
International Journal of Web Engineering and Technology, Vol. x, No. x, 2015 1

Combining MDE and Scrum on the Rapid
Prototyping of Web Information Systems

Fábio Paulo Basso and Raquel Mainardi Pillat

Federal University of Rio de Janeiro, COPPE - PESC,
Rio de Janeiro, RJ, Brazil +55 21 2562-8672

E-mail: {fabiopbasso, rmpillat}@cos.ufrj.br

Fabricia Roos-Frantz and Rafael Z. Frantz
UNIJUÍ University, Department of Exact Sciences and Engineering,
Ijúı, RS, Brazil

E-mail: {frfrantz, rzfrantz}@unijui.edu.br

Abstract: Rapid Application Prototyping (RAP) is recommended to obtain quick
feedback from clients, allowing the validation of software requirements before acceptance
tests. In this regard, Model-Driven Engineering (MDE) and Agile Methods are two
important approaches that suggest the use of techniques for RAP. Some fundamental
differences between them exist: MDE focuses on software reuse through annotated system
models while Agile Methods recommend the use simpler models to achieve quick feedback
from clients. In order to comply with agility principles but still concerned about the
future reuse of the developed software, the quick design of annotated models must be
considered. This paper presents a MDE-based RAP methodology and tool support to
quickly generate web front ends and models based on the MVC architectural pattern.
In addition, we report a case study that has joined MDE and Scrum by applying our
methodology and tool support for complete development of web information system in
a Scrum-based industrial software project. We also present lessons learnt from the case
study and point out some issues for future research in Software Engineering to facilitate
the introduction of MDE in target contexts.

Keywords: Model-Driven Engineering; Scrum; Agility; Mockup; Prototyping; RAP;
MDE as Service.

Biographical notes:
Fábio Paulo Basso is currently a PHD student at Federal University of Rio de Janeiro.

His effort is on the technical viability of Model-Driven Engineering applied as Service
in startup contexts, including topics such as Domain Specific Languages and adaptive
support for Model Transformation Chains.

Raquel Mainardi Pillat is currently a PhD student in Software Engineering at Federal
University of Rio de Janeiro. Her research interests include software processes and Model-
Driven Engineering.

Fabricia Roos-Frantz is an Associate Professor who is with the Department of Exact
Sciences and Engineering of the UNIJU University, Brazil. She received her PhD in
Software Engineering from the University of Seville, Spain. Her current research interests
include software product lines and search-based software engineering. She served as a
reviewer for the SPLC’09 and SPLC’10.

Rafael Z. Frantz was awarded a PhD degree in Software Engineering by the University
of Seville, Spain. Currently, he is an Associate Professor who is with the Post
Graduation Program on Mathematical Modelling at the Department of Exact Sciences
and Engineering at UNIJUI University, Brazil, and leads the Applied Computing Research
Group - GCA. His current research interests focus on the integration of enterprise
applications and search-based software engineering.

1 Introduction

The approach of developing web information systems
from scratch is not trivial, since it is common to
begin software projects with vague ideas about what
is required by clients (Lami and Ferguson, 2007).
Rapid Application Prototyping (RAP) is considered
a safe way to ensure that what is being produced

is really what the client requested (Grigera et al.,
2012). Prototyping requires code generation, which can
be refined by developers in cycles of acceptance tests
along an iteration. This approach has received increased
attention through modern frameworks to develop web
information systems such as Ruby on Rails. Besides,
RAP is supported by several approaches for Model-
Driven Engineering (MDE) (Schmidt, 2006) through

Copyright c⃝ 2012 Inderscience Enterprises Ltd.
Copyright c⃝ 2009 Inderscience Enterprises Ltd.

Basso, F.P., Pillat, R.M., Roos-Frantz, F. and Frantz, R.Z. (2015) ‘Combining MDE and Scrum on the rapid
prototyping of web information systems’, Int. J. Web Engineering and Technology, Vol. 10, No. 3, pp.214–244.

2 F. P. Basso et al.

Domain Specific Languages (DSLs) used to design web
front ends and other application layers. Some MDE-
based approaches use the UML to design models based
on the architectural pattern Model-View-Controller
(MVC) (Nunes and Schwabe, 2006; Distante et al.,
2007; Souza et al., 2007). However, there are authors
that consider MDE-based approaches contrary to agile
principles (Rivero et al., 2012; Forward et al., 2012;
Martin Fowler, 2005). A possible conflict of using such
approaches with agile methods is that typical MDE
approaches demand detailed models (e.g., UML models
are extensively annotated with tags and stereotypes),
while teams using agile frameworks propose the design
of simpler models such as web front ends. These different
approaches for RAP found in the literature must be
properly analysed before introducing them in enterprise
contexts (Whittle et al., 2013; Hebig and Bendraou,
2014).

Prototypes generated by RAP approaches can be
evaluated by clients in order to validate software
requirements (Souza et al., 2007), but they are time
consuming to be designed since they require the
specification of many details before generating source
code. On the other hand, Scrum is an agile framework
used to manage software projects whose requirements
are difficult to discover. In (Shore and Warden, 2008)
authors claim that Scrum is interesting to be used
in started from scratch applications, in which clients
are studying, understanding, discovering and reporting
requirements to the development team. In this sense, a
technique used by agile teams is to generate prototypes
through Mockup specifications. Grigera et al. (2012)
state that Mockups are web front ends representing
a common layout structure, organizing Graphic User
Interface (GUI) components in reusable templates that
implement such structures in code. In other words,
a Mockup provides common semantics for a domain,
suggesting for developers how to structure the code in
development tasks.

We have found that a Mockup-based RAP approach
is suitable to combine MDE and Scrum in software
projects using short iterations. Thus, in this paper
we propose a methodology for RAP that includes
MDE tasks and present lessons from a practical case
study that introduced MDE and web front ends in a
Scrum-based software project from a start-up company.
Some authors (Ambler, 2002; Giardino et al., 2014)
consider start-up contexts as the more challenging
ones for adoption of MDE because Software Engineers
are focusing on implementation and leaving software
quality apart from the central activities of software
development. Ambler (2002) concluded that Software
Engineers working at start-ups adopt Agile Methods due
to volatility of requirements. Changes on requirements
make an obsolete previous design model, which means
that an appropriate RAP methodology for agile contexts
must be considered. Part of such an experience was
discussed in (Basso et al., 2014b). In this paper, the
following contributions are presented:

• A new RAP methodology based on MDE and fully
compliant with Scrum. It generates MVC Models
through Mockups;

• A case study applying the proposed methodology
in a Scrum-based software project;

• Lessons learnt from the case study about
combining MDE and Scrum in agile software
projects;

• Issues for future researches aiming at facilitating
the combination of MDE resources with target
enterprise software processes. This contribution is
important to promote new initiatives of MDE as
service.

The rest of this paper is organised as follows:
Section 2 introduces the main concepts necessary to
understand this proposal and Section 3 presents our
motivation. Section 4 contextualizes our proposal for
RAP, detailed in Section 5 with our methodology and
tool support. The case study is presented in Section 6
and Section 7 reports the lessons learnt. Section 8
discusses on issues for future research in Software
Engineering. Section 9 presents our related works while
conclusions and future work are presented in Section 10.

2 Background

The “Agile Manifesto” in February 2001 (Kent Beck
et al., 2001) “messed up” with a previous wisdom that
claimed a good software analysis demands extensive
documentation (Dyba and Dingsoyr, 2009). Since then,
Software Engineers have been wondering on which design
practices are compatible with agile frameworks proposed
in the literature (Hebig and Bendraou, 2014). The agile
principle introduced by the agile manifesto “Deliver
working software frequently, from a couple of weeks to
a couple of months, with a preference to the shorter
timescale” is directly related to time invested in analysis
and design (Martin Fowler, 2005). We have proposed a
RAP approach based on MDE that could be considered
incompatible with agility due to the need of detailed
models. However, our proposal is not incompatible with
agile methods because analysis and design are quickly
performed, allowing the execution of short iterations.
This section presents the main concepts related with this
approach.

In order to combine MDE and Agile Methods,
some reference models (or frameworks) for Software
Development Processes (SDPs) such as Agile Model
Driven Architecture (AMDA) (Ambler, 2015) and
Feature Driven Development (FDD) (Chowdhury and
Huda, 2011) have been proposed and used for software
development. As SDPs that combined Scrum with
MDE, some interesting works can be mentioned such
as from Kulkarni et al. (2011), which proposed a new
SDP called Meta-Sprint, and Zhang and Patel (2011),

Combining MDE and Scrum on the Rapid Prototyping of Web Information Systems 3

which proposed the Agile MDD. The literature of the
area present several proposals for SDPs. Accordingly,
the more intuitive and logical way to start a MDE-
based software project is to select a specific approach
and to follow its suggested activities. However, the
industry present their own SDPs (Johnson et al., 2012).
Therefore, it is important to consider the target SDP
used by a candidate company for MDE adoption.

