598

Int'l Conf. Software Eng. Research and Practice | SERP'11 |

Monitoring Errors in Integration Workflows

Rafael Z. Frantz
UNDJUL University
Department of Technology

Rua do Comércio, 3000, Ijui, 98700-000, RS, Brazil

Email: rzfrantz@unijui.edu.br

Carlos R. Rivero
University of Seville
ETSI Informatica
Avda. Reina Mercedes, s/n. Sevilla 41012. Spain
Email: carlosrivero@us.es

Abstract—Enterprise Application Integration (EAI) is a field of
Software Engineering. Its focus is on helping software engineers
integrate existing applications at a sensible costs, so that they can
support new business processes or optimise existing ones. EAI
solutions are distributed in nature, which makes them inherently
prone to failures. In this paper, we report on a proposal to address
error detection in EAI solutions. The main contribution is that
it runs in linear time, it deals with both choreographies and
orchestrations, and that it is independent from the execution
model used.

Keywords: Distributed systems; Enterprise Application Inte-
gration; Fault-tolerance; Error detection algorithms.

I. INTRODUCTION

Companies are relying heavily on computer-based applica-
tions to run their businesses processes. Such processes must
evolve and adapt as companies evolve and adapt to varying
contextual conditions. Common problems include that the
applications were not designed to facilitate integrating them
with others, i.e., they do not provide a business level API, and
that they were implemented using a variety of technologies that
do not inter-operate easily. The goal of Enterprise Application
Integration (EAI) is to help reduce the costs of EAI solutions
to facilitate the implementation and evolution of business
processes.

Figure §1 sketches two sample EAI solutions that involve
four applications and three integration processes. Note that a
solution is only a logical means to organise a set of processes:
different solutions can share the same processes, and a solution
can contain another solution. The processes interact with the
applications using the facilities they provide, e.g., an API in
the best case, a user interface, a file, a database or other kinds
of resources. They help implement message-based workflows
to keep a number of applications’ data in synchrony or to
build new functionality on top of them. Processes use ports
to communicate with each other or with applications over
communication channels. Ports encapsulate reading from or
writing to a resource, which helps abstract away from the
details of the communication mechanism, which may range

Rafael Corchuelo
University of Seville
ETSI Informatica
Avda. Reina Mercedes, s/n. Seville 41012. Spain
Email: corchu@us.es

Carlos Molina-Jiménez
Newcastle University
School of Computing Science

Newcastle upon Tyne, NE1 7RU, United Kingdom

Email: carlos.molina@ncl.ac.uk

Solution 1
Solution 2 Exit Port Entry Port
0= App 3 / App2
—~ P5 P4
Prc 3L i
- P7 Prc2D] —— E:H
(4]

\ P6
Communication
Channel :

Figure 1. Sample EAI solutions.

from an RPC-based protocol over HTTP to a document-based
protocol implemented on a database.

The Service Oriented Architecture initiative has gained im-
portance within the field of EAI, since it provides appropriate
technologies to wrap applications (so that they provide busi-
ness APIs) and to implement message workflows. Centralised
workflows, aka orchestrations, rely on a single process that
helps co-ordinate a workflow of messages amongst a number
of other processes and applications; contrarily, decentralised
workflows, aka choreographies, do not rely on such a central
co-ordinator. The tools used to implement workflows include
conventional systems [1, 8], others based on BPEL, and others
like BizTalk [5] or Camel [10].

EAI solutions are distributed in nature, since they involve
several applications and processes that may easily fail to
communicate with each other [8], which argues for real-world
EALI solutions to be fault-tolerant. There seems to be a gen-
eral consensus that the provisioning fault-tolerance includes
the following stages: event reporting, error monitoring, error
diagnosing, and error recovery. Event reporting happens when
processes report that they have read or written a message by
means of a port; the goal of error monitoring is to analyse
traces of events to find invalid correlations, i.e., anomalous
sets of messages that have been processed together; such
correlations must later be diagnosed to find the cause of the
anomalies, and appropriate actions to recover from the error

Int'l Conf. Software Eng. Research and Practice | SERP'11 |

must be taken in the error recovery stage.

