
Experimental Study for Evaluating the Performance of JVMs in Application Integration1

Chapter 1

EXPERIMENTAL STUDY FOR EVALUATING THE

PERFORMANCE OF JAVA VIRTUAL MACHINES IN

APPLICATION INTEGRATION

Daniela L. Freire ∗1, Rafael Z. Frantz1, Eldair F. Dornelles1, Fabricia Roos-Frantz1,

and Sandro Sawicki1

1Unijuı́ University, Department of Exact Sciences and Engineering, Ijuı́, RS, Brazil

PACS 05.45-a, 52.35.Mw, 96.50.Fm. Keywords: Benchmark, API Java concurrency, Java

Virtual Machine, Multithread, Performance.

Abstract

To be competitive, companies face the challenge of keeping their business

processes running efficiently. Integration platforms are tools designed to provide

integration solutions to achieve these goals. Many of these platforms are developed

in the Java language, which offers a complete class library to concurrent execution of

tasks that compose the solutions. Thus, the better the performance of the platforms, the

more efficient the business process becomes. The technology used by these platforms

is one of the factors that influences this improvement, including the Java virtual

machine. Meanwhile, there are different implementations of the Java virtual machine,

∗Corresponding Author Email: dsellaro@unijui.edu.br



2 D.L. Freire, R.Z. Frantz, E.F. Dornelles, F. Roos-Frantz, S. Sawicki

and the choice of the most appropriate is a challenge for enterprises. Such choice

should consider non-deterministic factors, such as the compiler used, the scheduling

policy, and the interruptions caused by other software. In our literature review, we did

not identify proposals that help decision making concerning the Java virtual machine

that best manages the concurrent execution of the tasks of an integration solution.

This article evaluates the behaviour of the concurrent execution of tasks in different

implementations of Java virtual machines. The performance measurements were

analysed by rigorous statistical techniques: Analysis of Variance and HSD comparison

test of Tukey averages. The study showed that the Oracle virtual machine was the

most efficient. However, the difference between the performances concerning the

concurrent execution of tasks was not significant in statistical perspective.

1. Introduction

The set of software applications, which support the business processes of companies,

is usually quite heterogeneous since the applications were developed or acquired over time

without any concern for integration between them. Besides, the incorporation of cloud

computing services has made this set even more heterogeneous [56]. For business processes

to receive quick and reliable responses, the applications need to work together and meet

performance-quality requirements.

Enterprise Application Integration is the research field that provides methodologies,

techniques and tools to support the development of integration solutions, which allow the

different applications to work synchronously [21]. Integration platforms are specialised

software tools that provide practical means for software engineers to design, deploy,

execute, and monitor integration solutions [22, 23]. The integration solutions orchestrate a

suite of applications to keep data synchronised or create new functionality; ideally, such

solutions should have no impact on applications [26]. In the last decade, open-source

integration platforms implemented with the Java language, inspired by the architectural

style of pipes-and-filters [4] and the conceptual patterns of integration documented

by Hohpe and Woolf [27]. Integration patterns document a set of best practices for

performing tasks that help solve recurring application integration issues. In an integration

solution, filters are implemented by tasks, which carry an integration pattern; and pipes

are implemented by communication channels through which data flows, encapsulated in

messages. Amongst the elements that make up an integration platform, the runtime system

is the responsible for executing integration solutions, so its performance is one of the most

observed factors in the decision making process concerning the choice of an integration

platform [7, 16, 34].

With the growth of multi-processor computer architectures, also known as multicore,

software development has adopted multithread programming in applications [51]. Besides,

several tools have been released to improve the performance of existing applications [31].

The first experiments in programming with parallel execution of tasks were based on

the principles of concurrency used in the operating systems. Later, new languages have

been introduced bringing multithread programming, as Java language, which provides a

complete class library (API) to create and make use of threads [12]. Threads are basic

CPU units that concurrently execute parts of the same program, so a thread is the smallest

sequence of programme statements that can be managed by runtime system [53].



Experimental Study for Evaluating the Performance of JVMs in Application Integration3

The Java language continues to evolve and expand, including new features, to extend

its support to the concurrency to execute software tasks and thus, to follow the trends of

contemporary computing. The concurrency utilities package was a significant contribution

introduced in version 5 of Java and contains the Executor API, which encapsulates the

thread creation and management functions [48]. Many integration platforms have been

developed in the Java language, such as Mule [15], Camel [29], Spring Integration [18],

Petals [52], WSO2 [30] and Guaraná [20], Fuse [44], ServiceMix [35, 45].

Despite the advantages, multithread programs are more complicated because they must

meet both the quality attributes and the previously configured performance parameters.

Such programs should provide adequate performance so that they can achieve a shorter

response time and a higher workload in the execution of tasks. In order to do so, it

is also necessary to know the program code, and to consider the technology used in its

development [11]. This technology is related to the Java Virtual Machine (JVM), which

has different implementations developed by various companies and software communities.

Comparing the performance of these JVMs, concerning the management of the threads in

the concurrent execution of tasks, is a challenge since there are several non-deterministic

sources, such as the compiler used, the scheduling policy, interruptions caused by other

programs that influence it [25].

This chapter presents an experiment with the Executor API and extends previous

researches on JVMs [14]. First, a detailed study regarding the Executor API, and then a

performance analysis of three different implementations of JVMs. The selection of the

JVMs follows the following criteria: (i) Windows operating system and the x64 based

processor, (ii) open source, (iii) free license and (iv) updated version. The implementations

of JVMs analysed were: Oracle HotSpot Java [1], RedHat OpenJDK [2], Zulu Blue

Systems [3]. The performance metrics of the study were CPU times, system times and

use times. Such metrics were collected in the execution of the same program, which

represents an integration solution, running in the three JVMs. Then, the statistical analysis

of the resulting data was performed, following the techniques of analysis of variance -

ANOVA [40] and averages comparison - Tukey test [54].

The remainder of this chapter is organised as follows. Section 2. presents a brief

theoretical reference on JVMs, multithreaded programming, and the statistical techniques

used in the chapter. Section 3. discusses work related to performance evaluation of JVMs.

Section 4. reports the experiment on the performance of the JVMs concerning thread

management in the concurrent task execution of an integration solution simulation. Finally,

Section 5. sets forth our conclusions.

2. Background

In this section, we discuss the JVM concept, multithread programming in Java,

especially in API Executor and present a brief approach regarding Variance Analysis and

Tukey test for comparison of averages.