Whittle et al. (2013) reasoned that instead of using a
unique reference model to conduct a MDE-based process,
demands from the industry present specific contexts,
including the use of diverse SDPs and team skills. This
influence adopted tools for design (Petre, 2013). This
means that instead of using a common SDP and tools,
some industrial contexts require the integration and
adaptation of resources for MDE (tasks, tools and DSLs)
into enterprise specific SDPs. Hebig and Bendraou
(2014) claimed that studies in Software Engineering
should evaluate the impact that introduction of MDE
causes on reference process models in general. Based on
these works, a software project conducted with a Scrum-
based framework can impose threats to the introduction
of MDE as well as MDE can impose threats to the
software project execution. The literature of the area
lacks information on benefits and difficulties that the
combination of these approaches would add to the
practice.

MDE promotes modelling in all phases of a software
development process (Kent, 2002). In the analysis phase,
models are usually general and with no information
that can lead to a technical solution. In the following
phases, models are enriched with annotations containing
details necessary to obtain the technical solution. These
enriched models can be used to enable automatic
generation of source code. This work stands on MDE
as applied to the design of models for the domain
of web information systems. These models are based
on the architectural pattern Model View Controller
(MVC) (Burke and Monson-Haefel, 2006) as illustrated
in Figure 1. The design of models based on MVC requires
the specification of several application layers through
UML diagrams and/or web front ends.

Models are used to generate prototypes, which in
turn are used to help in requirements understanding
and validation. In a Scrum-based SDP, Landre et al.
(2007) recommend to execute cycles of feedback in
which clients test a functionality under development
in process iterations of short duration, named Sprints.
Rivero et al. (2012) claimed that due to the time invested
in design, the generation of prototypes through detailed
models based on MVC can imply in delay of cycles
of validation, which are executed in timescale larger
than when prototypes are developed without MDE. This
is reported as an issue to perform validations in agile
software projects (Martin Fowler, 2005).

Sprint cycles represent the number of repetitions to
execute acceptance tests for the same functionality in the
same Sprint. In order to support frequent feedback from
clients, developers quickly apply changes in an increment

Figure 1 Multi-Layered Architecture Based on MVC.

of functionality until it is complete, using more than
one cycle for validation (Schwaber, 2004). This suggests
that in a Scrum-based software project and supported
by techniques and tools of MDE it is important the
use of an approach that allows iterative and incremental
designs, following sequences of design, code generation,
and validation in cycles of acceptance. Therefore, for the
development context discussed in this work, the quick
design of web front ends and associated MVC-based
models is important.

The next section motivates a case study applying
our methodology and tool support in a software project
conducted with the agile framework Scrum.

3 Motivation

For some years, the first two authors of this paper have
been in an effort to introduce model-based solutions in
start-up contexts, developing several resources for MDE
through their own company. This company was founded
in 2007 and supported for three years by a business
incubator hosted in one of the biggest scientific and
technological areas in Brazil. Through this company we
introduced MDE in some target software projects, three
projects developed internally and other two externally
(the first one failed and provided lessons for all the
others). Only the last external software project is
discussed in this paper, which is considered “MDE as
Service” as illustrates Figure 2 box 2.

In this scenario, resources developed for MDE (e.g.,
model transformations, DSLs and tools) are applied
in different contexts. This is not easy and requires a
set of techniques and reuse tools that make flexible
the construction of resources for MDE. As discussed
in (Basso et al., 2013), an analysis of the target context
is carried out, highlighting which resources for MDE are
used on the development of a specific software project,
e.g., selecting an appropriate structure for MVC on the
development of web information systems, as illustrates
the dotted region in Figure 1.

Resources for MDE are independent from the SDP
reference model adopted by a company. It is in this
scenario that our case study presents valuable lessons
for the practice. An investor hired our enterprise to
introduce our RAP methodology presented in Section 4
and its tool support, named MockupToME, in another
start-up. His goal was to evaluate the feasibility and

4 F. P. Basso et al.

Figure 2 MDE as Service.

potential of our proposal when introduced in the context
of “Company A”, which uses Scrum to manage software
development projects (while in our enterprise we make
use of AMDA). Taking into account this demand, a case
study for MDE as Service was conducted as part of an
industrial innovation project. This study was planned
a year before introducing our approach in Company
A, considering risks. Such innovation project has been
supported by FINEP, a Brazilian governmental agency
of support to research and development.

4 Review of Adopted MDE-Based RAP
Approaches

In order to apply agility principles together with MDE
in short iterations, the quick design of annotated models
and the generation of testable prototypes must be
considered. This is called Rapid Application Prototyping
(RAP) and can be performed through several tools and
techniques. This section discusses on RAP techniques
that we have already applied in practice and introduces
briefly the one that we have found to be the more suitable
to an agile context. Such technique will be detailed in
the next section.

Along some years (Basso et al., 2007), we have
experienced some RAP approaches for design and code
generation on the development of web information
systems as follows.

First approach. The RAP approach illustrated in
Figure 3 (1) makes use of detailed models designed with
UML for requirement specification. In this approach,
models are manually annotated with stereotypes and
tags, providing semantics for business logic, web front
ends and persistence logic. It requires experienced
designers. A drawback of this approach is the big
effort in design before executing the validation of a
testable application piece. However, it is appropriate to
represent details in a model organized in different MVC
layers, enabling the generation of modular source code
through a “model-to-code (M2C) Execution Engine” and
resulting in a fully implemented prototype.

Second approach. The approach for RAP
illustrated in Figure 3 (2) allows to generate Mockups
from a Conceptual Model (entity classes) through “Start
templates”. This is a categorisation for a set of model

Figure 3 Approaches Adopted to Design Web
Information System Models

transformations used in initial phases of prototyping.
Besides, a “M2C Execution Engine” enables the use
of these Mockups to generate the application code
(without Annotated MVC Models). This is similar to
implementations of web frameworks such as Ruby on
Rails. From our experiences, we have found that this is
the easiest and quickest RAP approach because it do
not require big effort in design. Code generated from
Mockups enables clients to experiment and explore
system functionalities, typically generated in a simple
layout structure that does not change, such as templates
for JSF using Java Facelets. A benefit of this approach
is the quick validation of an application piece generated
in conjunction with clients, while the previous approach
requires more effort in modelling, implying in the
validation carried out more lately. However, due to the
limited expressiveness of Mockups, simpler prototypes
than the ones of the first approach are generated,
requiring several changes in source code to make them
customized for the client. This effort is due to the lack
of rich semantics associated with GUI components in
Mockup designs (e.g., absence of semantics for business
logic). Thus, the prototype design does not reflect
the final code and can be discarded after the code
generation.

Third approach. The design approach illustrated
in Figure 3 (3) includes a “Model Refinement Engine”
named MockupToME and was proposed to speed-
up the specification of “Annotated MVC Models”. In

Combining MDE and Scrum on the Rapid Prototyping of Web Information Systems 5

this approach, MVC models are generated through
Mockups more detailed than those ones of the second
approach, since they specify business logic through
tags and stereotypes. This is an innovative approach
that supports the generation of the application’s
full source code through models refined in multi-
levels of abstraction by using a “model-to-model
(M2M) Execution Engine”. Besides, the third approach
combines the aforementioned ones through automated
design techniques discussed in Basso et al. (2014a). This
was the approach adopted by Company A in the case
study presented in this paper and will be better detailed
in the next section.

5 Our MDE-Based RAP Methodology

Our more recent RAP approach is more complex
than the previous approaches due to the use of two
different abstraction levels for models and techniques
to construct Mockups. Thereby, we have proposed a
support methodology whose main tasks are shown in
Figure 4. This work presents an overview of the proposed
RAP methodology considering it as independent from
any SDP reference model. A complete description of the
MDE tasks is presented in Basso et al. (2014a). The
proposed methodology supports three kinds of tasks:

• Automatic and semi-automatic model-to-
model (M2M) transformations are applied
to identify system requirements, domain and
project classes, and types of user interactions
with the system. Models are designed and refined
from a high-level of abstraction (Mockup) to a
MVC-based abstraction level. Automatic tasks are
represented by a “script” icon (tasks 2, 4 and
6 in Figure 4) while semi-automatic tasks are
represented by a “user” icon (task 3 in Figure 4).