Orchestration workflows rely on an external mechanism that
analyses inbound messages, correlates them, and starts a new
instance of the orchestration whenever a correlation is found.
The typical execution model is referred to as process-based
since a thread must be allocated to run a process on a given
correlation; contrarily, the task-based execution model relies
on a pool of threads that are allocated to the tasks. Simply
put, in the process-based model threads remain allocated to
a process even if that process is waiting for the answer to a
request to another process; contrarily, in the task-based model,
no thread shall be idle as long as a task in a process is ready
for execution.

In this paper, we report on a proposal to build an error
monitor for EAI solutions. The key contribution is that it
works with both orchestrations and choreographies, and that it
is independent from the execution model used. In Section §II,
we report on other proposals in the literature; in Section §III,
we present an overview of our proposal; in Section §IV, we
delve into our proposal to detect errors; in Section §V, we
analyse our proposal both from a theoretical and a practical
point of view; finally, we present our conclusions and future
work in Section §VI; appendix §A provides a few ancillary
proofs that support our theoretical analysis.

II. RELATED WORK

Error detection is relatively easy in orchestration sys-
tems because either correlations are found prior to starting
an orchestration process and everything happens within the
boundaries of this process. Contrarily, in choreographies, a
correlation may typically involve several processes that run in
total asynchrony, and there is not a single point of control;
furthermore, EAI solutions may overlap since it is common
that processes are reused across several business processes.
This makes it more difficult to endow choreographies with
fault-tolerance capabilities.

The research on fault tolerance that has been conducted by
the workflow community is closely related to our work. Chiu
and others [4] presented an abstract model for workflows with
embedded fault-tolerance capabilities; it set the foundations for
other proposals in this field. Hagen and Alonso [8] presented
a proposal that builds on the two-phase commit protocol, and
it is suitable for orchestrations in which the execution model
is process-based. Alonso and others [1] provided additional
details on the minimum requirements to deal with fault tol-
erance in orchestrated systems. Liu and others [12] discussed
how to deal with fault tolerance in settings in which recovery
actions are difficult or infeasible to implement; the authors also
assume the existence of a centralised workflow engine, i.e.,
they also focus on orchestrations. Li and others [11] reported
on a theoretical solution that is based on using Petri nets;
they see processes as if they were controllers, and report on
detecting some classes of errors by means of linear parity
checks; the key is that they focus on systems in which a
fault can involve an arbitrarily large number of correlated
messages, which are consumed and produced by distributed

599

processes, but are assume that they are choreographed by a
central processor. An architecture for fault-tolerant workflows,
based on finite state machines that recognise valid sequences
of messages was discussed in [6]; this proposal is suitable for
both orchestrated and choreographed processes; however it is
aimed at process-based executions.

The study of fault tolerance in the context of choreographies
has been paid less attention in the literature. Chen and others
[3] presented a proposal that deviates from the previous ones
in that their results can be applied to both orchestrations and
choreographies. They assume that the system under consider-
ation is organised into three logical layers (front-end, appli-
cation server, and database server), plus an orthogonal layer
(the logging system). Since they can deal with choreographies,
they need to analyse message traces to detect errors. They
assume that each message has a unique identifier that allows
to trace it throughout the execution flow; unfortunately, they
cannot deal with EAI solutions in which messages are split
or aggregated, since this would require to find correlations
amongst messages, which is not supported at all. Due to this
limitation, it can easily deal with both process- and task-
based execution models. Yan and Dague [15], Yan and others
[14] suggested to re-use the body of knowledge about error
detection in industrial discrete event systems, in error detection
in web services applications; they discussed runtime error
detection of orchestrated web services; a salient feature of
this proposal is that, similarly to [13], the authors assume that
failure events are not observable; the granularity of execution
in this approach is at process level. Baresi and others [2]
discussed some preliminary ideas for building an error monitor
that can be used for both orchestrated and choreographed
processes. No implementation or evaluation was provided.

Our analysis of the literature reveals most authors in the EAI
field focus on orchestrations and the process-based execution
model; choreographies and the task-based execution model
have been paid little attention so far. Another conclusion is
that the distinction amongst the stages required to provision
fault tolerance is often blurred. The reason is that many
proposals focus on error recovery since error detection or
error diagnosing is quite a trivial task. In many proposals,
the presence of an error can be derived from a single event.
For instance, the conventional try-catch mechanism involves
the notification of a single event to be caught by the exception
mechanisms [7]. However, there is a large class of applications
in which the presence of an error can only be deduced from the
analysis of traces of events that are related to each other, e.g.,
by order, parent-child relationships, propagation, or causations.
Error detection in these cases is a challenging problem, in
particular, when the number of events is large.