4 D.L. Freire, R.Z. Frantz, E.F. Dornelles, F. Roos-Frantz, S. Sawicki

2.1. Java Virtual Machine

Java is a complete development and execution platform, composed of three elements:

the JVM, a set of APIs and the programming language. JVM is an application that abstracts

both the hardware layer and the communication layer with the operating system. Thus, by

using the virtual machine concept, the Java compiler generates an executable program for a

generic, non-physical virtual machine, which has its machine instructions and its APIs. The

function of a JVM is to execute instructions of generic machines on the operating system,

and on the specific hardware under which the JVM is running. Thus, it is necessary to

install the JVM suitable for the operating system and device used. Figure 1 exemplifies the

execution flow of a Java program that can run on both the Windows and Linux operating

systems [50].

Java code

Executable program

Java Virtual Machine

Windows Linux

Figure 1. Execution flow of a Java program.

A JVM is a specification, i.e., a set of standards for software development so that a

manufacturer or even a developer can write their virtual machine for Java. Java HotSpot

by Oracle, OpenJDK by RedHat, Zulu by Azul Systems are examples of these JVMs

for the Windows operating system. Each of these manufacturers tries to improve their

implementation by using different strategies such as compiler improvement, memory

management, thread scheduling, thus promoting market competitiveness and offering more

options for developers [50].

Three elements compose a JVM: a ≪class loader≫, a ≪heap≫, and a ≪runtime system≫.

The ≪class loader≫ loads Java API classes and those of the program to be executed; the

≪heap≫ is the data memory region that stores the objects and classes; and, the ≪runtime

system≫ is the element responsible for interpreting instructions encoded in the JVM format.

This architecture is shown in Figure 2.

The core of the JVM is the runtime system, which behaviour is defined by a set of

instructions. Each program thread is an instance of the runtime system that executes

bytecodes or native methods. The first is the abstract encoding of a program produced

by a compiler when the source code is processed. The latter are codes written in another

language and compiled into machine code native to a particular processor. In addition to

the threads used to run the program, the JVM uses threads for different purposes, such as

garbage collector threads, which do not have to be instances of the runtime system [43].



Experimental Study for Evaluating the Performance of JVMs in Application Integration5

Class Loader

Heap

Run�me System

Java API Classes

Applica�on Classes

bytecodes

Figure 2. Architecture of a JVM

2.2. Multithreads Java

The use of threads in applications is mainly intended to enable the concurrency of

the tasks contained in those applications so that when some of the threads are blocked,

others may be running. Threads can share the same address space for data and are also

easily created and destroyed as there are no resources associated with them. This ease of

creation and destruction is useful when the required number of threads changes dynamically

and quickly. Besides, threads provide a performance gain in applications that have high

computational effort tasks and tasks that have input and output (I/O) interactions because

they allow the execution of these two types of tasks to overlap [53].

The resources for specifying concurrent tasks, offered by some programming lan-

guages, were not considered comfortable by software engineers [13]. Historically,

programming with parallel execution of tasks was based on the competition principles

of operating systems. Subsequently, languages that facilitate such programming have

appeared, such as the Java language. Thus, the developer can build programs that contain

execution threads. This concurrent programming using threads is called multithread.

Multi-threaded programming support has been one of the most important innovations

in Java and is still one of its key strengths. However, until version 5, the features offered

left the management of the threads under the responsibility of the programmer, in the

programs that allowed the competition of tasks. In version 5, the concurrency utilities

package, also referred to as the API concurrency package, was added, which includes

features for synchronisation that facilitated the use of threads, such as synchronisers,

thread pools, blockers. This package was significantly extended in version 7 when it

introduced the Framework Fork/Join, an important feature that facilitates the creation

of programs that use multiple processors, thus allowing the actual parallelism in the

execution of the threads. In version 8 new features related to API concurrency were

added, such as the classes: ConcurrentHashMap, ConcurrentLinkedQueue and

CopyOnWriteArrayList [48].

Version 9 has added API Flow to concurrency utilities, which implements reactive

programming that handles the publisher/subscriber pattern (publisher/subscriber pattern).

Until version 9, for a thread to be interrupted, there should be a global stop for all

threads; as of version 10, the interrupt can be done individually for a thread. The Java

language continues to evolve and expand to meet the needs of the contemporary computing

environment.



6 D.L. Freire, R.Z. Frantz, E.F. Dornelles, F. Roos-Frantz, S. Sawicki

2.2.1. Executors Java

In Java, Executors are objects that encapsulate the threads creation and management

functions and compose the java.util.concurrent package from the API concurrency.

Figure 3 shows the class diagram containing the interfaces and most used classes of the

Executor API. At the top of the hierarchy is the Executor interface, which contains

the execute() method to start a thread. The ExecutorService interface extends the

Executor interface with methods that manage and provide a complete set for executing

asynchronous tasks. This interface provides methods to manage queues and schedule

tasks and allows the cancelling of tasks by using the shutdown() method. There are

three implementations for the ExecutorService interface: ThreadPoolExecutor,

ScheduledThreadPoolExecutor, and ForkJoinPool. The first two classes

allow the configuration of thread pools in different ways. The ForkJoinPool class

provides an executor designed to handle the instance of ForkJoinTask and its subclasses,

which achieve high throughput for high-computation tasks using parallel processing. The

ScheduledExecutorService subinterface and associated interfaces add support for scheduled

task executions and periodic executions.

Figure 3. Executor API Class Diagram

The java.util.concurrent package also defines the utility class Executors, which

includes static methods to simplify the creation of executor objects. Related to the

performers are the interfaces Future and Callable. The first allows the cancelling

of the execution of a task and finds out if the execution ended successfully or error. The

latter returns a value for a thread at the end of this thread’s execution. An application

can use Callable objects to compute results that are returned by the executed thread that

is very useful in coding many types of numerical computations, in which partial results

are computed simultaneously. Besides, such objects can be used to execute a thread that

returns a status, indicating if the thread execution has been completed. A Callable task

is executed by an ExecutorService, through the submit() method, and the result

is returned through an object of type Future. The ScheduledExecutorService



Experimental Study for Evaluating the Performance of JVMs in Application Integration7

interface provides methods such as: schedule(), scheduleAtFixedRate(), and scheduleWith-

FixedDelay(). The schedule() method creates and executes a ScheduledFuture object, which

is activated after the defined delay and is used to extract a result or cancel execution. The

scheduleAtFixedRate() and scheduleWithFixedDelay() methods, on the other hand, create

tasks that periodically run until they are cancelled. The first with a fixed time and the last,

with delays between the executions.