• Automatic model-to-code (M2C)
transformations are applied in task 6, after
Mockup designs are approved by clients. These
transformations are responsible for generating the
source code based on the MVC model layers shown
in Figure 1 (view, business logic and controller).

• Manual tasks are represented by a “hand” icon
and can be required to complement fragments of
source code that need to be manually refined by
software engineers after the execution of task 6.
Also, new design elements in UML models, whose
semantics is not possible to be automatically added
through Mockup refinements supported by tool,
can be needed in task 5.

5.1 Lifecycle

We have used BPMN (BPMN, 2014) to model the
RAP lifecycle of our methodology as shows Figure 4.
In this model, BPMN lanes represent stages of design

Figure 4 Overview of our RAP Methodology to Generate
an Adapted MVC Architecture.

and refinement in the RAP lifecycle. In each stage
different input and output data are used for the model
transformations shown in Figure 3. Bellow we depict
each stage of the proposed methodology.

Agile analysis. In this stage three methodology’s
essential artifacts are produced: “Sketch”, “User Story”
and “Conceptual Model”. A sketch is a drawing in paper
representing GUI components and screen flows and a
use story describes intentions of users to accomplish a
specific functionality. From these artifacts, an Analyst
can specify a conceptual model, which is a set of
classes describing the entities whose data/objects will be
persisted into a database (also called as analysis classes)
shown in the top of Figure 5. This is the minimum
set of artifacts to start the RAP approach. However,
one can use other representations for requirements such
as textual use cases represented with a DSL, glossary,
supplementary and non-functional requirements (e.g.,
representing the periodicity of calls for methods of some
classes).

6 F. P. Basso et al.

Evolutionary prototyping. This second stage of
the methodology is supported by automatic and semi-
automatic M2M transformations. The first task related
with MDE is, therefore, executed after the “Agile
Analysis” phase, when Mockups are generated in task
2 and refined in task 3. In task 2 the designer consider
a “Sketch” that describes a functionality from the
viewpoint of analysis to generate a preliminary Mockup
through a specific model transformation template,
illustrated on the middle and bottom of Figure 5.
Each Mockup model is in conformance with the
MockupToME metamodel presented in (Basso et al.,
2012), which is a DSL in higher-level of abstraction than
the UML. Teams can design Mockups with different
implementation structures from those drawn in a Sketch,
suggesting different options to clients that could better
satisfy their needs. Options to structure a Mockup
are generated automatically through homogeneous M2M
transformations (based on the same metamodel). Clients
opine about the Mockup design, resulting in an
“Accepted Mockup Model”. Therefore, an accepted
Mockup is not a rigid layout structure based on a specific
GUI template (which is the result of task 2). It is a
customized design built in a creative process represented
by the task “Refine Mockup”.

Architectural prototyping. After a Mockup is
accepted by the Client in task 3, Mockup components
are used to generate the “Annotated MVC Model” in
task 4, which are model pieces of the MVC architectural
pattern. Thereby, the phase “Architectural Prototyping”
aims at transforming a high-level model (annotated
Mockup shown in Figure 6) to implementation-level
models with the MVC-based structure shown in Figure 8.
Each generated model can be manually refined in task
5, adding more semantics for elements through tags
and stereotypes from the UML Profiles discussed in the
Section 5.2.

Functional prototyping. The last phase of RAP is
named “Functional Prototyping” and aims at detailing
a generated prototype along cycles of acceptance to
then perform acceptance tests. An “Annotated MVC
Model” is used as input for M2C transformations that
generate a working prototype in task 6. This prototype
will be target of developer tests. This is the point
in which Clients interact with a compiled application
running in a web browser/application server. Finally,
after task 7 a working software piece is delivered as a fully
implemented functionality and then acceptance tests are
executed.

5.2 Tool Support

This section exemplifies our tool support for the
proposed methodology.

Running example. The running example considers
a functionality from the system “P&D.NET”which was
developed in the case study presented in this paper.
A screenshot of this system is shown in Figure 7.
The system is focused on the management of financial

Figure 5 Generation of a Mockup With the
MockupToME Tool

Figure 6 Accepted Mockup Model: Screenshot of a
Mockup to Maintain Categories From the System
“P&D.NET”

support, considering Brazilian laws to foment innovation
projects. On the left side of Figure 7 is shown a menu
of functionalities manually developed by the project
team of Company A. On the middle of Figure 7 is
shown a web front end generated by our proposal for
RAP. This front end is part of a functionality of type
CRUD (Create, Read, Update, Delete) that aims at
implementing actions to persist and retrieve information

Combining MDE and Scrum on the Rapid Prototyping of Web Information Systems 7

Figure 7 Screenshot of a Functionality from System
“P&D.NET”.

shown in this web form into/from a database. This
information is organized in entity classes, selected from
the “Conceptual Model” to implement a “User Story” as
illustrates Figure 5 (1). The Conceptual Model from the
system “P&D.NET” contains entities such as “Project”,
“Product” and “FinancialSupport”, associated with a
category. In the following we exemplify the application
of the tool support on the development of the user
story “Develop the maintenance of categories of financial
projects”.

MockupToME tool is used to represent the
first abstraction level of models. In our tool
support for RAP, named MockupToME, the application
design starts by generating a “Preliminary Mockup
Model” from an input “Conceptual Model” as illustrates
Figure 5. It provides a set of menu items representing
“Start Templates” (see Figure 5 part 2) that generate
mockups with action semantics for persistence. These
menu items are used to design the User Story “Develop
the maintenance of categories of financial projects” of
our running example. The Designer must select a “Start
Template” from a popup menu (Figure 5 part 2) to
generate a Mockup for the entity “Category”. These
templates are available in popup-menus, dynamic model
transformations and model transformation wizards
(see Basso et al. (2013)). The generated Mockup shown
in Figure 5 (3) is then enriched by the designer with
annotations representing the application’s business logic.
This procedure is carried out through the “Model
Refinement Engine” provided by the MockupToME.
The refinement of such a Mockup is performed by the
designer through the generation of common structures
for web front ends, shown on the right part of Figure 6,
in an evolutionary prototyping approach.

Annotations in Mockups. The left side of
Figure 6 shows an element tree with two annotations
associated with the titled panel “Category Filter”,
which is graphically shown in the right part of this
figure. The annotation <<FormAction>> maps this
panel to an “HTML Form Tag” and <<FilterForm>>

indicates this panel will handle end-user interactions
related to filtering of data associated with the class
“Category” of the “Conceptual Model”. The “Model
Refinement Engine” uses these annotations to build
the Mockup, e.g., linking actions related to “Filter”
with the panel “Category Filter” according to its
associated annotation <<FilterForm>>. Buttons of
Mockup are also automatically created with “Start
Templates”. Icons of buttons vary according to the
annotation assigned to them in the drawing area.
For example, the left side of Figure 5 shows the
stereotype <<SaveOrUpdateEntityAction>>, which
is associated with the button named “Save” shown
in Figure 6. Similarly, <<FilterBy>> is associated
with the button named “Search”. These annotations
are automatically added by the MockupToME
tool while the designer applies refinements on the
model through menu items (see the demonstration
video of design and refinement of a more complex
Mockup in http://prisma.cos.ufrj.br/wct/

projects/mockuptome home.html).

UML Profiles are used to represent the second
abstraction level of models. MVC-based models
are represented with four UML Profiles: a) The GUI
Profile (Blankenhorn, 2004) is used to represent GUI
components (view layer) since UML has no diagram to
draw GUIs; b) The Action Profile is used to represent
GUI component actions (controller layer) as a UML
activity diagram; c) The Service Profile enables to
define details about the business logic layer for services
that implement the classes Remote, Validation and Data
Access Object (DAO); d) the ORM Profile is used to
apply object-relational mappings on the model layer.

Abstraction layers of the “Annotated MVC
Model”. Automatic M2M Transformations use the
“Accepted Mockup Model” to generate the “Annotated
MVC Model”. Figure 8 (1) shows another abstraction
level for the View Layer in which a model is
represented using our “GUI Profile”. GUI components
of this profile are more appropriate for designers
to provide details in web layouts than the DSL
used to represent Mockups. Figure 8 (2) shows an
UML interface representing operations and parameters
annotated with the “Service Profile”. This profile
allows the representation of business logic associated
with events of buttons represented in a Mockup.
Figure 8 (3) shows the controller layer represented
with the “Action Profile”, a UML interface with
operations to control events and flows. In (Basso
et al., 2012) we discussed on a set of heterogeneous
M2M transformations applied in this stage that convert
a Mockup specification based on the MockupToME
metamodel (see http://prisma.cos.ufrj.br/wct/projects

8 F. P. Basso et al.

Figure 8 Annotated MVC: Layers (View, Business Logic and Controller) Generated From the “Accepted Mockup Model”

/mockuptome metamodels.html) to specifications based
on the MVC.