III. OVERVIEW OF OUR PROPOSAL

Our proposal builds on a monitor to which each port
must report events, and a set of rules that help determine
if correlations are valid or not, cf. Figure §2. A monitor is
composed of three modules called Registrar, Event Handler, and

600

f takes)
Monitor updates/r Graphs Queue \\
events Event l Error notification
e updates l
3] Handler P reads Detector o1

writes
reads

History

Descriptions

- _/
Figure 2. Structure of the monitor.
«l{’??,a‘e,sfj <<utility>> <<abstract>>
Registrar Artefact

<<reads>> name : Name :
[<writes>> timeOut : Integer {unique}

rules

v {disjoint, gomplete) 0.*
<<utility>>

Descriptions Solution M Process Rule

1.7 name : Name
0..* | processes
solutions {unique} X .
{unique} {unique} {unique}
ports atoms
2. 2.
<<enumeration>>

<<datatype>> Direction Port 1 Atom
Name ENTRY name : Name SO min : Integer
value : String EXIT direction : Direction max : Integer

Figure 3. Model of the Registrar module.

Error Detector, three databases called Descriptions Database, Graphs
Database, and History Database, and a queue called Graphs Queue.

The Registrar module is responsible for maintaining the
Descriptions Database up to date. This database provides the other
modules a description of the solutions, processes, ports, and
rules the monitor handles. Figure §3 presents the abstract
model of this module. (Note that we use term ‘artefact’ to
refer to both solutions and processes.)

The Event Handler uses the events reported by ports to update
the Graphs Database and the Graphs Queue. Figure §4 presents
an abstract model of this module. An event can be of type
Reception, which happens at ports that read data from an
application (either successfully or unsuccessfully) and other
ports that fail to read data at all, Shipment, which occurs when a
port writes information (either successfully or unsuccessfully),
and Transfer, which happens when a port succeeds to read data
that was written previously by another port. Every event has
a target binding and zero, one, or more source bindings. We
use this term to refer to the data involved in an event, namely:
the instant when the event happened, the name of the port, the
identifier of the message read or written, and a status, which
can be either OK to mean that no problem was detected, RF
to mean that there was a reading failure, or WF to mean that
there was a writing failure.

The Graphs Database stores an entry per artefact in the Descrip-
tions Database; such entries contain a graph that the Event Handler
builds incrementally, as it receives events. Figure §5 shows a
sample Graphs Database for the EAI solution in Figure §1. For
instance, let us focus on bindings bg and b,: the former is

Int'l Conf. Software Eng. Research and Practice | SERP'11 |

<<updates>> <<utility>>

EventHandler

<<reads>>

handle(in r: Reception) : void f------
handle(in s : Shipment) : void

handle(in t: Transfer) : void

<<utility>>
Graphs

<<processes>>

{unique}
entries
0.*

<<updates>>

GraphsQueue

{unique}
edges
0.*

0.*
entries
{unique}

<<abstract>>

Event

{disjoint, Fomplete}

<<abstract>>
Artefact

name : Name

timeOut : Integer | Edge | Reception | Shipment | Transfer
{unique} {unique};
<<datatype>> nodes source target target sources target
Instant 0.* 1 1 1 1.* 1
value : Integer
g <<ent jion>> Binding

Status instant : Instant 1

Idenlif?er OK portName : Namev source
RF messagelD : Identifier 1

value : String WF status : Status {arget

Figure 4. Model of the Event Handler module.

Prc3 b12

64, P6, Q2, OK

rc3 b11

59, P5, Q1, OK

Figure 5.

Sample Graphs Database.

involved in process Prc. and both solutions, and it denotes that
port P; dealt with message M, at instant 25, and that the result
was successful; the later is involved in process Prc; and Solution;
only, and it indicates that port P, dealt with message M, at
instant 14, and that the result was successful; furthermore, the
edge between them both indicates that binding bg originates
from binding by.