2.2.2. Factory Metrics and Utility Methods

The Executors class extends the Object root class and has factory methods and utility

methods. Factory methods create objects with predefined settings, while utility methods

allow the developer to customise the thread pool configuration. The factory methods of

the Executors class return instances of the ThreadPoolExecutor class and are detailed as

follows:

• newSingleThreadExecutor(): Creates an executor that uses a single thread

running on a non-limited task queue. Tasks are processed sequentially, and only one

task is active for a previously determined time. Generally, this type of thread pool

configuration is used in simple scenarios or in those where subsequent processing

is desired. It is not suitable for scenarios where many tasks need to be processed

concurrently or simultaneously.

• newSingleThreadScheduledExecutor(): Creates an executor, which uses

a single thread, but can schedule tasks to run after a predefined delay or run periodi-

cally at previously determined intervals of time. Like the newSingleThreadExecuto()

method, the tasks are processed sequentially, and only one task is active for a

previously determined time.

• newFixedThrheadPool(): Creates an Executor with a fixed number of threads,

which is passed as a parameter. It is possible to reuse threads that have already been

created, and all threads operate over the same unlimited task queue. If additional

tasks are submitted when all threads are active, the tasks will wait in the queue until

a thread becomes available. The threads in a pool will exist until they are explicitly

cancelled. This thread pool configuration allows greater control of the computational

resources used, since the number of threads is predetermined.

• newScheduledThreadPool(): Creates a thread pool, usually with more than

one thread, and can schedule tasks to run after a predefined delay or run periodically

at predetermined intervals of time.

• newCachedThreadPool(): Creates a thread pool that accepts new tasks,

increasing the number of threads when none is available, or reusing previously

created threads. Threads that are idle for sixty seconds will be terminated and

removed from the cache. This type of thread pool configuration typically improves

the performance of programs that execute many short-lived asynchronous tasks. In

scenarios where many tasks are being processed simultaneously, there is a risk that

the executor tries to create more threads than is possible with the number of physical

resources available on the machine.



8 D.L. Freire, R.Z. Frantz, E.F. Dornelles, F. Roos-Frantz, S. Sawicki

Instances of the class ThreadPoolExecutor returned by the factory methods

of class Executors, are previously configured. So when a custom instance of

ThreadPoolExecutor to suit a specific situation is needed, the constructor methods and

configuration items should be used, because they are more flexible for this configuration,

such as corePoolSize , maximumPoolSize, keepAliveTime, unit, and

workQueue. The corePoolSize indicates the number of threads held in the pool,

even though the thread is idle. The maximumPoolSize indicates the maximum number

of threads allowed in a pool. The keepAliveTime determines the maximum number of

time a surplus thread is idle, waiting for a new task. Surplus threads are those created in

addition to the quantity defined in corePoolSize. The unit indicates the time unit for

the keepAliveTime argument. Finally, workQueue defines the type of queue used to

hold jobs before execution.

2.2.3. Blocking Queue

The java.util.concurrent package includes the BlockingQueue interface that allows

the definition of different types of task queues for different styles of software architectures,

such as: messaging, producer-consumer, parallel tasks and other related competition.

The main types of queues are: ArrayBlockingQueue, SynchronousQueue,

PriorityBlockingQueue, and DelayQueue. The first works as a limited buffer, the

tasks are kept as elements of an array and are selected by the First-In-First-Out policy. In

the second type, each insertion operation of a task must wait for a corresponding removal

operation from another thread and vice-versa. The third type queues are unlimited and

organised in a specified priority order, where, at the beginning of each of these queues, is

the highest priority task. In the fourth and last type, the queue’s tasks have a predefined

delay for execution and can only be retrieved from that queue when the queue expires, at

the beginning of the queue is the task that has expired the longest. In Java Executors objects,

the use of the task queue interacts with the size of the thread pool as follows:

• if the thread number running in the pool is fewer than the thread number set in

corePoolSize, then, the executor will always prefer to add a new thread than

to queue more tasks;

• if the thread number running in the pool is equal to or greater than the thread number

set in corePoolSize, the executor will always prefer to queue more tasks than

adding a new thread;

• if a task cannot be queued, a new thread will be created; if the thread number running

is less than the thread number set to maximumPoolSize, the task will be rejected.

2.3. Statistical Reference

The methodology for evaluating and analysing the performance of a runtime system

should consider random sources to avoid distorted or even wrong results [6]. The reference

literature suggests the use of statistical theory in the analysis of experimental data on

the performance of runtime systems [25] because statistical reasoning is an appropriate

resource to deal with the non-determinism present in engines such as Java [19].



Experimental Study for Evaluating the Performance of JVMs in Application Integration9

G1
G2

G3

G2 G3G1

No di�erence between groups

With di�erence between groups

Figure 4. Analysis of variance

This theory classifies the errors of an experiment into two types: the thematic and

the random. Thematic errors are those caused by an experimental error or some incorrect

procedure during measurements. It is up to the investigator to control and eliminate such

errors, since they can invalidate the results, even in the cases where the statistical analysis

was performed. Random errors are unpredictable and non-deterministic and may come

from external sources unrelated to what one wants to measure. Although it is not possible

to predict random errors, it is possible to develop a statistical model to describe its effect on

experimental results. ANOVA is a statistical technique that allows differentiating amongst

the variations found in a set of measurements of an experiment that are derived from random

factors and which are due to real differences between the alternatives being analysed.

For the application of the analysis of variance, it is assumed that the observations are

independent, the groups compared have the same variance and the errors are independent

and come from a normal distribution with average zero and constant variance.

Therefore, the ANOVA technique separates the total variation in two: the first is the

variation observed within each alternative studied, which is presumed to be a result of

non-deterministic factors, and the second is the difference found between the alternatives

considered. If the variation between the alternatives is greater than the variation within

each alternative, it is concluded that there is a statistically significant difference between

the alternatives [38].

The two graphs, in Figure 4, show the distribution of the averages of any three groups,

called: G1, G2, G3. The first graph shows the average of distributions, where there is no

statistically significant difference between the three groups and the second graph shows the

average of distributions, where there is a difference between the groups.

When there is this difference in the results of the experiment, there are techniques to find

which alternatives differ and which ones are similar to the others. Some of these techniques

are considered stricter, others less. Those considered stringent are those where there is a

significant difference between alternatives, while the least rigorous are those that find the

least difference between them. The Tukey test (Honestly Significantly Different-HSD) is a



10 D.L. Freire, R.Z. Frantz, E.F. Dornelles, F. Roos-Frantz, S. Sawicki

Table 1. Literature Review.

