
Using Timed and Coloured Petri nets for Modeling,
Simulation, and Analysis of Integration Solutions

Francine Freddo, Sandro Sawicki, Rafael Z. Frantz, Fabricia Roos-Frantz
Department of Exact Sciences and Engineering, Unijuí University.

Rua do Comércio, 3000. Ijuí 98700-000, RS. Brazil.

Abstract

Enterprise application integration (EAI) is a research field that seeks to de-
velop methodologies, techniques and tools for the design and development of
integration solutions. The software ecosystems of companies are composed of
several heterogeneous applications, usually obtained from third parties or de-
veloped internally and adapted for their business processes. In this context,
the main challenge faced by companies is that most of their applications
were not designed considering integration with other applications. In this
work, we propose to develop a mathematical model to simulate integration
solutions in the design phase, i.e., before the implementation and testing
stages. The aim of this simulation is to analyse the behaviour and identify
the possible performance bottlenecks of the application integration solutions.
In this way, it is possible to identify problems prior to the implementation
and testing stages, in order to reduce costs, risks and time. A conceptual
model of the integration solution designed using Guaraná technology will
be translated into a mathematical model of the simulation using timed and
coloured Petri nets. This equivalence is generic and can be translated into
any application integration technology. A real-life problem in the area of
marketing was used as a case study. In addition, simulation scenarios similar
to an actual operating process were defined. The computational simulations
were performed using CPN Tools, which allows the use of coloured and timed
Petri nets. Finally, verification of the equivalence of the formal simulation

∗Corresponding author
Email addresses: francinefreddo@unipampa.edu.br (Francine Freddo),

sawicki@unijui.edu.br (Sandro Sawicki), rzfrantz@unijui.edu.br (Rafael Z.
Frantz), fabriciar@unijui.edu.br (Fabricia Roos-Frantz)

Preprint submitted to Int. Journal of Web Engineering and Technology July 31, 2019

model using timed and coloured Petri nets and the conceptual model, was
performed using formal verification techniques widely found in the literature.

Keywords: Enterprise Application Integration, Coloured Petri nets,
Timed Petri nets, Discrete-event Simulation.

2

1. Introduction

Usually, companies need to use their software ecosystems (Messerschmitt
and Szyperski, 2003) to support and improve their business processes. Ecosys-
tems are composed of many applications, usually designed without taking
into account their possible integration. Within the area of software engineer-
ing, the field of study known as enterprise application integration (Hohpe
and Woolf, 2004) seeks to provide methodologies, techniques and tools for
designing and implementing integration solutions. In general, an integration
solution aims to orchestrate a series of applications, in order to keep them
synchronized or to provide new functionalities that can be formed from ex-
isting ones. An integration solution is created by processes which contain
integration logic and communication ports that connect process-ecosystem
applications or the integration solution.

Generally, the development of an integration solution is organized in tradi-
tional phases, such as analysis, design, implementation and testing. Although
an integration solution follows implementation standards and techniques, er-
rors may occur in its structure. In addition, it may present performance
bottlenecks in its components, in situations of high computational demand.
The analysis of integration solutions to predict behaviour and to find possible
performance bottlenecks is an important activity for increasing the quality of
integration solutions. The approach usually adopted by software engineers
is to build and execute the integration solution. However, developing the
solution involves costs and risks that can often be high.

The integration solution is a piece of software that is composed of one
orchestration process that exogenously coordinates the heterogeneous ap-
plications involved in the software ecosystem. An application integration
solution can be classified as stochastic, dynamic and discrete. Thus, it is
possible to use computational and mathematical models, as well as discrete-
event simulation techniques, while still in the design phase. In this way, it
is possible to find the performance bottlenecks that may arise when an ap-
plication integration solution encounters a critical operating scenario, before
its implementation. Rezai et al. (1995) indicate that Petri nets have been
proven to be an excellent modelling and analysis tool for discrete events or
asynchronous systems. Alla and Ghomri (2012) report that the basic con-
cept of Petri nets and the classes of derived models can be used for dynamic
modelling of systems. The authors also report that autonomous Petri nets
enable any kind of discrete event whatsoever to be modelled.