The Graphs Queue is used to refer to the entries in the Graphs
Database that have changed since the database was analysed
for the last time. This helps minimise the work performed
by the Error Detector, whose abstract model is presented in
Figure §6. Note that it is relatively easy to find correlations in
a graph like the one in Figure §5 since this task amounts to
finding the connected components of the graph [9]. Contrarily,
verifying them depends completely on the semantics of the
EAI solutions involved. This is why we assign each artefact
an upper bound to the total amount of time it is expected to
take to produce a valid correlation, i.e., a time out, and a set
of rules of the following form, cf. Figure §3:

Int'l Conf. Software Eng. Research and Practice | SERP'11 |

<<utility>>
ErrorDetector

detectErrors() : void

findCorrelations() : Set<Correlation>

findFailingRules(in g : Graph, in t: Artefact) : Set<Name>
findC i in c:Ci out ion : Graph, out unreportedBindings : Set<Binding>) : void
diagnoseCorrelation(in ¢ : Correlation) : void

<<reads>> ! i<<up

<<utility>> :

Descriptions :

GraphsQueue K--3
0

{unique}
entries

i<<read:

<<utility>> <<creates>>

History

<<utility>>
Graphs

<<abstract>> Correlation

Artefact

int : Instant

name : Name
timeOut : Integer

<<creates>>

{unique}
entries
0.*

Notification

Binding artefactName : Name
checkpoint : Instant

failingRules : Set<Name>

0.*
nodes
{unique}

instant : Instant
portName : Name
messagelD : Identifier
status : Status

1.
unreportedBindings
{unique}

Figure 6. Model of the Error Detector module.

Pi[mi.n1], ..., Pplmy..ny] = Qulri.sal, ..., Qulrg.-sql,

where P; and Q; are port names and my;, n;, r;, s; denote the
minimum and maximum number of messages a correlation
allows in each port so that it can be considered valid. For
instance, a rule like Ps[1..1], Pg[1..1] — P4[1..10] regarding Solution,
in Figure §1 means that it is a requirement for a correlation
to be considered valid that it has one message at port Ps, one
message at port P and then 1-10 messages at port P,.

The correlations found by the Error Detector module are re-
moved from the Graphs Database and stored in the History Database.
This helps us complete them if new messages are reported
later.

IV. DETECTING ERRORS

Due to space limitations, we do not provide any additional
details on the Registrar or the Event Handler modules. Instead,
we focus on the Error Detector, which is the central module. Its
algorithm is as follows:

1: to detectErrors() do

2 repeat

3 s = findCorrelations()

4 for each correlation ¢ in s do
5: verifyCorrelation(c)

6 end for

7 end repeat

8: end

It runs continuously; in each iteration, it first finds a set
of correlations and then verifies them sequentially. In the
following subsections, we delve into the algorithms to find
correlations and to verify them.

A. Finding Correlations
The algorithm to find correlations is as follows:

1: to findCorrelations(): Set(Correlation) do

2: take entry f from the Graphs Queue

3: checkpoint = getTime()

4: s =find connected components of f.graph
5. result =10

601

6: for each graph g in s do
7: ¢ = new Correlation(artefact = f.artefact, graph = g,
8: checkpoint = checkpoint)
9: add c to result
10: end for
11: end

This algorithm starts by taking an entry f from the Graphs
Queue at line §2; if there is not an entry available, then
we assume that the algorithm blocks here until an entry is
available. Note that the core of the algorithm is line §4, in
which we find the connected components of the graphs that
corresponds to the entry we have taken from the Graphs Queue.
We rely on the well-known Hopcroft and Tarjan’s algorithm to
find connected components since it runs in linear time and has
no additional space requirements [9]. In the loop at lines §6—
§10, we simply use the components we have found to create
the corresponding Correlation objects.

B. Verifying Correlations

A correlation can be diagnosed as on-going, valid or invalid.
A correlation is on-going if its deadline has not expired yet.
Bear in mind that correlations are analysed within the context
of an artefact, which must have an associated time out and
set of rules. The deadline for a correlation is defined as the
time of its earliest binding plus this time out. This provides a
time frame within which all of the messages involved in the
correlation are expected to be reported. A correlation is valid
if all of the messages it involves were read or written by the
expected deadline, there was no reading or writing failure, and
all of the rules involved are passed; otherwise, it is considered
invalid and a notification must be generated so that it can be
diagnosed and appropriate recovery actions can be executed
later.