The FOMDA approach is used to generate
the source code of application. Resources for MDE
(e. g., code generators) enable the transformation of
the “Annotated MVC Model” shown in Figure 8 into
code mapped for several application layers shown in
Figure 1. These layers are flexible to support specific
implementation APIs for the Java J2EE architecture.
Some layers are used only in some the target software
projects. For example, the Remote layer is only necessary
when a desktop or mobile view is necessary, which is
not the case for this study. This flexibility in code
generators needs appropriate tool support to adapt
model transformation resources for specific needs from
software projects. The FOMDA approach is used to
develop flexible and adaptive model transformation
components, as depicted in (Basso et al., 2013). This
approach is assisted by the tool support named FOMDA
Plug-in, not presented in this piece of work, used by
a Java Senior architect, who defined how models are
transformed from Mockups to the underlying MVC-
based architecture and code.

6 Case Study Combining MDE and Scrum

We present a case study on the introduction of an MDE-
based RAP approach in an agile software development
project, enabling the use of iterative and incremental
development. As a result of the context analysis of the
target company we proposed essential model-based tasks
and free of conflict with agile principles associated with

Scrum. This experience demanded financial investment
and consumed more than a year of work before starting
the execution of the software project. The case study
included an analysis of context, the planning of the
combination of MDE and Scrum, and adjustments in
tool support. The next sections contextualize this study.

6.1 Case Study Format

The case study is focused on the introduction of our RAP
tool MockupToME in Company A, which uses Scrum to
manage software development projects. In the following
we present the format of this study.

Goal: To observe how MockupToME
contributed/affected the development of a web
information system built from scratch considering the
context of Company A.

General context of the software project: The
software development project involved two Brazilian
software companies, which in this paper are denominated
“Company A” and “Company B”. These companies
collaborated to develop a web information system
for management of innovation projects. Such system
is divided in two subsystems: Company A used our
proposed RAP approach to develop the subsystem
named “P&D.NET” shown in Figure 7 while Company
B developed the other subsystem named “SAGLI”
without using MockupToME. The development ran
independently each other resulting in two subsystems,
integrated at the end of the project though Java web
services.

Case study configuration: This is a primary study,
in vivo, focused on the introduction of our RAP approach
in the context of Company A, evaluating benefits and

Combining MDE and Scrum on the Rapid Prototyping of Web Information Systems 9

drawbacks promoted by the approach on development of
the system “P&D.NET”. Along five months we observed
the development of the subsystem “P&D.NET” carried
out by Company A. We monitored the effort of the team
to produce a testable application piece. The project team
from Company A used our RAP approach with Scrum
and has been composed by: a Scrum Master, a Java
developer, a Tester, and a Designer. To programming,
the team used a trainee developer, which means he
needed a learning period to assimilate the technology
after two weeks of training.

Evaluation format: Due to differences between the
subsystems developed by Company A and Company B
and differences in implementation APIs for the View
layer (Company A used JSP whereas Company B
used JSF), it was not possible to conduct a controlled
experiment. Instead, we conducted an observational
study on the software development in Company A. Thus,
from empirical viewpoint, the evaluation of our proposal
is based on a case study, which is not controlled by
researchers and therefore provides more imprecise results
than an experiment. This is the reason why our study
did not allow us to obtain more conclusions than lessons
learnt. Lessons learnt are presented in Section 7. On
the other hand, the case study was important to the
practice associated with MDE. Such study provided us
new insights and challenges regarding MDE as Service
that are presented in Section 8.

Feedbacks. The project team from Company A
provided us qualitative feedback every week, allowing
us to observe issues related to the development of
prototypes and its impact on the duration of a Sprint. We
have not collected other quantitative measures, except
on the size of the produced subsystem in Company A.
We have collected qualitative attributes from Company
A such as on usability of the MockupToME tool, required
improvements, and bugs.

6.2 Introducing our Methodology In a
Scrum-Based Software Project

So far, our methodology has been presented of agnostic
way to the context of Company A, i.e., independently
from a process reference model or software project.
This section reports our experience in introducing the
methodology in the context of Company A through some
essential tasks recommend by the Software Engineering
discipline.

Analyse the adopted process reference model
or similar processes found in the literature of
the area. An analysis of target context was carried
out some months before the execution of the software
project. Through this analysis, we identified activities
related to MDE that should be performed before, during
and after each Sprint. The SDP research suggests
that the combination between a methodology and a
process can be facilitated through techniques for Method
Engineering, Process Lines and Tailoring (Pillat et al.,
2015). However, we have not considered these techniques

because Company A has not a defined process. In
the lack of a baseline to understand and adapt the
adopted Scrum-based process, we studied this software
development framework through documents, books and
trainings.

Conduct preliminary feasibility analysis. To
understand if some tasks of MDE are feasible for
the target context, we have conducted a preliminary
analysis through ad-hoc tests, evaluating the use of the
RAP methodology in toy examples. We have considered
the time scale for Sprints suggested by Company A
(seven days) and its team configuration, which would
use one inexperienced designer and one inexperienced
developer. In this regard, our main concern was that the
execution of a Sprint with our RAP methodology could
be compromised because the need of highly detailed
models. Thus, ad-hoc feasibility tests helped us to define
tasks of MDE to be performed in short timescales.

Introduce RAP tasks within the target
software process. Due to the lack of a defined
process reference model to use with the proposed
RAP methodology, our best option was to find in the
literature a Scrum methodology that is closer to the
practices used by Company A. Thus, we used the
“Scrum methodology” (Schwaber, 1995) as a guideline to
organize MDE-based tasks in three distinct phases: “Pre-
Game”, “Game” and “Post-Game”. The Pre-game and
Post-Game phases can be pre-determined in a process
reference model while the game phase is dynamic. In
the following we present tasks that we considered as
additions to the Scrum methodology shown in Figure 9.
Also, we present guidelines to introduce the RAP
methodology within a Scrum-based software project.

6.2.1 The Pre-game Phase

The Pre-Game phase conducted by Company A included
typical activities of planning of the Product Backlog,
team planning, analysis of risks, estimation of release
cost and funding. Moreover, bellow we present additions
to the pre-game phase, which groups preliminary
decisions to the execution of the software project.

Prepare MDE resources to the context of
Company A. We configured model transformation
assets to be used in all the Sprints using the FOMDA
approach. More information about how to specify and
adapt resources for MDE can be found in (Basso et al.,
2007, 2013).

Ensure team’s commitment with the adoption
of MDE. A software project that includes MDE aims
at the future reuse of models, otherwise it should
not be used. In this sense, it is important to make
clear for the project team the change of paradigm.
From one side, MDE practices are focused on reuse,
meaning that the designed model is the most important
artifact produced in a software process. From other side,
agility principles demand focus on producing testable
application pieces, meaning that the application itself
is the most important part and not the artifact used

10 F. P. Basso et al.

Figure 9 Introduction of the Proposed RAP Methodology Within the Scrum’s Game Phase

to build it. A meeting to discuss expectations regarding
reuse of models was conducted, ensuring the team’s
commitment in performing tasks for MDE.

Integrate the adopted analysis approach with
the RAP methodology. We have developed a DSL
to represent textual use cases as models. However,
Company A adopted a simple analysis approach using
Sketch and User Story to find requirements. In this
case, we discarded the DSL for textual use cases and
integrated the agile analysis used in Company A into
the methodology. Thus, we planned and discussed with
the company’s team how to move from agile analysis to
RAP.

Expose to the team the changes that will
be introduced with the new methodology. In
addition to the agile analysis conducted in Company
A, we recommended the design of a conceptual model
in order to satisfy the required input by our RAP
methodology and MockupToME tool support. The
incorrect design of this model would imply in problems
in the generation of Mockups and repetition of tasks to
adjust the design. Thus, we introduced recommendations
to generate correctly a “Preliminary Mockup Model” in
task 2 of our methodology pointing out the differences
between Scrum and MDE.