Year Collected Select References

2010 5 1 Krieger and Strout [36]

2011 15 2 Chen et al. [8], Kulkarni [37]

2012 5 1 Sartor and Eeckhout [47]

2013 5 - -

2014 10 2 Ganesan et al. [24], Ueno [55]

2015 18 2 Huang et al. [28], Patros et al. [42]

2016 15 2 Magalhães et al. [39], Mostafa et al. [41]

2017 1 - -

2018 1 - -

test considered more rigorous and is adopted in the literature in experiments with the JVMs

since it is a simple approach [25].

3. Related Works

In this section, we present our literature review, which identified proposals that analyse

the performance of Java virtual machines. Initially, we describe the research methodology

used to select the works, and then, each related works is mainly discussed. This review

had three activities: ≪collection of references≫, ≪selection of articles≫ and ≪discussion of

related works≫. In the first activity, a scientific database was queried using a search string.

In following, articles were selected for the studies using predefined inclusion criteria. Then,

the selected articles were analysed and compared with the proposal of this chapter.

3.1. Reference Collection

In this activity, the SCOPUS database was used to search for titles, abstracts and

keywords of articles, using the following search string:

(“java virtual machine”) AND (“performance” OR “benchmark” OR “comparison” OR

“evaluation”) AND (“thread” OR “executor”)

This study sought for articles published from 2010 to 2018, written in English, in the

disciplinary area of Computer Science. The survey returned 75 different results, covering

several journals and conferences.

3.2. Article selection

The inclusion criterion “to be an experimental article about JVM performance” was

used to select the articles. The titles and abstracts of these 75 articles were carefully read

and, in the end, 65 were excluded, leaving ten selected articles. The selected articles were

grouped per year, cf. shown in Table 1.



Experimental Study for Evaluating the Performance of JVMs in Application Integration11

3.3. Discussion of related works

Magalhães et al. [39] compared the implementation of multithread in procedural

programming languages with implementation in oriented languages. The authors also

investigated the computational overhead in virtual machines and their impact on the

performance of these machines with the use of the Just-In-Time (JIT) compiler. Their

work compares performance between types of programming languages, with or without

the use of the JIT compiler; while the proposal of this chapter focuses on the comparison

between JVMs, concerning multithread programming. Mostafa et al. [41] proposed a fairer

approach to scheduling CPU usage by assigning weights to virtual machines, in which each

JVM uses the CPU in proportion to the weight assigned to it. An experiment was carried out

through simulations, in which the execution time and CPU time in the execution of tasks by

three virtual machines were measured to prove the effectiveness of the proposal in relation

to the current scheduling. Each virtual machine receives the same CPU time regardless of

the complexity of the task being executed. Their work concerns fair scheduling for virtual

machines and uses a virtual machine implementation for the tests, while this proposal is

concerned with the performance of the virtual machines regarding thread management.

Besides, the experiment was performed with JVMs implemented by companies and the

Java community.

Patros et al. [42] proposed a tool to measure data from contention of threads blocks

and incorporated it into the IBM JVM. The measured data is used to identify bottlenecks

and, to accelerate the execution of the programs in the JVM. The authors affirm that

the tool can be incorporated into other JVMs and performed experiments to validate the

proposed tool, achieving a good precision in the measurement of the average waiting

time of the blocks and detection of bottlenecks. The author’s work addresses one aspect

of multithread programming, the time a thread waits until it is released from the lock,

differing from the proposal of this chapter, which intends to compare the performance of

thread management in three current implementations of JVMs. Huang et al. [28] performed

experiments comparing the execution of a new compilation policy to JVM, which interrupts

interpretation when the compilation queue is too long. The JVM used in the tests was Oracle

HotSpot, in which the authors propose a new policy with the current JIT compilation policy

and found that the new one achieves better performance when the number of processor

cores increases. Their objective was to explore the impact between the number of processor

cores and the performance of the JVMs, with different compilation policies; the purpose of

this chapter is to verify that different implementations of JVMs have the same performance

in the execution of the same multithread program.

Ueno [55] analysed performance characteristics of multicore computers in running

multithreaded programs on virtual machines over real machines using the Linux operating

system and the results showed that the performance difference is related to the number of

processor cores. The author’s work compared the performance of virtual machines with

real machines, while the proposal of this chapter compares JVMs with each other. Ganesan

et al. [24] addressed the bottlenecks that arise in multicore task scheduling using a single

JVM. They also explored the use of the Java concurrency utilities package, leveraging

their resources for multithreaded programs, and experimented with using the Java class

ConcurrentHashMap. The experiment compared the implementation of that class in



12 D.L. Freire, R.Z. Frantz, E.F. Dornelles, F. Roos-Frantz, S. Sawicki

version 8 with the implementation in version 7 and found a significant improvement in

program scalability of about 57% in version 8. Their work compared the implementation of

the class ConcurrentHashMap between Java versions, while the proposal of this chapter

examines the implementation of another class of the Java concurrency utilities package

between different implementations of JVMs.

Sartor and Eeckhout [47] experiments in a JVM called Jikes Research Virtual Machine

to investigate the performance of Java programs by mapping program threads to virtual

machines in a multicore environment and multi-socket. The authors tested and

compared various strategies to optimise runtime and minimise energy consumption. The

strategies were: variation of the number of threads over a single socket and over two

sockets; variation of the core frequency and the Java program’s clock speed; isolation

of threads during compilation during startup and during steady state time; fixing the

threads to a socket and isolating the garbage collector. Their work varied the execution

strategies for which JVMs concerning program performance; whereas, the proposal of this

chapter evaluates different implementations of JVMs regarding the performance of thread

management. Kulkarni [37] investigated JIT compilation strategies to verify the impact on

single-processor and multi-processor performance in JVMs. Through new configurations

in the JVM HotSpot, the author experiment varied JIT compilation strategies, also changing

the number of threads. Their work has tried strategies to improve compilation performance

in a JVM; while this proposal, experienced different implementations of JVMs, comparing

their performances.

Chen et al. [8] studied the performance and scalability of Java multithread programs on

multicore machines, identifying possible bottlenecks. Experiments were performed with

HotSpot OpenJDK, varying the numbers of processor cores and varying the number of

threads of the programs. The authors analysed the performance of a JVM with several

programs; while the proposal in this chapter analyses different implementations of JVMs

with a single program. Krieger and Strout [36] shared an experience of parallelizing an

irregular scientific program written in Java, executed in a multicore machine, using a

JVM implementation, called Molecular Workbench. The authors report the experience

with the parallelism of the JVM in multicore hardware using the libraries of the Java

java.util.concurrent. The purpose of this chapter is to study the behaviour of JVMs in

the execution of a multithread program that uses concurrency utilities from Java.