The algorithm to verify a correlation is as follows:

1: to verifyCorrelation(in ¢: Correlation) do

2: findCompletion(c, out completedGraph, out unnotifiedBindings)
3: status = every binding b in completedGraph.nodes has starus OK?
4: earliestInstant = minimum of completedGraph.nodes.instant
5: latestInstant = maximum of completedGraph.nodes.instant
6: deadline = earliestInstant + c.artefact.timeQOut
7: notPassedRules = checkRules(completedGraph, c.artefact)
8: isValid = deadline <= c.checkpoint and latestInstant <= deadline and
9: status == true and notPassedRules ==
10: islnvalid = (deadline < latestInstant) or
11: (deadline <= c.checkpoint and (not status or notPassedRules # ()
12: if isValid then
13: f = find the entry for c.artefact in the Graphs Database
14: remove c.graph from f.graph
15: g = new Entry(artefact = c.artefact, graph = c.graph, isValid = true)
16: add g to History database
17: elsif isInvalid then
18: f = find the entry for c.artefact in the Graphs Database
19: remove c.graph from f.graph
20: g = new Entry(artefact = c.artefact, graph = completedGraph,
21: isValid = false)
22: add g to History database
23: n = new Notification(artefactName = c.artefact.name,

602

24: graph = completedGraph,

25: unnotifiedBindings = unnotifiedBindings,
26: checkpoint = c¢.checkpoint,

27: notPassedRules = norPassedRules)

28: send n to the notification port of the monitor

29: elsif

30: - Nothing to do, since ¢ is an on-going correlation

31: endif

32: end

The algorithm gets a Correlation ¢ as input; the first thing it
has to do is to complete it with the help of the History Database.
Note that correlations that are not on-going are removed from
the Graphs Database; due to the asynchronous nature of EAI
solutions, that implies that a after a correlation is verified,
additional correlated messages may be reported. This is the
reason why before verifying a correlation, it must be com-
pleted using the History Database. Algorithm findCompletion, which
is explained later, performs this tasks; given a correlation c, it
returns a graph that includes c.graph and additional nodes and
edges found in the History Database, as well the subset of bindings
in the completed correlation that have not been notified, yet.
In lines §3-§10 it calculates the status of the correlation, its
deadline, the set of rules that are not passed, and determines
if the correlation is valid, invalid or on-going. (Note that a
correlation is on-going when it is neither valid nor invalid.)
If correlation c is found to be valid, we then locate the entry
that corresponds to its associated artefact in the Graphs Database,
remove the correlation from it, and create a new entry in the
History database (lines §13—§16). If it is found to be invalid, the
process is similar, but a Notification object is created and sent
to the notification port of the monitor so that the correlation
can be diagnosed and the appropriate recovery actions can be
executed. If it is an on-going correlation, then we just have to
wait.

C. Completing Correlations
The algorithm to complete a correlation is as follows:

1: to findCompletion(in c: Correlation,

2: out completedGraph: Graph,

3 out unnotifiedBindings: Set(Binding)) do

4: completedGraph = new Graph(nodes = shallow copy of c.graph.nodes,
5: edges = shallow copy of c.graph.edges)

6 unnotifiedBindings = shallow copy of c.graph.nodes

7: s =find all of the entries for c.artefact in the History database

8: foreach entry finsdo

9: intersection = c.graph.nodes N f.graph.nodes
10: if intersection # () then
11: merge f.graph into completedGraph
12: if not f.isValid then
13: remove intersection from unnotifiedBindings
14: end if
15: end if
16: end for
17: end

This algorithm takes a correlation ¢ as input and returns a
graph that is a completed version of c.graph and a set of
bindings that have not been notified so far. It first creates

Int'l Conf. Software Eng. Research and Practice | SERP'11 |

an initial completed graph at line §4 from a shallow copy
of the nodes and the edges of the graph of correlation c.
A shallow copy is made because otherwise line §11 would
modify the original graph in correlation c. Line §6 also makes
a shallow copy of all bindings from correlation c into the set
of unnotified bindings, i.e., we initially assume that all of them
have been notified. At line §7, the algorithm finds all entries
for the artefact associated with correlation ¢ and stores them
in variable s. The loop at lines §8—§16 iterates over all of the
entries in s; it discovers if there are common bindings between
correlation ¢ and entry f. This is done at line §9 by calculating
the intersection amongst the bindings of ¢ and the bindings of
f. If the intersection returns a non-empty set, it means that the
bindings of f can complete the bindings of c; in this case, the
graph associated with entry f must be merged into the resulting
completed graph at line §11. Line §13 removes the bindings
that were detected to be already in the graph of entry f from
the set of unnotified bindings, leaving only new bindings that
were not reported yet. Note that this is done only if graph f
represents an invalid graph; otherwise all bindings are new.