3

This work aims to analyse the behaviour and identify the possible per-
formance bottlenecks of the application integration solution, through the
analysis of its slots in the design phase. The variables analysed are: (i)
the time permanence of messages and (ii) the number of messages accumu-
lated. The conceptual model of the integration solution will be translated
into a mathematical simulation model using Petri nets. Our work trans-
lates a static conceptual model into a simulation model. This equivalence
is generic and can be translated into any application integration technology.
A real-life problem in the area of marketing was used as a case study. In
addition, simulation scenarios similar to those of an actual operating process
were defined. The experimental results were collected after 25 executions for
each scenario, following the law of large numbers (Grinstead and Snell, 2012).
The computational simulations were performed using CPN Tools, which al-
lows the use of coloured and timed Petri nets. Finally, the verification of the
equivalence of the formal simulation model with Petri nets and the concep-
tual model, was performed using formal verification techniques widely found
in the literature. The results obtained in the simulation were also used by
the verification techniques to evaluate the accuracy of the model created.

The rest of this article is organized as follows. Section 2 provides an
overview of the stochastic Petri nets, coloured nets and timed nets used
to develop the formal simulation model, section 3 discusses related work
that also uses timed and coloured Petri nets in discrete-event simulations
to analyse systems, section 4 presents the study’s proposal of translating
integration solution models into timed and coloured Petri nets and section
5 discusses the analysis results obtained from the simulation of the formal
model and its verification. Finally, section 6 presents the main conclusions.

2. Background

In this section, we provide a brief overview of the stochastic Petri nets,
timed Petri nets and coloured Petri nets that were used as mathematical
techniques to develop the formal simulation model. The enterprise appli-
cation integration technology from Guaraná, used as a case study, is also
discussed in this section.

2.1. Stochastic Petri Nets
Petri nets were invented in 1962 by Carl Adam Petri as a mathemati-

cal formalism to describe concurrence and dynamic synchronization in dis-

4

tributed systems. Petri nets are graphs composed of nodes that are places
and transitions and arcs. Places are represented by circles and transitions
by rectangles. Nodes are connected by arcs. Places can contain tokens, rep-
resented by points within the place, and the number of tokens in one place
is called a marking. An input arc connects a place to a transition, and an
output arc connects a transition to a place. When a transition is fired, the
tokens in the places connected by the input arcs are removed and then added
to the places connected by the output arcs. A transition is active and can
be fired if the number of tokens in its places satisfies the weight determined
by the input arcs. The weight of the output arcs is not necessarily the same
as the weight of the input arcs. When a transition is triggered, the Petri net
changes its state. This concept is called the "set of markings", with mark-
ings representing the number of tokens in each place after a finite sequence
of transitions has been fired.

2

1

2

2

1

2

state 1

state 2

Legend

place

transition

token

arc

Figure 1: Example of firing a transition

Petri nets are defined as bipartite graphs (or bigraphs), because they
present two types of nodes, places and transitions. Mathematically, Petri
nets are defined as follows.

Definition: A Petri net is a sextuple:

RP = (P; T; Ar; K; W; M0), where: (1)

� P = p1; p2; :::pm is the finite set of places,

5

� T = t1; t2; ::::tn is the finite set of transitions,

� Ar � (P � T) [(T � P) is the set of arcs,

� K : P ! N [f1g is the capacity function,

� W : Ar ! N+ is the weighting function,

� I : T ! (R [f0g) , where the minimum and maximum delay is repre-
sented by (dmin; dmax); dmax � dmin,

� M0 ! N is the initial function tag, where 8p 2 P : M0(p) � K(p).

According to the Petri net definitions, the following conditions must be
satisfied.