4. Performance Analysis

This section describes the environment, the variables, and the methodology used in the

experiment to answer the research question. This section also presents the statistical study

of the results through the analysis of variance and Tukey test. The methodology adopted in

this experiment was based on the works of Jedlitschka and Pfahl [32], Wohlin et al. [57]

and Basili et al. [5], and the procedures for controlled experiments in software engineering

study field. The literature classifies this type of experiment as a terminating simulation,

in which the output is a function of the initial conditions. Terminating simulations are

usually statistically analysed by the method of the replicates, where 20 to 30 repetitions are

sufficient to obtain a population average, in the use of the distribution with more extreme

values than a normal distribution [46].



Experimental Study for Evaluating the Performance of JVMs in Application Integration13

4.1. Search Question

The experiment tried to answer the following research question:

Is the performance difference between different implementations of Java virtual

machines statistically significant concerning thread management?

The hypothesis is that there is a difference in thread management performance between

JVMs since different companies or development communities implement them, and the

Java specification does not include quality and performance parameters. Differences in

performance are expected to be statistically significant since distinct optimisation strategies

are adopted in the implementation and execution of the codes of the different JVMs.

4.2. Environment Configuration

The experiment was performed on a 2.50GHz Intel R© Core i5-2450M 2.50GHz, with

2 physical cores and 4 logical processors, 4G of RAM, with the Windows 8.1 Pro operating

system.

4.3. Variables

In this section, the independent and dependent variables of the experiment are described.

An independent variable is an attribute that defines the study configuration and is varied

and controlled in the experiment. The independent variable of our study is:

JVM: Java virtual machine implementation. The tested values were Java HotSpot 25.101-

b13-JDK.8.0.101 from Oracle, OpenJDK 25.102-14-jdk1.8.0.102 from RedHat, Zulu

8.17.0.3-jdk8.0.102 from Azul Systems.

A dependent variable is influenced by the values of the independent variables and it is

measured for later analysis. In this study they are:

System Time: time consumed by the operating system code to run the experiment code.

Use time: time spent running the lines of code that are in the experiment.

CPU time: sum of the times described above: system time and use time. It does not count

I/O or time spent running other programs [49].

4.4. Execution and Data Collection

The experiment consisted of developing a program that simulated the behaviour of

the runtime system of an integration platform in the execution of tasks of an integration

solution. The program has a task generator, a thread pool, and a monitor. The first one

generates ten tasks simultaneously for a task queue; the second performs the tasks; and the

third captures and records time measurements; according to Figure 5.

In this experiment, a task is a Java class that identifies prime numbers within the

range of 1 to 10000; the thread pool consists of two threads, implemented through the



14 D.L. Freire, R.Z. Frantz, E.F. Dornelles, F. Roos-Frantz, S. Sawicki

...Task 1 Task 2 Task 3

Task Queue Thread Pool Monitor

Figure 5. Java program elements.

newFixedThrheadPool() method of the java.util.concurrent package; the monitor is a class

that captures and records the CPU time, system time, and use time consumed in running

the experiment. The experiment was repeated 25 times, and with each repetition, the thread

pool performs ten tasks, and the monitor records the times. The source codes of classes

developed and used in this experiment are publicly available 1.

The software Genes [9], version 2015.5.0, was used to process the descriptive statistics,

ANOVA techniques and the Tukey technique of the times measured in this study. Genes is

a program for processing and analysing data based on experimental statistics.

4.5. Results

In this section, we present the results of the experiment and the statistical analysis

applied to these results. The values of the averages of the times in seconds of the three

JVMs, in the 25 repetitions, are illustrated in the graphs of Figure 6, 7, and 8. In these

graphs, the abscissa axis contains the JVMs and the ordinate axis, the measured times.

4.00 4.02 4.11

0

1

2

3

4

5

Oracle RedHat Azul

C
P

U
 �

m
e

 (
se

co
n

d
s)

Figure 6. Average of CPU time.

The average CPU times consumed were 4 seconds by JVM Oracle, 4.02 seconds by

JVM RedHat and 4.11 seconds by JVM Blue, cf. Figure 6. Figure 7 shows the average

system times, consumed 2.97 seconds by JVM Oracle, 2.96 seconds by JVM RedHat and

3.04 seconds by JVM Blue. Figure 8 displays the average use times, consumed 1.03 seconds

by JVM Oracle, 1.06 seconds by JVM RedHat and 1.07 seconds by JVM Blue.

1www.gca.unijui.edu.br/publication/data/ns-jvm.zip



Experimental Study for Evaluating the Performance of JVMs in Application Integration15

1.03 1.06 1.07

0.0

0.5

1.0

1.5

2.0

Oracle RedHat Azul
S
y
st

e
m

 �

m
e

 (
se

co
n

d
s)

Figure 7. Average of system time.

2��� 2��. 3.04

0

1

2

�

�

Oracle RedHat Azul

U
	


�

m
e

 (
se

co
n

d
s)

Figure 8. Average of use time.

Tables 2, 3 and 4 present the analysis of variance dependent variables, where ns means

that the result is not significant by Fisher-Snedecor F Probability and 5 % error probability

level; GL means the degree of freedom for the experiment; QM means average square;

and CV , coefficient of variation. The total degree of freedom equals 74, calculated by

subtracting one from total results, where the total of results is the number of repetitions

multiplied by the total number of JVMs, 25 x = 375. The degree of freedom equals 2

for JVMs, calculated by subtracting one from the total number of JVMs. The degree of

freedom for error is equal to 72, calculated by the difference between the degree of freedom

and the degree of freedom of the JVMs. The Table 2 presents the analysis of variance

of CPU time, showing the average square of 0.092 for the JVMs and 0.081 for the error.

Overall, the average was 4.042 seconds, and the coefficient of variation was 7.066 %. The

Table 3 presents the analysis of system time variance, showing the average square of 0.013

for the JVMs and 0.014 for the error. The overall average was equal to 1.054 seconds, and

the coefficient of variation was equal to 11.357 %. The Table 4 presents the analysis of use



16 D.L. Freire, R.Z. Frantz, E.F. Dornelles, F. Roos-Frantz, S. Sawicki

time variance, showing the average square of 0.049 for the JVMs and 0.047 for the error.

The overall average was equal to 2.987 seconds, and the coefficient of variation was equal

to 7.280 %.

Table 2. Analysis of variance of CPU time.

Sources of variation GL QM

JVM 2 0,092 ns

Error 72 0,081

TOTAL 74

Overall average 4,042

CV (%) 7,066

Table 3. Analysis of variance of system time.

Sources of variation GL QM

JVM 2 0,013 ns

Error 72 0,014

TOTAL 74

Overall average 1,054

CV (%) 11,357

Table 4. Analysis of variance of use time.