D. Checking Rules
The algorithm to check rules is as follows:

1: to checkRules(in g: Graph, in 7: Artefact): Set(Name) do
result = ()
for each rule rin r.rules do
for each atom a in r.atoms do

2
3
4
5: n = count bindings b in g.nodes such that b.portName == a.port.name
6 if n < a.min or n > a.max then
7 add r.name to result
8 end if

9: end for
10: end for

11: end

This algorithm takes a graph that represents a correlation
and an artefact as input; it returns the subset of rules associated
with the artefact that the correlation does not pass. The loop
at lines §3—§10 iterates over the rules and the internal loop at
lines §4—8§9 checks every atom. The algorithm is simple since
we just need to count the number of bindings that involve
the port referenced in the atom; if this figure is not within the
margins that the atom establishes, then it is added to the result
of the algorithm since that rule is not passed.

V. ANALYSIS OF THE PROPOSAL

In this section, we analyse our proposal from a both a
theoretical and a practical point of view. We first prove that it
behaves linearly, i.e., it is is computationally tractable.

Theorem 1: Algorithm detectErrors() takes O(b + ch) time
to process an entry in the Graphs Queue, where b denotes the
average number of bindings that have been reported since the
last checkpoint, ¢ denotes the average number of correlations
found at each checkpoint, and & the average number of entries
for an artefact in the History Database.

Proof: According to Theorems §2 and §4 in Ap-
pendix §A, lines §3 and §5 of the algorithm run in O(b)

Int'l Conf. Software Eng. Research and Practice | SERP'11 |

Solution 1 ":

Prc 1

Figure 7.

Experimental system.

1.00
0.90 +
0.80
0.70 +
0.60
0.50
0.40 +
0.30 +
0.20
0.10
0.00

Time in seconds

3 4 5 6 7 8 9 10
0.18 0.19 0.20 0.22 0.21 0.22 0.22
0.34 0.36 0.37 0.38 0.36 0.40 0.40
0.50 0.51 0.52 0.52 0.54 0.53 0.57
0.70 0.66 0.65 0.68 0.69 0.67 0.70
0.85 0.80 0.87 0.82 0.87 0.83 0.86

Processes

—e—H=100
—m— H=200
H=300
H=400
—x— H=500

Figure 8. Experimental results.

and O(h) time, respectively. Assume that findCorrelations() returns
¢ correlations in average. Therefore, the loop at lines §4—
§6 iterates c¢ times in average. As a conclusion, algorithm
detectErrors() takes O(b + ¢ h) time to process an entry in the
|

Note that there must be an upper bound to the average
number of bindings reported between checkpoints; such bound
is unknown since it depends on the hardware used, but it
exists as long as the Descriptions Database does not change, i.e.,
no new artefacts are added to the system, and the message
production ration is not monotonically increasing. The previ-
ous assumptions seem sensible since a typical company does
no introduce new artefacts day after day and they cannot grow
their hardware continusously. In turn, this implies that there
must be an upper bound to the number of correlations that
can be found in real-world scenarios. Contrarily, / increases
monotonically as time goes by. This implies that after some
time, the complexity of algorithm detectErrors() is dominated by
h, i.e., the algorithm behaves linearly in the average number
of entries per artefact in the History Database.

To prove that our algorithm makes sense in practice, we
have also carried out a series of experiments. Due to space
limitations, we report on one of the worst-case scenarios only,
cf. Figure §7. It consists of N — 1 processes that report to a
single process denoted as Prc,. Note that there are N solutions
and that process Prc, belongs to each of them; consequently,
every time a message is sent to this process, N + 2 artefacts
are involved (Prco, the process that sent the message, and the
solutions).

Graphs Queue.

