
Towards a Domain-specific API for Developing and Executing
Integration Processes in Trusted Execution Environments *

Regis Schuch1, Rafael Z. Frantz1, Antonia M. Reina Quintero2, José Bocanegra3

Sandro Sawicki1, Fabricia Roos-Frantz1, Carlos Molina-Jiménez4

1Unijuı́ University – Ijuı́/RS – Brazil

{regis.schuch, rzfrantz, sawicki, frfrantz}@unijui.edu.br
2University of Seville – Seville – Spain

reinaqu@us.es

3Universidad Distrital Francisco José de Caldas – Bogotá – Colombia

jjbocanegrag@udistrital.edu.co

4University of Cambridge – Cambridge – United Kingdom

carlos.molina@cl.cam.ac.uk

Abstract. We contribute a domain–specific and technology agnostic API for im-
plementing integration processes executed in Trusted Execution Environments
to prevent data exfiltration at run–time. We demonstrate its potential with a use
case implemented with compartments created on Morello Boards.

1. Introduction
Integration processes are applications that retrieve data from several remote and

independent services and process it locally to implement new services. They are com-
mon in smart cities and other domains. Current integration processes protect data in
transit but lack mechanisms for preventing data exfiltration at execution–time. A solu-
tion is to execute the integration process within a Trusted Execution Environment (TEE)
implemented in hardware such as Intel SGX, Amazon Nitro and Morello Board Com-
partments1 [Intel 2025, ARM 2025]. These and similar technologies offer APIs that are
i) technology specific and ii) general purpose. As a result, TEEs are hard to use in in-
tegration processes. Our API can solve the problem, it includes typical operations of
integration processes.

2. Functionality of the API in a Typical Scenario
Imagine a store that offers complimentary taxis to customers that spend at least

$150. We have implemented this scenario (see Figure 1) with our API as an integration
process that securely integrates two services: (i) a Store Service that provides data con-
taining customers’ phones, addresses and receipts; (ii) a Taxi Service that takes bookings.
The Integration Process is a client of the Store and Taxi services that acts as servers.

*Research funded by the Co-ordination for the Brazilian Improvement of Higher Education Personnel
(CAPES) and the Brazilian National Council for Scientific and Technological Development (CNPq) under
grants 311011/2022-5, 309425/2023-9, 402915/2023-2. AETHER-US PID2020-112540RB-C44, ALBA-
US TED2021-130355B-C32MICIU/AEI/10.13039/501100011033, “EU NextGenerationEU/PRTR” grants
funded Antonia. EPSRC/EP/X015785/1(G115169) grant funded Carlos Molina.

1We rule out software based solution like homomorphic encryption because they are still immature.

The interaction is mediated by the Launcher that ensures secure communication, enforces
execution environment attestation, and manages cryptographic operations, enabling the
secure integration of remote applications operating in conventional environments. The
Launcher also manages the Code Repository, retrieving, compiling, and deploying the
Integration Process into a secure memory compartment.

Store

Service

Local

Repository

Taxi

Service

Figure 1. Scenario for implementing the integration process using a TEE.

The workflow begins when the Integration Process issues a 1) read() request,
which the Launcher translates into a 2) request() and forwards to the Store Service,
returning encrypted data. After identifying eligible customers, the Integration Process
executes a 3) write() operation, which the Launcher translates into a 4) post() to
securely transmit customer details to the Taxi Service while ensuring data protection.

The proposed API functions as an abstraction layer, decoupling the domain-
specific API (focused on service integration) from the TEE-specific API (responsible for
execution, attestation, and security policies). This separation enables integration pro-
cesses to be deployed across different TEEs, such as Intel SGX, AWS Nitro Enclaves,
and Morello Board compartments, without requiring modifications to their core logic.
The Launcher ensures that only attested integration processes interact with Remote Ap-
plications. If Morello were replaced by Intel SGX, the overall workflow would remain
unchanged, requiring only adjustments to attestation mechanisms (e.g., Intel Attestation
Service (IAS) versus Morello’s compartmentalisation model). The Launcher manages ex-
ecution by invoking API functions such as read(), request(), write(), and post()
to securely communicate with Remote Applications. The complete source code for this
case study is available at: https://github.com/gca-research-group/tee-compart
imentalisation-study-case

3. Conclusion and Future Work
We have proposed the use of commodity TEEs to prevent data exfiltration in in-

tegration processes. Specifically, we implement an intermediate abstraction layer that
decouples a general-purpose programming API from a domain-specific API designed for
digital service integration, which abstracts key actions such as secure reading and writ-
ing. Future work will focus on extending the case study to additional TEE, including
AWS Nitro Enclaves, Intel SGX, AMD SEV, and ARM TrustZone, to evaluate the API’s
adaptability across different TEEs.

References
ARM (2025). ARM Morello Program. https://www.arm.com/architecture/cpu/mor

ello. [online: access in 21-jan-2025].
Intel (2025). Intel® Software Guard Extensions (Intel® SGX). https://www.intel.co

m/content/www/us/en/products/docs/accelerator-engines/software-guard
-extensions.html. [online: access in 21-jan-2025].