Sources of variation GL QM

JVM 2 0,049 ns

Error 72 0,047

TOTAL 74

Overall average 2,987

CV (%) 7,280

Tables 2, 3 and 4 present the test of comparison of averages by the test of Tukey

dependent variables, where averages followed by the same letter in the “Average” column

do not differ statistically from each other, at a 5 % error probability level by the Tukey

model.



Experimental Study for Evaluating the Performance of JVMs in Application Integration17

The Table 5 presents the comparison test of averages for CPU time, where the JVM

Oracle averaged 3.998 seconds, JVM RedHat averaged 4.018 seconds, and JVM Blue

obtained an average of 4.011 seconds. Table 6 presents the test of comparison of averages

for system time, where the JVM Oracle obtained the average of 1,028 seconds, JVM

RedHat obtained the average of 1,062 seconds, and Blue JVM obtained the average of

1,072 seconds. Table 7 presents the test of comparison of averages for the use time, where

the JVM Oracle obtained the average of 2.999 seconds, JVM RedHat obtained the average

of 2.955 seconds, and Blue JVM obtained the average of 3.038 seconds.

Table 5. Averages of CPU time.

JVM Average (seconds)

HotSpot Java - Oracle 3,998 a

OpenJDK - RedHat 4,018 a

Zulu - Azul Systems 4,110 a

Table 6. Averages of system time.

JVM Average (seconds)

HotSpot Java - Oracle 1,028 a

OpenJDK - RedHat 1,062 a

Zulu - Azul Systems 1,072 a

Table 7. Averages of use time.

JVM Average (seconds)

HotSpot Java - Oracle 2,969 a

OpenJDK - RedHat 2,955 a

Zulu - Azul Systems 3,038 a

4.6. Analysis of Results

The graph of the CPU time averages in Figure 6, shows that the best performance

amongst the JVMs was the JVM Oracle, with the lowest average CPU time, 4 seconds.

The most important difference between averages of CPU times was between Oracle JVM

and Blue JVM of 0.11 seconds and between JVM Oracle, and JVM RedHat was only 0.02

seconds. In the average system time, the Oracle JVM reached the shortest time of 1.03

seconds, as shown in Figure 7 and in the average use time, the RedHat JVM achieved the



18 D.L. Freire, R.Z. Frantz, E.F. Dornelles, F. Roos-Frantz, S. Sawicki

quickest time of 2.96 seconds, as shown in Figure 8. The JVM Blue obtained the highest

average system time, 1.07 seconds, and the highest average use time, 3.04 seconds, and

consequently the highest average CPU time, 1.07 + 3.04 = 4.11 seconds. These graphs show

that the average of the times were quite similar,and this is the reason why more rigorous

techniques such as the analysis of variance and the Tukey test were used.

In Table 2, the average square, the ratio of the sum of squares to the degrees of freedom,

was 0.092 for the JVMs and 0.081 for the random factors, called the errors. This table

shows that the overall average obtained in the experiment was 4.042 seconds for CPU times

with a coefficient of variation of 7.066 % and there was no significant difference between

these times in the three JVMs. In Table 3, the average square was 0.013 for the JVMs and

0.014 for the error. This table shows that the overall average obtained in the experiment

was 1.054 seconds for the system time, with the coefficient of variation of 11.357 % and

there was no significant difference between these times in the three JVMs. In Table 4, the

average square was 0.0049 for the JVMs and 0.047 for the error. This table shows the overall

average obtained in the experiment was 2.987 seconds for use time, with a coefficient of

variation of 7.280 % and there was no significant difference between these times in the

three JVMs. In the three cases, coefficients were reduced, indicating empirical adequacy

and high reliability of the experiment.

For the comparison test of Tukey averages, Table 5 shows that the best performance

amongst the JVMs was the JVM Oracle, with the lowest average CPU time being 3.998

seconds. The biggest difference involves the averages of CPU times between Oracle JVM

and Blue JVM being 0.112 seconds, while that difference between JVM Oracle and JVM

RedHat was only 0.013 seconds. In the system time-average comparison test, the Oracle

JVM obtained the shortest time, 1.028 seconds, as shown in Table 6. In the comparison

test of use time averages, the RedHat JVM got the most efficient with 2.955 seconds, as

shown in Table 7. In this test, the Blue JVM got the highest average system time, 1.072

seconds, the highest average use time, 3.038 seconds, and the highest average CPU time,

4.11 seconds. In the analysis of CPU time, system time and use time, the letter a in the

column of averages in all three JVMs, indicates that the JVMs do not present statistically

significant differences between themselves, by the comparison test by the Tukey model, at

a level of 5 % of error probability.

4.7. Threats to validity

In this section, we evaluated the factors that influence the results obtained and the main

limitations of the experiment. Our goal is to mitigate the validity threats since they are

present in any empirical research [10].

4.7.1. Constructor Validity

We followed the guidelines of studies of the software engineering [5, 32, 57] to plan

and perform the experiment. In this planning, we provide information about the execution

environment, supporting tools, variables, execution and data collection. Then, we simulate

a real-world integration process in two hundred different scenarios and used ANOVA and

Tukey statistical techniques to evaluate the results.



Experimental Study for Evaluating the Performance of JVMs in Application Integration19

4.7.2. Conclusion Validity

Conclusion validity aims to guarantee that the treatment used in the experiment is

related to the actual outcome observed [17]. We used ANOVA and the Tukey statistical

techniques to assure that the actual result observed in our experiment is concerning the

JVMs, and not to factors that we do not control or have not measured, and we verified that

there was a significant difference in the outcome.

4.7.3. Internal Validity

Internal validity aims to ensure that the treatment caused the outcome, mitigating effects

of other uncertain factors or not measured ones [17]. We used the Windows security model,

so that programs are avoided to run concurrently with the experiment. This competition for

the use of processors has negative impacts on the times measured by the analysis. However,

Windows’s security model does not eliminate this competition, as other tasks are running

under the operating system, which is not possible to control. The results may be different,

in regards to another operating system and another environment configuration.

4.7.4. External Validity

External validity addresses the generalisation of the results outside the scope of the

study [17]. We have studied the source code of the three JVMs in relation to the

classes that compose the program, using a file comparison tool called “WinMerge” version

2.14.0.0 [33], we verified that these classes were implemented with the same features of

the Java language, differing only in programming comments, which do not influence the

execution. Thus, other implementations of JVMs that implement such classes with features

other than those used by the tested JVMs, may result in different results. The study is valid

for comparison of Oracle HotSpot JVMs, RedHat OpenJDK, Zulu from Azul Systems and

can be re-used to compare other implementations, but it is not possible to generalise the

results obtained for all JVM implementations.