Define and expose to the team the expected
time interval for the high-level and architectural
design in Sprints. Before the definition of a Sprint,
it is important to agree with the team on the interval
of time that will be used by designers before developers
start the implementation of the system. For example,
if a goal in Company A is to obtain more expressive
code generation in future reuse of the designed models,
then more hours should be allocated in Sprints to
include manual tasks that enrich the design or models of
other abstraction levels designed with DSLs. Company
A opted to invest at most 16 hours on design tasks in
each Sprint, what limited the application of some manual
tasks. For example, the refinement of the “Annotated
MVC Model” during the “Architectural Prototyping”
phase could not be applied in a so short timescale.

Define if and which manual design tasks
are performed in Sprints. Manual design tasks
can be performed to enrich models, as long as they

do not compromise the timescale of Sprints. The
execution of simple manual tasks on UML models in the
“Architectural Prototyping” phase, e.g., to adjust the
name of parameters from operations in the “Annotated
MVC Model”, is not a problem for the timescale of
16 hours for design. However, we have found in our
ad-hoc tests that manual tasks for reverse round-trip
engineering (from code to model) demand from the
team much expertise and, consequently, need more than
16 hours for design tasks. Therefore, we recommended
Company A to not carry out manual design tasks such
as round-trip inside the Game phase for two reasons: 1)
to have more time in Sprints for developers to use in
the “Functional Prototyping” phase; and 2) to reduce
information overload for inexperienced designers.

6.2.2 The Game Phase

As illustrates the central-part of Figure 9, the proposed
RAP methodology is applied inside Sprints in the
Game Phase. As requested by Company A, we planned
MDE tasks to be executed in short duration Sprints,
using seven days of work. Considering this timescale
for the complete execution of a Sprint, we picked the
concepts discussed in Scrum methodology’ phases named
Architecture and High Level Design and Development
and organized our RAP methodology in conformity these
phases as follows.

Execute Sprint Planning according to the
RAP approach. The Sprint planning includes a RAP
planning. In the Sprint planning we recommended the
team to discuss on user stories and design issues to
then define a development schedule. In order to include
our RAP approach in the planning, we recommended
the team in Company A to discuss the applicability of
existing transformation templates to generate Mockups.
Thus, development tasks were classified according to
some categories of transformation templates in each
Sprint Planning.

Define the time scale of initial Sprints. Due
to the use of inexperienced team’s members, we helped
Company A to define Sprints in the first two moths and
let the team to define them in the following months
as its members became more familiar with the RAP
methodology. Ideally, based on its experience and on

Combining MDE and Scrum on the Rapid Prototyping of Web Information Systems 11

metrics from other projects, the team should be able to
define the duration of a Sprint using information from
the RAP planning. However, because this was the first
project conducted in Company A using a RAP approach,
no metric or previous knowledge from the team could be
used to suggest a schedule.

Characterize functionalities based on
available model transformation templates. System
functionalities are firstly characterized as specific
structures for Mockups described by a “Functionality
Type”, as illustrated on the middle of Figure 9. Types
of functionality currently supported in MockupToME
include the generation of Mockups following structures
for web front ends (e.g., CRUD, filter/search), structures
for reports and for data interchange with spreadsheets.
The characterization dictates if it is possible to use our
RAP methodology to generate a preliminary Mockup
or if the functionality must be developed without
support of model transformations. From user stories
and sketchs of the pre-game phase, the team specifies
a Sprint Backlog highlighting how the tasks named
“Generate Preliminary Mockup” and “Refine Mockup”
will be executed. The planning starts with the choice
of which model transformation templates, called “start
templates”, will be used to initiate the design of a
Mockup. The structure of a Mockup is discussed between
team’s members, highlighting “refinements strategies”
that could be applied in the task “Refine Mockup”.

Map conceptual model elements for start
templates in the Sprint planning meeting. Based
on the characterization of a functionality, Developers
map which model elements (classes from the conceptual
model) will be used as input for “start templates”.
Activities a software engineer has to follow when
generating mockups are: to find domain classes from the
conceptual model that are related to a same functionality
(i.e., they are described in a same user story), and then
to use these classes as input for a start template.

Use iterative and incremental steps following
the RAP methodology. The design and refinement of
Mockup in the third task shown in Figure 4 is a creative
process of discovery and invention, which needs constant
feedback from Clients. We inserted the task “Refine
Mockup” inside the phase “Discovery and Invention” of
the Scrum methodology. To support quick feedback from
Clients, a Mockup must be designed in hours, not days,
considering strictly requirements of an unique Sprint. In
following Sprints, a previously designed Mockup can be
modified when requirements from a new functionality
are introduced. This is not a big issue because the code
and lower levels of models are (re-)generated by the tool
support. Therefore, a team will make use of all the RAP
tasks in iterative and incremental steps of discovery,
invention, implementation and test.

Obtain clients’ feedback before the
implementation. The validation of Mockups aims at
reducing rework in development, a benefit associated
with prototypes. However, such benefit implies at least
one cycle of feedback from Clients to validate the

Mockup before the code implementation. Semantics
associated with components of Mockup allows designers
to demonstrate flows of GUIs inside the MockupToME
tool. It is also possible to demonstrate GUIs and flows
in a web browser.

Apply corrections on the generated code to
execute automated test cases and acceptance
tests. Models shown in Figure 8, generated from
the “Architectural Prototyping”, are input for code
generators of test cases. These tests persist and research
information associated with conceptual models and
Mockups. Full source code is generated for all the
application’s layers except for automated test cases.
Developers need to complete test cases by adjusting
values of properties from entity classes (the “Model”
layer). These classes are annotated with specifications
from the Object Relational Mapping (ORM) Profile,
allowing the execution of operations to persist and
retrieve information to/from a database. In order to
test these operations, each test case uses instances of
classes derived from the UML Service Interface shown
in Figure 8 (2): “Remote” (when is necessary GUIs
for Desktop or Mobile), “Validation” that validates
properties from entities, and “Data Access Object” that
implements business logic with a query language (e.g.,
SQL or HQL). A test operation is generated for each
action represented in a Mockup (e.g., for the button
Save).

Monitor, report and plan changes. Changes can
be simple adjusts in models or complete modifications in
requirements. When adjustments are needed in the first
cycle of Mockup’s validation, designers can apply the
corrections in the model and follow to the Architectural
prototyping stage. We suggested that all changes in
Mockups should also be applied in user stories as soon as
the client validates the design and suggests alterations.
In the second case, when changes in requirements are
needed, we recommended to plan such changes in an
activity apart from the main process. For example, in
Figure 4 the change planning is started from the event
“Start Change Management”. This event represents the
need of a new meeting to discuss when these changes
must be handled: in the current Sprint or in a next
Sprint. Our case study did not present radical changes
such as rejection of the designed Mockup, but they
occur, such changes should be thrown away and the
RAP methodology should be applied again for the new
requirements.

6.2.3 The Post-Game Phase

Manual development of source code may require round-
trip engineering, a counter agile practice. Our ad-
hoc tests pointed out that tasks for round-trip, which
must manually revert code for models, hampered the
execution of short iterations. The inexperience of the
designer and developer is a problem to perform reverse
round-trip engineering when these stakeholders must
revert details from code to model. On the other hand,

12 F. P. Basso et al.

the generation of code from model is automatic, meaning
that such an inexperience is not problem to apply this
MDE task. Thus, we recommended that reverse round-
trip engineering, if necessary, must be applied in the
“Closure” phase of the Scrum methodology or at the end
of the software project. In our case study, Company A
did not need to apply reverse round-trip engineering.

6.3 Synthesis of Results

After five months, the case study’s project resulted
in the specification of 47 domain classes and 22 core
mockups. These mockups were automatically generated
as CRUD/List forms through our “start templates”. All
developed CRUD functionalities involved associations
between entity classes. This means that mockup
refinement strategies provided by the MockupToME tool
were used for the design of these functionalities. Such
strategies are based on the design technique known as
master-detail (Molina et al., 2002) and were previously
presented in (Basso et al., 2014a).

Designed mockups led to generation of 82% of overall
functionalities, divided in: a) 22 classes for controller
layer; b) 35 classes to support the data access layer with
fully embedded business logic; c) 35 classes for form
validation; d) 47 domain classes with ORM annotations;
e) 56 JSPs to support the view layer (some UI screens
were generated in more than one file).

Although the number of days required to complete a
sprint (i.e., the development of a complete functionality)
decreased along the project, the generated code by our
tool support needed of some manual modifications until
that the full code was generated in last three Sprints,
not requiring adjustments.

From the case study, we can state the proposed
methodology was successfully applied for the
development of an application started from scratch
in a Scrum-based software project. Since the software
production using our proposal is focused on delivering
working application pieces in each Sprint, the
introduction of our MDE-based tool in preliminary
software process phases did not conflict with agile
principles. Therefore, all the practices suggested in the
Scrum methodology could still be applied.