603

The experiments were run on a machine that was equipped
with an Intel Pentium D processors that ran at 3.4Ghz, had 2
GB of RAM memory, Windows Server 2003 (32-bit edition),
and JRE 1.6. Each experiment consisted of executing the previ-
ous system for 24 hours with a fixed number of processes and
a fixed maximum history size; these parameters changed from
experiment to experiment. We set the fault rate at 10%, i.e.,
one out of every 10 messages was not delivered successfully,
was intentionally replicated, or contained erroneous data with
equal probability. Note that other parameters equal, the fault
rate does not have an impact on the efficiency of our algorithm,
since checking a correlation takes O(r a) time, where r denotes
the number of rules associated with an artefact and a the
average number of atoms in these rules, cf. Theorem §5 in
Appendix §A. The time to transmit messages was less than
a millisecond since we considered small-sized messages that
were sent across a high-speed local area network. The message
production rate was set to a message per second to simulate
a continuously-loaded system.

Figure §8 shows our results; the abscissa reports on the
number of processes in the system, which varied from P = 3
to P = 10, and the ordinate reports on the average time the
algorithm to detect errors took; each line represents the results
we gathered when we varied the history size from H = 100
to H = 500 in steps of 100. The conclusion is that adding
new processes to the system has obviously an impact on the
time to detect errors, since these processes result in additional
bindings that need to be processed by our algorithm. The
impact is however linear, with a slight slope. In average, the
impact of adding a new process to the system is 0.022+0.017
seconds. Increasing the maximum size of the History Database by
100 entries also has an impact of 0.161 £ 0.022 seconds in
average.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a proposal to detect errors in the context
of EAI solutions. It is novel in that it is not bound to orchestra-
tions or choreographies, neither to a process- nor a task-based
execution model; it is totally independent. We have also proven
that its time complexity is O(b + ch), where b denotes the
average number of bindings that have been reported by means
of events since the last checkpoint, ¢ denotes the average
number of correlations found at each checkpoint, and & the
average number of entries for an artefact in the History Database.
Recall that the only purpose of this database is to complete
correlations that are found in the Graphs Database, just in case
a message is processed by a port after the deadline for the
corresponding correlation expires. In practice, it makes sense
to remove old information from the database periodically; this
puts an upper bound to the size of the History Database, which,
in turn, puts an upper bound to the total time the algorithm
may take to detect errors. The experimental results prove that
not only is the proposal computationally tractable, but also
efficient. Future work includes exploring how the proposal
may benefit from multi-threading and reducing the amount
of work required to analyse the database; note that the same

604

correlation may be analysed several times in cases in which
solutions overlap.

APPENDIX

Theorem 2: Algorithm findCorrelations() terminates in O(b)
time, where b is the number of bindings that have been
reported by means of events since the last checkpoint for a
given artefact.

Proof: This algorithm takes an entry from the Graphs Queue
whenever it is available. Note that this may take an arbitrary
time since it depends on the events being handled, which,
in turn, depends on the system being monitored. Therefore,
the time complexity refers to the time the algorithm takes
to process an entry once it is taken from the Graphs Queue.
The instruction at line §3 runs in O(1) time; contrarily, the
instruction at line §4 has to find the connected components of
the graph associated with an entry, which is accomplished in
O(max{b, r}) time [9], where b denotes the number of nodes
in the graph being analysed (bindings), and » the number of
edges amongst them. In our scenario, it is expected that b ~ r
since edges are added to a graph when a shipment event is
handled (n source bindings, one target binding, then n edges),
or when a transfer event is handled (one source binding, one
target binding, then one edge). Thus, without loss of generality,
we can assume that line §4 runs on O(b) time. The loop at
lines §6—§10 iterates over each connected component to create
new correlations, i.e., it runs in O(c) time, where ¢ denotes
the average number of connected components found. As a
conclusion, findCorrelations() terminates in O(b + ¢) time. Note
that b is usually expected to dominate c, since the total number
of bindings reported in between checkpoints is proportional to
the number of correlations ¢, i.e., b = k¢ for an unknown k.
Thus, we can conclude that findCorrelations() actually runs in O(b)
time. []

Theorem 3: Algorithm verifyCorrelation(c) terminates in O(h)
time, where A denotes the number of entries in the History
Database that involve c.artefact.