5. Conclusions

Companies are looking for tools to make their business processes more competitive.

Integration platforms are software tools that implement integration solutions for applica-

tions, which make up the business processes, communicate in an efficient and synchronised

manner. The way platforms manage threads, which perform the tasks of an integration

solution, have a direct impact on their performance. Many of the integration platforms have

been developed in the Java programming language that offers multi-threaded programming.

This type of programming allows tasks to be performed simultaneously, allowing an

increased performance in implementing integration solutions. The interface Executor of

the Java language concurrency utilities package provides features that facilitate this type of

programming, such as: (i) configuration of the threads through the predefined parameters;

(ii) factory methods for creating thread pools; (iii) different queue types for the tasks; (iv)

policy for creating threads and queuing tasks.



20 D.L. Freire, R.Z. Frantz, E.F. Dornelles, F. Roos-Frantz, S. Sawicki

The experiment presented in this article sought to verify the performance of three

different implementations of Java virtual machines, simulating the behaviour of the

execution of an integration solution by an integration platform, regarding the management

of threads, using Java language resources. For the treatment of the time measurements,

extracted from the experiment, we used the statistical analysis, using ANOVA and Tukey’s

test, where we verified that there is no statistically significant difference with 95 %

confidence concerning the CPU time, the system time and use time between the tested

machines. The implementation of Oracle’s JVM HotSpot Java was the one that presented

the lowest average CPU time, which consumed on average 4 seconds, followed by the JVM

OpenJDK of RedHat that wasted in average 4.02 seconds and, finally, the Zulu of Azul

Systems, which consumed on average 4.11 seconds. As there was no statistical difference,

we concluded that these small differences between the measurements are not related to

thread management, but to oscillations of the environment, entailed by the execution of

other programs of the operating system itself and the internal implementation of the JVMs,

such as the optimisation done by the compiler. The study is valid for the comparison of the

three JVMs tested and can be reused to compare other implementations of JVMs concerning

the performance of thread management in the execution of tasks of an integration solution.

Acknowledgements

This work was partially supported by the following Brazilian Research Funding

Agencies: the Research Support Foundation of the State of Rio Grande do Sul (FAPERGS),

under grant 17/2551-0001206-2; and, the Coordination for the Improvement of Higher

Education Personnel (CAPES), under grants 88881.136207/2017-01 and 73318345415.

References

[1] Hotspot, 2016. URL https://www.oracle.com/technetwork/systems/

vmoptions-jsp-140102.html. (Accessed at 14/10/2016).

[2] Openjdk redhat, 2016. URL https://developers.redhat.com/

products/openjdk/overview/. (Accessed at 14/10/2016).

[3] Zulu, 2016. URL https://www.azul.com/downloads/zulu/. (Accessed

at 14/10/2016).

[4] Christopher Alexander, Sara Ishikawa, and Murray Silvertein. A pattern language:

towns, buildings, construction. Oxford University Press, 1977.

[5] Victor R. Basili, Dieter Rombach, Kurt Schneider Barbara Kitchenham, Dietmar

Selby, and Richard W. Pfahl. Empirical Software Engineering Issues. Springer Berlin

Heidelberg, 2007.

[6] Stephen M Blackburn, Robin Garner, Chris Hoffmann, Asjad M Khang, Kathryn S

McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton,



Experimental Study for Evaluating the Performance of JVMs in Application Integration21

Samuel Z Guyer, et al. The dacapo benchmarks: Java benchmarking development

and analysis. ACM Sigplan Notices, 41(10):169–190, 2006.

[7] Alessio Botta, Walter de Donato, Valerio Persico, and Antonio Pescapé. Integration

of cloud computing and internet of things: A survey. Future Generation Computer

Systems, 56:684–700, 2016.

[8] Kuo-Yi Chen, J. Morris Chang, and Ting-Wei Hou. Multithreading in Java:

Performance and scalability on multicore systems. IEEE Transactions on Computers,

60(11):1521–1534, 2011.

[9] Cosme Damião Cruz. Genes program: experimental statistics and matrices. Federal

University of Viçosa, 2006.

[10] Daniela Soares Cruzes and Lotfi ben Othman. Threats to validity in empirical software

security research. In Empirical Research for Software Security, pages 295–320, 2017.

[11] Gleydson de Azevedo Ferreira Lima. Performance analysis of large distributed

systems on the Java platform. Master’s thesis, Federal University of Rio Grande do

Norte, 2007.

[12] Alcione de Paiva Oliveira and Vinı́cius Valente Maciel. Java in practice. Fábrica de

Livros, 2003.

[13] Paul J. Deitel and Harvey Deitel. Java How to Program, Early Objects, Student Value

Edition. Pearson, 2017.

[14] Eldair F. Dornelles. Performance analysis of the executor API at zulu and oracle

JVM on windows and linux operating systems. Scientific Seminar on Technological

Training, 14, 2017.

[15] David Dossot, John DÉmic, and Victor Romero. Mule in action. Manning

Publications Co., 2014.

[16] Nico Ebert, Kristin Weber, and Stefan Koruna. Integration platform as a service.

Business & Information Systems Engineering, 59:375–379, 2017.

[17] Robert Feldt and Ana Magazinius. Validity threats in empirical software engineering

research-an initial survey. In International Conference on Software Engineering and

Knowledge Engineering (SEKE), pages 374–379, 2010.

[18] Mark Fisher, Jonas Partner, Marius Bogoevice, and Iwein Fuld. Spring integration in

action. Manning Publications Co., 2012.

[19] Rafael Z. Frantz, Rafael Corchuelo, and José L. Arjona. An efficient orchestration

engine for the cloud. In International Conference on Cloud Computing Technology

and Science (CloudCom), pages 711–716, 2011.

[20] Rafael Z. Frantz, Rafael Corchuelo, and Carlos Molina-Jiménez. A proposal to

detect errors in Enterprise Application Integration solutions. Journal of Systems and

Software, 85(3):480–497, 2012.



22 D.L. Freire, R.Z. Frantz, E.F. Dornelles, F. Roos-Frantz, S. Sawicki

[21] Rafael Z. Frantz, Rafael Corchuelo, and Fabricia Roos-Frantz. On the design of a

maintainable software development kit to implement integration solutions. Journal of

Systems and Software, 111:89–104, 2016.

[22] Daniela L. Freire, Rafael Z. Frantz, and Fabricia Roos-Frantz. Ranking Enterprise

Application Integration platforms from a performance perspective: An experience

report. Software: Practice and Experience, 49(5):921–941, 2019.