6.4 Qualitative Evaluation from the Company

At the end of the case study, we talked to three leaders
of the software project (the Investor, the Scrum Master
and the Product Manager) in order to obtain feedback
about the experience.

Concerning benefits and drawbacks of using our
methodology and tool support, company’s leaders did
not realize any benefit regarding agility in the system
development. However, they also did not identify
production delays related to the use of our approach
after the team’s learning phase. Moreover, they reported
that there was no change motivated by missing or
misunderstood requirements between sprint cycles. They

considered this a benefit of the proposed methodology
and tool, promoted in preliminary development phases.

Company’s leaders also reported the following
benefits: i) better source code organisation and
modularisation when compared with their previous
practices; ii) ease to change the generated source code;
and iii) simple and rapid design of mockup models.
In addition, they expected to obtain future benefits
promoted by the reuse of designed models.

As a last consideration, company’s leaders reported
that would be beneficial if model transformation tasks
could be used inside Eclipse workspace instead of in
processes started by menus in MockupToME. Recently,
they requested us an integration with the Mylyn plugin
in order to manage MDE and development tasks in the
same environment. They believe this integration could
contribute to reduce the learning curve of developers.

7 Lessons Learnt from the Case Study

Bellow we point out some lessons learnt from our
experience in introducing a MDE-based RAP approach
to an agile software development project.

Learning Curve. Initial Sprints of the software
projects typically require longer time (days) in first
weeks, because the team is still unfamiliar with the
problem domain and development tools (Shore and
Warden, 2008). In this sense, techniques and tools
introduced by our methodology increased the time
necessary for the project team to surpass the learning
period.

In the case study, we have provided a tutorial
and daily mentoring meetings for one month until the
developer of Company A gain autonomy in the use of
our methodology and its tool support. Thus, due to
the required training period to understand and apply
our proposal, the project team started producing indeed
after one month.

However, MockupToME was not the reason for the
long learning curve, since models were designed correctly
and with little difficulty since the first week. Instead,
the Java Architecture provided for the development
team hampered the introduction of our proposal since
the project’s developer had no experience with the
programming language Java and there was no other
technical staff that could provide active assistance.

Observations from the case study suggest that the
presence of senior developers in the developers group
of the target company (not necessarily in the same
agile team) is fundamental to reduce the learning
curve concerning the proposed methodology, software
development architecture and tool support. Thus, future
work will explore this proposal using inexperienced
developers that have access to senior developers of the
company.

Team’s Experience Level. The developer that
designed application functionalities using our tool
support did not have previous experience in design of

Combining MDE and Scrum on the Rapid Prototyping of Web Information Systems 13

prototypes. Nevertheless, he faced little difficulty in
using MockupToME since first iterations of the project.
This allows us to state that our proposal can be used by
small teams, when only non experienced designers (or
developers) are available to perform MDE-based tasks.
However, we acknowledge that the learning curve related
to the provided software development architecture needs
to be reduced to allow better results in practice.

Extent of the Code Generation. Designed
mockups led to the generation of 82% of the system
“P&D.NET”. Since some transformations did not
generate full code, some changes were necessary in
the view layer. However, no change was motivated
by misunderstanding requirements. All changes were
related to small code pieces that were not completely
generated. The need of completing the generated code
was identified as an issue, fixed along Sprints by us.
To address it, we believe it is necessary a richer
set of transformation strategies (start and refinement
templates), which demands investment on development
of model transformations.

Change Management. Our approach for RAP
allowed the project team to perform two cycles of
feedback with clients in iterative and incremental
development. Concerning CRUD functionalities, changes
in requirements do not imply in round-trip engineering
since source code is generated again along iterations.
This is possible because annotated models contain
many details related to action semantics, which are
necessary to generate code of CRUD functionalities.
Such detailed information regarding action semantics
enables the generation of executable application pieces
without the need of developers to apply changes in
related modules of the source code. Through this
approach, prototypes are central artifacts to allow clients
to validate functionalities before and after the source
code generation. Therefore, chances in requirements can
occur in all the phases of the development process,
figuring as an important contribution of our approach to
support iterative and incremental development steps.

Abstraction Levels for Application Models.
A higher-level of abstraction than UML was essential
to support short development iterations in the context
of the case study. The software project of the case
study adopted short iterations of one week. Thus, in
order to fit for a context of agile project, it was
necessary to speed-up the design of models, improving
the design tool MockupToME with new functionalities.
This tool obtained positive results in the design
of prototypes, abstracting the representation level of
requirements from a UML MVC-based design to a
Mockup-based design that is more simple and intuitive.
Accordingly, our methodology and tool support prevent
long sprints/iterations through two design languages,
one for quick generation of annotated Mockups and other
to detail MVC-based application layers using the UML.

Adaptation of MDE resources for the target
context. It is important to consider project team’s
skills to decide on which tasks and tools of MDE

to include in an enterprise specific software process.
We have focused on the agile principle that states
“Deliver working software frequently, from a couple of
weeks to a couple of months, with a preference to
the shorter timescale” (Kent Beck et al., 2001) while
adapting tools and tasks for the context of Company
A. From the case study, we have found that: 1) For
the combination of MDE and Scrum to be effective, an
appropriate RAP strategy should be adopted considering
the team experience; 2) Simple and quick design of
models (Mockups and MVC models) is essential to
project teams composed by inexperienced designers.

8 Issues for Future Research

The literature of the area lacks information
on how to introduce MDE in specific contexts.
Although many works are essential to understand threats
that involve MDE adoption (Hutchinson et al., 2011;
Whittle et al., 2013; Petre, 2013), they only present a
superficial analysis of the problems. A limitation of these
studies is the lack of focus on specific application domain,
such as web information systems or embedded systems.
The quick development of prototypes could be useful
in these domains. Thus, in order to better understand
issues that hamper MDE adoption in industry, empirical
studies should be directed for specific contexts.

Which are the suitable MDE techniques for
dealing with round-trip? It is known that regarding
agile methods, changes in requirements should be
well received. However, little is known about suitable
techniques to apply changes on software artifacts
with tool support for round-trip engineering along the
SDP. Thus, the Software Engineering research could
contribute with future studies on what is “good” or
“bad” in this regard.

Some authors claim UML-based RAP
approaches are “counter agility”, but are they
really? Fowler presents two important questions in this
regard: “Can you get a design that is capable of turning
the coding into a predictable construction activity? And
if so, is cost of doing this sufficiently small to make this
approach worthwhile?” (Martin Fowler, 2005). These
questions are not answered in this paper and should
be explored by the academy. The author claims that
the use of UML to predict and validate requirements
with clients is inefficient in practice due to frequent
changes on requirements. Therefore, he answered the
two above questions with a “no”. On the other hand,
other researchers have been using the UML as front
end to combine MDE and agility (Kruchten, 2010),
suggesting that the answer for the aforementioned
questions would be “yes”, since they have found positive
results in practice. Therefore, issues should be evaluated
and answered empirically.

The “good” and “bad” on the combination
of MDE and Agile should be associated with a
context. For example, we believe that in the context of

14 F. P. Basso et al.

Company A it would be impossible to use UML directly
as front end in iterations of one week, in conformance
with (Martin Fowler, 2005). We have attempted to
use UML in previous software projects with short
iterations and have not succeeded in these experiences.
However, in another company we have used UML with
iterations of four weeks and have achieved good results
developing complete systems with an expert designer.
In our view, answers for questions like the above ones
cannot be generalized to all companies, processes and
team configurations. To be valuable for the Software
Engineering practice, they have to be answered for each
specific context (e.g., big, small or start-up companies,
teams with different configurations, etc). Accordingly,
we have reported in our previous contributions (Basso
et al., 2007, 2012, 2013) the importance of target
context for choosing a suitable DSL to start the MDE-
based process. Therefore, instead of making general
assumptions on the applicability of a reference model
for SDP, methodologies and tools, Software Engineers
should direct their observations for specific contexts.

There is no requirement for “agile tools”.
Which design tools are more suitable for agile teams?
In which contexts? With which goals? These questions
should be explored in empirical studies conducted in
industry. The literature presents several proposals for
MDE and RAP, but no criteria that could help Software
Engineers to choose the best option for agile contexts is
provided. This limitation makes very difficult to match
the theory related to Agile Methods and MDE with
practice needs of industry. As a result of the lack of
requirements for agile tools, the decision on which tools
and tasks to include in a defined process for a target
company is still ad-hoc.