Proof: This algorithm is dominated by the calls to
algorithms findCompletion and checkRules at lines §2 and §7,
respectively. The rest of the lines may be assumed to execute
in O(1) time since they involve iterating over a completion of
a correlation, or manipulating their associated graphs, which
is expected to involve a relatively small number of bindings.
According to Theorems §2 and §4, lines §2 and §7 are
expected to run in O(h+ra) time, where /1 denotes the number
of entries in the History Database that involve c.artefact, r is
the number of rules associated with this artefact, and a is
the average number of atoms in these rules. Note that this is
expected to be dominated by O(h) as time goes by and the
History Database grows. Therefore, verifyCorrelation(c) terminates in
O(h) time. [|

Theorem 4: Algorithm findCompletion(c, out cg, out ub) terminates
in O(h) time, where i denotes the number of entries for
artefact c.artefact in the History Database.

Proof: The time complexity of this algorithm is domi-
nated by the loop at lines §8-§16. It iterates over all of the

Int'l Conf. Software Eng. Research and Practice | SERP'11 |

entries associated with c.artefact in the History Database. Let &
denote the number of such entries. We can safely assume that
the set operations within this loop can be implemented in O(1)
time, since they all operate on correlations, which are expected
to involve a relatively small number of bindings. findCompletion(c,
out cg, out ub) thus terminates in O(h) time. []
Theorem 5: Algorithm checkRules(¢, 1) terminates in O(ra)
time, where r denotes the number of rules associated with
artefact ¢ and a the average number of atoms in these rules.
Proof: The proof is straightforward since the loop at
lines §3-§10 iterates a total of r times, where r denotes the
number of rules associates with artefact ¢, and the loop at
lines §4-§9 iterates @ times in average, where a denotes the
average number of atoms per rule. The algorithm then runs in
O(ra) time. |

REFERENCES

[1] G. Alonso, C. Hagen, D. Divyakant, A. E. Abbadi, and C. Mo-
han. Enhancing the fault tolerance of workflow management
systems. IEEE Concurrency, 8(3):74-81, 2000

[2] L. Baresi, S. Guinea, R. Kazhamiakin, and M. Pistore. An
integrated approach for the run-time monitoring of BPEL or-
chestrations. In ServiceWave, pages 1-12, 2008

[3] M. Y. Chen, A. Accardi, E. Kiciman, D. A. Patterson, A. Fox,
and E. A. Brewer. Path-based failure and evolution manage-
ment. In Networked Systems Design and Implementation, pages
309-322, 2004

[4] D. K. W. Chiu, Q. Li, and K. Karlapalem. A meta modeling ap-
proach to workflow management systems supporting exception
handling. Inf. Syst., 24(2):159-184, 1999

[5] G. Dunphy and A. Metwally. Pro BizTalk 2006. Apress, 2006

[6] V. Ermagan, I. Kriiger, and M. Menarini. A fault tolerance
approach for enterprise applications. In IEEE SCC, pages 63—
72, 2008

[7] J. B. Goodenough. Exception handling: Issues and a proposed
notation. Commun. ACM, 18(12):683-696, 1975

[8] C. Hagen and G. Alonso. Exception handling in workflow
management systems. [EEE Trans. Software Eng., 26(10):943—
958, 2000

[9] J. E. Hopcroft and R. E. Tarjan. Efficient algorithms for graph

manipulation [h] (algorithm 447). Commun. ACM, 16(6):372—

378, 1973

C. Ibsen and J. Anstey. Camel in Action. Manning Publications,

2010

L. Li, C. N. Hadjicostis, and R. S. Sreenivas. Designs of

bisimilar petri net controllers with fault tolerance capabilities.

1EEE Transactions on Systems, Man, and Cybernetics, Part A,

38(1):207-217, 2008

C. Liu, M. E. Orlowska, X. Lin, and X. Zhou. Improving

backward recovery in workflow systems. In Database Systems

for Advanced Applications, pages 276-286, 2001

M. Sampath, R. Sengupta, and S. Lafortune. Failure diagnosis

using discrete-event models. [EEE Trans. on Control Syst.

Technol., 4(2):105-124, 1996

Y. Yan, M.-O. Cordier, Y. Pencolé, and A. Grastien. Mon-

itoringWeb service networks in a model-based approach. In

International Conference on Web Services, pages 192-203, 2005

Y. Yan and P. Dague. Modeling and diagnosing Orchestrat-

edWeb service processes. In International Conference on Web

Services, pages 51-59, 2007

[10]

[11]

[12]

[13]

(14]

[15]