[23] Daniela L. Freire, Rafael Z. Frantz, Fabricia Roos-Frantz, and Sandro Sawicki. Survey

on the run-time systems of Enterprise Application Integration platforms focusing on

performance. Software: Practice and Experience, 49(3):341–360, 2019.

[24] Karthik Ganesan, Yao-Min Chen, and Xiaochen Pan. Scaling Java virtual machine on

a many-core system. In International Symposium on Integrated Circuits (ISIC), pages

336–339, 2014.

[25] Andy Georges, Dries Buytaert, and Lieven Eeckhout. Statistically rigorous Java

performance evaluation. ACM SIGPLAN Notices, 42(10):57–76, 2007.

[26] Inma Hernández, Sandro Sawicki, Fabricia Roos-Frantz, and Rafael Z. Frantz.

Cloud configuration modelling: A literature review from an application integration

deployment perspective. Procedia Computer Science, 64:977–983, 2015.

[27] Gregor Hohpe and Bobby Woolf. Enterprise integration patterns: Designing,

building, and deploying messaging solutions. Addison-Wesley Professional, 2004.

[28] Mingkai Huang, Xianhua Liu, Tingyu Zhang, and Xu Cheng. Exploration of

the relationship between just-in-time compilation policy and number of cores. In

International Conference on Algorithms and Architectures for Parallel Processin

(ICA3PP), pages 293–307, 2015.

[29] Claus Ibsen and Jonathan Anstey. Camel in action. Manning Publications Co., 2010.

[30] Kasun Indrasiri. Introduction to the WSO2 ESB. Springer, 2016.

[31] Corporation Intel. Get faster performance for many demanding business

applications, 2018. URL https://www.intel.com/content/www/

us/en/architecture-and-technology/hyper-threading/

hyper-threading-technology.html. (Accessed at 12/01/2018).

[32] Andreas Jedlitschka and Dietmar Pfahl. Reporting guidelines for controlled

experiments in software engineering. In International Symposium on Empirical

Software Engineering (ESEM), pages 95–104, 2005.

[33] Chris Kemper and Ian Oxley. I have a conflict: What can I do? In Foundation Version

Control for Web Developers, pages 221–241. Springer, 2012.

[34] Khalil Khoumbati, Marinos Themistocleos, and Zahir Irani. Evaluating the adoption

of Enterprise Application Integration in Health-Care organizations. Journal of

Management Information Systems, 22:69–108, 2006.



Experimental Study for Evaluating the Performance of JVMs in Application Integration23

[35] Henryk Konsek. Instant Apache ServiceMix How-to. Packt Publishing, 2013.

[36] Christopher D. Krieger and Michelle Mills Strout. Performance evaluation of an

irregular application parallelized in Java. In International Conference on Parallel

Processing Workshops (ICPPW), pages 227–235, 2010.

[37] Prasad A. Kulkarni. JIT compilation policy for modern machines. In Conference

on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA),

volume 46, pages 773–788, 2011.

[38] David J. Lilja. Measuring computer performance: a practitioner’s guide. Cambridge

University Press, 2005.

[39] Guilherme Grunewald Magalhães, Anderson Luis Sartor, Arthur Francisco Lorenzon,

Philippe Olivier Alexandre Navaux, and Antonio Carlos Schneider Beck. How pro-

gramming languages and paradigms affect performance and energy in multithreaded

applications. In Brazilian Symposium on Computing Systems Engineering (SBESC),

pages 71–78, 2016.

[40] Douglas C. Montgomery and George C. Runger. Applied statistics and probability for

engineers. John Wiley & Sons, 2010.

[41] Samih M. Mostafa, Shigeru Kusakabe, and Hirofumi Amano. Fairness scheduler

for multithreaded programs in virtual machine environment. In Japan-Egypton

Conference Electronics, Communications and Computers (JEC-ECC), pages 79–82,

2016.

[42] Panagiotis Patros, Eric Aubanel, David Bremner, and Michael Dawson. A Java

util concurrent park contention tool. In Programming Models and Applications for

Multicores and Manycores (PMAM), pages 106–111, 2015.

[43] Francis Rangel and Anderson Faustino Silva. The Java virtual machine and inline

optimization: A case study. Revista Tecnológica, 21(1):103–118, 2012.

[44] Jesse Russell and Ronald Cohn. Fuse ESB. Book on Demand, 2012.

[45] Jesse Russell and Ronald Cohn. Jitterbit Integration Server. Book on Demand, 2012.

[46] Robert G. Sargent. Verification and validation of simulation models. Journal of

Simulation, 7(1):12–24, 2013.

[47] Jennfer B. Sartor and Lieven Eeckhout. Exploring multi-threaded Java application

performance on multicore hardware. In International Conference on Object Oriented

Programming Systems Languages and Applications (OOPSLA), volume 47, pages

281–296, 2012.

[48] Herbert Schildt and Danny Coward. Java: the complete reference. McGraw-Hill

Education, 2014.

[49] Gabriel P. Silva. Evaluating a unix environment with multiple processors. In Brazilian

Symposium on Computer Architecture Parallel Processing, volume 2, 1988.



24 D.L. Freire, R.Z. Frantz, E.F. Dornelles, F. Roos-Frantz, S. Sawicki

[50] Paulo Silveira, Guilherme Silveira, Sérgio Lopes, Guilherme Moreira, Nico Steppat,

and Fábio Kung. Introduction to architecture and software design: an overview of the

Java platform. Elsevier Editora Ltda., 2012.

[51] M. Aater Suleman, Moinuddin K. Qureshi, and Yale N. Patt. Feedback-driven thread-

ing: Power-efficient and high-performance execution of multi-threaded workloads on

CMPs. ACM SIGARCH Computer Architecture News, 36(1):277–286, 2008.

[52] Lambert M. Surhone, Miriam T. Timpledon, and Susan F. Marseken. Petals ESB.

Betascript Publishing, 2010.

[53] Andrew S. Tanenbaum and Herbert Bos. Modern Operating Systems: Global Edition.

Pearson Education, 2014.

[54] John W. Tukey. Comparing individual means in the analysis of variance. Biometrics,

5:99–114, 1949.

[55] Hitoshi Ueno. A performance evaluation of multi-programming model on a

multicore system with virtual machines. In International Symposium on Embedded

Multicore/Manycore SoCs (MCSoc), pages 321–328, 2014.

[56] Blesson Varghese and Rajkumar Buyya. Next generation cloud computing: New

trends and research directions. Future Generation Computer Systems, 79:849–861,

2018.

[57] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn Regnell, and

Anders Wesslen. Experimentation in software engineering. Springer Science &

Business Media, 2012.