There is no empirical information in the
literature on incompatibilities between MDE
and Agile Methods/Principles. The subjectivity
of the information available in the literature of the
area makes very hard to understand if a model-
based task is incompatible with agility principles.
Most of information that we have found related to
Agile principles resembles general recommendations of
software development, which is not useful for one who
needs to use existing MDE resources in the context
of a Scrum-based software project. Several assumptions
have to be defined, which is a difficult decision for the
service provider, since no one knows exactly how to deal
with these approaches together. We have invested big
effort to understand incompatibilities between MDE and
Scrum and at the end of our analysis we have realized
that the unique relevant issue to combination of these
approaches is the need of Sprints with short timescale.
Thus, due to the lack of theoretical and empirical
information on incompatibilities between Scrum and
MDE, we have conducted a case study that evaluated
the combination of these approaches in practice. Other
studies evaluating such combination are necessary to
understand this software development scenario.

9 Related Work

Scrum and MDE:
Our RAP methodology suggests to plan MDE-based

tasks in each Sprint. This is also a recommended practice
by the agile method called Feature Driven Development
(FDD) (Chowdhury and Huda, 2011), which includes
a general guideline to perform model-based tasks. Our
position is that one do not need a new SDP to include
the planning of MDE tasks. Such planning can be
included within the SDP used by the target company
through process adaptation. Thus, instead of proposing
a new SDP, we focused on the introduction of MDE
tasks within an existing SDP. In addition to the Scrum
methodology (Schwaber, 1995), we included tasks for
design considering two abstraction levels for models. We
divided the Scrum phase Architecture and High Level
Design in three RAP phases (Evolutionary Prototyping,
Architectural Prototyping, and Functional Prototyping),
which help to make the transition from the design to the
Development phase.

Kulkarni et al. (2011) proposed recently a new SDP
that combines Scrum and MDE, arguing that a pure
agile methodology does not work with MDE. To the
design and validation of models, authors proposed the
use of Meta-Sprints that run in parallel to Sprints. This
proposal seems strange because in agile methods Clients
must provide feedback on models and/or prototypes in
shorter timescales than 2-3 months, which is the time
suggested by authors for Meta-Sprints. Our analysis of
Scrum and from the case study suggests the opposite:
One can use this agile framework in timescales of 1-
2 weeks, including design tasks in a Sprint, without
the need of Meta-Sprints. In our approach, tasks of
model construction and implementation are sequentially
performed inside each Sprint, which means they are not
parallel but interrelated in three RAP phases. For this
reason, introduction of Meta-Sprints in Scrum seems
us more a “waterfall” lifecycle than an iterative and
incremental one. Therefore, we used Scrum as it is
defined in (Schwaber, 1995).

FDD (Chowdhury and Huda, 2011), AMDA (Ambler,
2015) and Meta-Sprint (Kulkarni et al., 2011) are
general SDPs that propose the combination of Agile
and MDE. A limitation of these works is the lack
of definition concerning which DSLs and tools can be
successfully used in a target context. Differently, we
defined “where” and “how” to apply “what” within the
Scrum methodology. Zhang and Patel (2011) claim that
such definition is critical to understand benefits and
drawbacks of approaches that introduce MDE in agile
contexts. Authors proposed the Agile MDD approach
and validated it through an industrial case study on
the development of real-time system. Although the
approaches were applied in different domains, authors
drew similar conclusions to ours and also discussed
issues related to learning curve. Agile MDD is a
Scrum extension, suggesting new concepts such as Test
Driven Modelling and Continuous Modelling. These

Combining MDE and Scrum on the Rapid Prototyping of Web Information Systems 15

concepts are also embedded in our tool support, but
we decided to keep the conventional concepts described
in the literature of the area. Differences between the
approaches are: 1) Our approach is strictly applicable for
the development of web information systems; 2) We used
inexperienced designers in a start-up company while
(Zhang and Patel, 2011) applied their approach in a more
mature company with qualified designers; 3) Authors
used only the UML to represent models in Sprints of
4-5 weeks whereas we used two DSLs and several UML
Profiles for design in Sprints of 1-2 weeks.

Different positions on the understanding and use
of Scrum with MDE suggest that the definition of an
instance for this SDP is very dependent from the context
where MDE is applied, from the application domain,
and from the availability of tools and DSLs to the
domain. In this regard, our work is singular because it
presents a report about introduction of MDE in a real
target context that uses Scrum as process framework,
adapting tools and tasks for use in the target context.
This way, we did not propose a new SDP, but adapted
Scrum to the target company. Different companies use
different SDPs, with different team configurations, with
individual skills that may need different tools to perform
iterations in short timescales. Therefore, since everything
must be flexible to be introduced in diverse target
contexts, the reported experience in MDE as Service
provided important insights for the Process Engineering
research, with several open questions that deserve future
investigation.

Model-Driven Web Engineering:
Our methodology for RAP differs from traditional

UML-based design approaches, such as those ones
proposed by Beigbeder and Castro (2004); Nunes
and Schwabe (2006); Distante et al. (2007); Souza
et al. (2007). These authors proposed the refinement
of platform-independent models (such as annotated
class diagrams, use cases, collaboration diagrams, and
activity diagrams) to platform-specific models in a
software development process based on MDE. We
proposed the use of a higher abstraction level language
to represent Mockups, which are further transformed
for other models in lower abstraction levels (MVC-
based models). We start our RAP approach from
simple Mockups, which can be quickly generated and
refined to then generate multi-layered models for web
information systems similar to the ones designed with
the aforementioned approaches. These proposals apply
top-down approaches to design web information systems,
in which input models, such as conceptual models, are
highly detailed before generating a testable prototype.

Some proposals focus on quick prototyping as a
way to promote software reuse compliant to MDE and
agility principles. Rivero et al. (2012) propose to add
annotations to Mockups in order to generate business
logic. Such annotations, for example, allow specifying
action semantics to buttons and are used as input
for transformations that generate models or source
code for the persistence layer. Our proposal intends to

apply RAP, MDE and agile practices together through
simple architectural models called Mockups. However,
differently from (Rivero et al., 2012), our proposal uses
other abstraction level for models based on the UML.

Similarly, Grigera et al. (2012) generate MVC models
in which View and Controller layers are generated
through annotated Mockups. Although both proposals
allow designing Mockup models, they are not aimed
to be used in the whole software development process.
Unlike these proposal, we use Mockup models as input
to generate not only View and Controller layers, but
others, such as business logic, data access object,
entity/field validation, and remote/web services.

In order to visualise and modify prototypes, Molina
et al. (2012) propose the tool CIAT-GUI that allows to
test information system models in different abstraction
layers, generating intermediate models to detail business
logic layers. However, the authors did not consider
the use of a simpler abstraction level for GUIs (i.e.,
annotated Mockups) in the beginning of the RAP
approach as our work did. Therefore, our contribution is
important to help in the introduction of RAP through
MDE in contexts whose developers are trainees (start-
ups), while the manual design in the CIAT-GUI tool
suggests that it needs experienced designers to represent
models.

10 Conclusions and Future Work

This paper has presented a methodology of Rapid
Application Prototyping (RAP) based on MDE specially
designed for use in agile software projects. Our proposal
enables the use of MDE techniques in Scrum-based
software projects. Through our tool support a software
designer can quickly design and validate application
prototypes. Thus, this paper presents a contribution for
the practice in Software Engineering.

The current stage of research in Software Engineering
presents challenges for MDE as Service. We have
identified some of these challenges from a case study
in industrial environment. An analysis of the target
context was conducted and identified important concerns
and risks to introduce MDE in a Scrum-based software
project, conducted by a start-up company. Therefore,
we presented a contribution on practical viewpoint in
introducing MDE in agile software projects.

The presented case study suggests that Mockup
construction (i.e., more abstract levels of specification
of models), rapid application prototyping, and frequent
interaction with clients to validate software requirements
are key elements in the development of web information
systems in start-up contexts. These elements are
addressed in iterative and incremental MDE-based
development tasks. From the case study, we have
assumed the following main conclusions:

1. The proposed RAP methodology and the
MockupToME tool can be used in a Scrum-based
software project with short iterations;

16 F. P. Basso et al.

2. Rapid prototyping helps to speed-up the design
of models (annotated mockups), allowing quick
feedback from clients in iterations of one week;

3. The learning curve of the proposed methodology
can hamper the productivity of the project team
in the first two months;

4. The proposed approach can be used by non experts
in MDE and MVC.

5. Mockup modelling, which is more rapid and
intuitive than UML modelling, was essential
to support short development iterations in the
context of the case study.

6. It is important to consider the target context to
decide on which tasks and tools of MDE to include
in an enterprise specific software process.

