems, 183-200, 2014.

S. Kelly, J.-P. Tolvanen, Domain Specific Modeling: Enabling
Full Code Generation, IEEE Computer Society - John Wiley &
Sons, 2008.

N. B. Moe, T. Dingsoyr, T. Dyba, A teamwork model for un-
derstanding an agile team: A case study of a Scrum project,
Information and Software Technology 52 (5) (2010) 480-491.
F. P. Basso, R. M. Pillat, T. C. Oliveira, L. B. Becker, Sup-
porting Large Scale Model Transformation Reuse, in: 12th In-
ternational Conference on Generative Programming: Concepts
& Experiences., GPCE’13, 169178, 2013.

F. P. Basso, R. M. Pillat, F. Rooz-Frantz, R. Z. Frantz, Study
on Combining Model-Driven Engineering and Scrum to Produce
Web Information Systems, in: 16th International Conference on
Enterprise Information Systems, ICEIS’14, 137-144, 2014.

F. P. Basso, R. M. Pillat, F. Roos-Frantz, R. Z. Frantz, Com-
bining MDE and Scrum on the Rapid Prototyping of Web In-
formation Systems, International Journal of Web Engineering
and Technology 10 (3) (2015) 214-244.

S. W. Ambler, A Roadmap for Agile MDA. Available
at <http://www.agilemodeling. com/essays/agileMDA htm>,
Tech. Rep., Agile Modeling, 2015.

R. M. Pillat, T. C. Oliveira, P. S. Alencar, D. D. Cowan
BPMNt: A BPMN extension for specifying software process
tailoring, Information and Software Technology 57 (0) (2015)
95 — 115.

F. Ricca, G. Scanniello, M. Torchiano, G. Reggio, E. Astesiano,
On the effort of augmenting use cases with screen mockups: re-
sults from a preliminary empirical study, in: Proceedings of the
2010 ACM-IEEE International Symposium on Empirical Soft-
ware Engineering and Measurement, 40:1-40:4, 2010.

EDOC, 2014, UML Profile For Enterprise Distributed Object
Computing (EDOC), URL http://www.omng.org/spec/EDOC/,
2014.

M. Brambilla, P. Fraternali, Large-scale Model-Driven Engi-
neering of web user interaction: The WebML and WebRatio
experience, Science of Computer Programming 89, Part B (0)
(2014) 71 — 87.

K. Schwaber, Scrum Development Process, in: Workshop on
Business Object Design and Implementation, OOPSLA’95, 1—
23, URL http://agilix.nl/resources/scrum_00PSLA_95.pdf,
1995.

(43]

[44]

(45]

[46]

(47]

(48]
[49]

(50]

(51]

(52]

(53]

(54]

(53]

(56]

[57]

(58]

(59]

F. P. Basso, L. B. Becker, T. C. Oliveira, Uma Solucao para
Reuso e Manutencao de Transformadores de Modelos Usando a
Abordagem FOMDA, in: Simpdsio Brasileiro de Engenharia de
Software. Anais do 21o Simpdsio Brasileiro de Engenharia de
Software., SBES 2007, 130-146, 2007.

F. P. Basso, R. M. Pillat, T. C. Oliveira, M. D. D. Fabro, Gener-
ative Adaptation of Model Transformation Assets: Experiences
Lessons and Drawbacks, in: 29th Symposium On Applied Com-
puting, SAC’14, 1027-1034, 2014.

F. P. Basso, T. C. Oliveira, K. Farias, Extending JUnit 4 with
Java Annotations and Reflection to Test Variant Model Trans-
formation Assets, in: 29th Symposium On Applied Computing,
SAC’14, 1601-1608, 2014.

M. Gértner, ATDD by Example: A Practical Guide to Accep-
tance Test-Driven Development, Addison-Wesley Signature Se-
ries (Beck) 1st Edition, 2012.

F. P. Basso, T. C. Oliveira, WorkCASE Toolkit: Uma Ferra-
menta de Suporte para Agile Model Driven Architecture, Tech.
Rep., Adapit SoluAgAtes em TI, 2007.

K. Schwaber, Agile Project Management with Scrum (Microsoft
Professional), Microsoft Press, 2004.

J. Shore, S. Warden, The Art of Agile Development, O’Reilly,
2008.

J. Hutchinson, J. Whittle, M. Rouncefield, S. Kristoffersen, Em-
pirical assessment of MDE in industry, in: Proceedings of the
33rd International Conference on Software Engineering, 471
480, 2011.

Y. Martinez, C. Cachero, M. Matera, S. Abrahao, S. Lujan,
Impact of MDE Approaches on the Maintainability of Web Ap-
plications: An Experimental Evaluation, in: Conceptual Model-
ing - ER 2011, vol. 6998 of Lecture Notes in Computer Science,
Springer Berlin Heidelberg, 233-246, 2011.

Y. Martinez, C. Cachero, S. Melid, MDD vs. traditional soft-
ware development: A practitioner’s subjective perspective, In-
formation and Software Technology 55 (2) (2013) 189 — 200,
ISSN 0950-5849, special Section: Component-Based Software
Engineering (CBSE), 2011.

M. Brambilla, P. Fraternali, M. Tisi, A Metamodel Transfor-
mation Framework for the Migration of WebML Models to
MDA, in: 4th Int. Workshop on Model-Driven Web Engineering
(MDWE 2008). CEUR-WS Proceedings, volume 389, Tolouse,
France., 91-105, 2008.

M. Torchiano, F. Tomassetti, F. Ricca, A. Tiso, G. Reggio,
Relevance, Benefits, and Problems of Software Modelling and
Model Driven techniques-A Survey in the Italian Industry, J.
Syst. Softw. 86 (8) (2013) 2110-2126, ISSN 0164-1212.

L. T. W. Agner, I. W. Soares, P. C. Stadzisz, J. M. Simao,
A Bragzilian Survey on UML and Model-driven Practices for
Embedded Software Development, J. Syst. Softw. 86 (4).

S. Kavaldjian, A model-driven approach to generating user in-
terfaces, in: The 6th Joint Meeting on European software engi-
neering conference and the ACM SIGSOFT symposium on the
foundations of software engineering: companion papers, 603—
606, 2007.

C. Stary, Contextual prototyping of user interfaces, in: Pro-
ceedings of the 3rd conference on Designing interactive systems:
processes, practices, methods, and techniques, 388—-395, 2000.
A. 1. Molina, W. J. Giraldo, J. Gallardo, M. A. Redondo, M. Or-
tega, G. Garcia, CIAT-GUI: A MDE-compliant environment for
developing Graphical User Interfaces of information systems,
Advances in Engineering Software 52 (2012) 10 — 29.

J. M. Vara, E. Marcos, A framework for model-driven develop-
ment of information systems: Technical decisions and lessons
learned, Journal of Systems and Software 85 (10) (2012) 2368 —
2384.

30