Finally, it is known that a MDE promise is to
increase the productivity in the future reuse of designed
models. This study was limited to evaluate the proposed
methodology and did not attempt to confirm or deny
this promise. This can be explored in a future work in
order to better comprehend benefits and drawbacks of
the combined use of MDE and Scrum.

Acknowledgement

The research work on which we report in this paper
is supported by FINEP, CNPQ and Capes-Brazil (first
and second authors), and by the internal Research
Programme 2012/13 at UNIJUI University (third and
fourth authors).

References

Ambler, S. (2002). Lessons in agility from internet-based
development. IEEE Software, 19(2):6673.

Ambler, S. W. (2015). Approaches to agile model
driven development (amdd). Technical report, Agile
Modeling.

Basso, F. P., Becker, L. B., and Oliveira, T. C.
(2007). A solution for reuse and maintenance
of model transformers using FOMDA approach (in
portuguese, uma solução para reuso e manutenção
de transformadores de modelos usando a abordagem
FOMDA). In Simpósio Brasileiro de Engenharia
de Software. Anais do 21o Simpósio Brasileiro de
Engenharia de Software.

Basso, F. P., Pillat, R. M., Frantz, R. Z., and Rooz-
Frantz, F. (2014a). Assisted tasks to generate pre-
prototypes for web information systems. In 16th
International Conference on Enterprise Information
Systems., ICEIS’14, pages 14–25.

Basso, F. P., Pillat, R. M., and Oliveira, T. C. (2012).
Towards a web modeling environment for a model
driven engineering approach. In In Third Brazilian
Workshop on Model Driven Development, III BW-
MDD.

Basso, F. P., Pillat, R. M., Oliveira, T. C., and
Becker, L. B. (2013). Supporting large scale
model transformation reuse. In 12th International
Conference on Generative Programming: Concepts &
Experiences. Indianapolis, USA, October 27-28 2013.,
GPCE’13, pages 169–178.

Basso, F. P., Pillat, R. M., Rooz-Frantz, F., and Frantz,
R. Z. (2014b). Study on combining model-driven
engineering and scrum to produce web information
systems. In 16th International Conference on
Enterprise Information Systems, ICEIS’14, pages 137–
144.

Beigbeder, S. M. and Castro, C. C. (2004). An mda
approach for the development of web applications. In
Web Engineering, volume 3140 of Lecture Notes in
Computer Science, pages 300–305.

Blankenhorn, K. (2004). A UML profile for GUI layout.
Master’s thesis.

BPMN, 2014 (2014). OMG Business Process Model and
Notation av. at ¡http://www.bpmn.org/¿.

Burke, B. and Monson-Haefel, R. (2006). Enterprise
JavaBeans 3.0: Developing Enterprise Java
Components. O’Reilly, 1005 Gravenstein Highway
North, Sebastopol, CA 95472, USA.

Chowdhury, A. F. and Huda, M. N. (2011). Comparison
between adaptive software development and feature
driven development. In Computer Science and
Network Technology (ICCSNT), 2011 International
Conference on, pages 363–367.

Distante, D., Pedone, P., Rossi, G., and Canfora, G.
(2007). Model-driven development of web applications
with uwa, mvc and javaserver faces. In Proceedings of
the 7th International Conference on Web Engineering,
ICWE’07, pages 457–472.

Dyba, T. and Dingsoyr, T. (2009). What do we know
about agile software development? Software, IEEE,
26(5):6–9.

Forward, A., Badreddin, O., Lethbridge, T., and Solano,
J. (2012). Model-driven rapid prototyping with umple.
Software: Practice and Experience, 42(7):781–797.

Giardino, C., Unterkalmsteiner, M., Paternoster, N.,
Gorschek, T., and Abrahamsson, P. (2014). What
do we know about software development in startups?
Software, IEEE, 31(5):28–32.

Combining MDE and Scrum on the Rapid Prototyping of Web Information Systems 17

Grigera, J., Rivero, J., Luna, E. R., Giacosa, F.,
and Rossi, G. (2012). From requirements to web
applications in an agile model-driven approach. In
Web Engineering, volume 7387 of Lecture Notes in
Computer Science, pages 200–214. Springer Berlin
Heidelberg.

Hebig, R. and Bendraou, R. (2014). On the need to study
the impact of model driven engineering on software
processes. In Proceedings of the 2014 International
Conference on Software and System Process, ICSSP
2014, pages 164–168.

Hutchinson, J., Whittle, J., Rouncefield, M., and
Kristoffersen, S. (2011). Empirical assessment of MDE
in industry. In Proceedings of the 33rd International
Conference on Software Engineering, pages 471–480.

Johnson, P., Ekstedt, M., and Jacobson, I. (2012).
Where’s the theory for software engineering? Software,
IEEE, 29(5):96–96.

Kent, S. (2002). Model driven engineering. In
Proceedings of the Third International Conference on
Integrated Formal Methods, IFM ’02, pages 286–298.

Kent Beck et al., 2001 (2015). Agile Manifesto.

Kruchten, P. (2010). Software architecture and agile
software development: a clash of two cultures?
In Software Engineering, 2010 ACM/IEEE 32nd
International Conference on, pages 497–498.

Kulkarni, V., Barat, S., and Ramteerthkar, U. (2011).
Early experience with agile methodology in a model-
driven approach. In 14th International Conference
on Model-Driven Engineering Languages and Systems,
MODELS 2011, page 578590.

Lami, G. and Ferguson, R. W. (2007). An
empirical study on the impact of automation on
the requirements analysis process. J. Comput. Sci.
Technol., 22(3):338–347.

Landre, E., Wesenberg, H., and Olmheim, J. (2007).
Agile enterprise software development using domain-
driven design and test first. In Companion to the
22nd ACM SIGPLAN conference on Object-oriented
programming systems and applications companion,
pages 983–993.

Martin Fowler, 2005 (2005). The New Methodology -
Essay in ThoughtWorks Blog.

Molina, A. I., Giraldo, W. J., Gallardo, J., Redondo,
M. A., Ortega, M., and Garćıa, G. (2012). Ciat-gui: A
mde-compliant environment for developing graphical
user interfaces of information systems. Advances in
Engineering Software, 52(0):10 – 29.

Molina, P. J., Meliá, S., and Pastor, O. (2002). Just-ui: A
user interface specification model. In Computer-Aided
Design of User Interfaces III, pages 63–74.

Nunes, D. A. and Schwabe, D. (2006). Rapid
prototyping of web applications combining domain
specific languages and model driven design. In
Proceedings of the 6th international conference on Web
engineering, pages 153–160.

Petre, M. (2013). UML in practice. In Proceedings
of the 2013 International Conference on Software
Engineering, ICSE ’13, pages 722–731.

Pillat, R. M., Oliveira, T. C., Alencar, P. S., and
Cowan, D. D. (2015). BPMNt: A BPMN extension for
specifying software process tailoring. Information and
Software Technology, 57(0):95 – 115.

Rivero, J. M., Grigera, J., Rossi, G., Luna, E. R., and
Koch, N. (2012). Towards agile model-driven web
engineering. In IS Olympics: Information Systems
in a Diverse World, volume 107 of Lecture Notes
in Business Information Processing, pages 142–155.
Springer Berlin Heidelberg.

Schmidt, D. C. (2006). Guest editor’s introduction:
Model-driven engineering. IEEE Computer, 39(2):25–
31.

Schwaber, K. (1995). Scrum development process.
In Workshop on Business Object Design and
Implementation, OOPSLA’95, pages 1–23.

Schwaber, K. (2004). Agile Project Management with
Scrum (Microsoft Professional). Microsoft Press,
Redmond, Washington, 98052-6399, USA.

Shore, J. and Warden, S. (2008). The Art of Agile
Development. O’Reilly, 1005 Gravenstein Highway
North, Sebastopol, CA 95472, USA.

Souza, V. E. S., Falbo, R. D. A., and Guizzardi, G.
(2007). A UML profile for modeling framework-
based web information systems. In 12th International
Workshop on Exploring Modelling Methods in Systems
Analysis and Design EMMSAD ’2007, pages 153–162.

Whittle, J., Hutchinson, J., Rouncefield, M., Burden, H.,
and Heldal, R. (2013). Industrial adoption of model-
driven engineering: Are the tools really the problem?
In Proceedings of the 16th International Conference
on Model Driven Engineering Languages and Systems,
MODELS’13, pages 1–17.

Zhang, Y. and Patel, S. (2011). Agile model-driven
development in practice. Software, IEEE, 28(2):84–91.