P \ T = fg (2)

and
P [T 6= fg (3)

The equation in 1 represents a stochastic Petri net. According to the
condition of Equation 2, the places and the transitions are distinct nodes,
thus justifying the bipartite term. According to the condition of Equation 3,
it is understood that in a Petri net, there is at least one place or transition.
A Petri net is formed by a structure composed of places and transitions
connected by arcs and an initial marking.

2.2. Coloured Petri Nets
Coloured Petri nets aim to reduce the size of the model, and they have

considerable importance in the modelling of complex systems. This type
of Petri net allows the tokens to be individualized by assigning colours to
them, so that different processes or resources can be represented on the same
network. Colours do not just mean patterns; they can represent complex
data types. The colour nomenclature is used only to distinguish between
tokens. Figure 2 presents a coloured network with the original representation,

6

where colours are used for the tokens and the arcs are labelled with the
colours (x; y; w; z). Though simple, the original coloured Petri net provides
mechanisms for making a deterministic choice.

A qualified choice leads to an evolution of the coloured Petri net, but
this is aided by non-deterministic representations. Coloured Petri nets are
composed of the following parts: structure, declarations and inscriptions.
The structure is a graph driven by two vertices (places and transitions),
which can store marks of different types in each place and represent values
associated with more complex data types. Declarations are the specifications
of the colour sets and variables, and the inscriptions change according to the
component of the network. Places have three types of entries: names, a set
of colours and an initialization expression. Transitions have two types of
inscriptions: names and saved expressions. Arcs have only one type, which
is given by the expression. To differentiate entries, names are written with
normal letters, colours are written in italics, initialization expressions are
underlined and storage expressions are enclosed in square brackets, as shown
in Figure 2.

<w>

<y>

<z>

<y>

<y>

<x>

<z>

<x>

<w>

x

z

y

w

color tokens

Figure 2: Coloured Petri net elements

2.3. Timed Petri Nets
Timed Petri nets have emerged for modelling dynamic systems. There

is a logic associated with their transitions, such as the enable time, firing
time and relative firing frequency. Enable time refers to the time for which
the transition must remain enabled before firing. Firing time is the time the

7

transition needs in order to fire. This is used to represent the time consumed
in the execution of events in a modelled system. Firing time can be a constant
or a function. If it is a constant, it can be zero or a positive integer value. If it
is a function, it can assume random values according to the input distribution
chosen. The relative firing frequency applies to the transitions belonging to
a Petri net conflict set, i.e., situations in which more than one transition is
able to fire and there is a need for choice. The structure of a timed Petri net
is the same as that of a Petri net. The real change is that tokens, places and
transitions are associated with time values. If RdPT is a timed Petri net,
then:

RdPT = (P; T; Ar; K; W; I; M0) (4)

An RdPT (Equation 4) is made up of m places, n transitions, A arc
sets, K functions for maximum token capacity in places and W weight or arc
weight functions. These weights can be constant or a function I of time over
a transition Tj, which takes a time value belonging to a set T for the two
coordinates of minimum delay and maximum delay and an initial marking
function M0.

A transition tj is fired if it is enabled according to the following rules.

8pi 2 P : M [tj > M(pi) � I(pi; tj)] (5)

That is, for every place pi belonging to the set of places P , the place
marking pi must be greater than or equal to the weight of the arc connecting
the place pi to the transition tj. During the interval I(tj) = (djmin; djmax), a
tj will only be fired if t(tj) � djmin, that is, if the transition time tj is greater
than or equal to the time of its minimum delay (transition rules of Equation
5).

P0
t1,d1

t2 ,d2

P1

P2

Figure 3: Semantics of firing in a deterministic timed Petri net

8

An example of a deterministic timed Petri net is shown in Figure 3, where
transitions t1 and t2 have different associated times, which means that one
transition will be fired before the other. Thus, assuming that d1 < d2, then
the token will arrive first in place P1. In a deterministic way, it is possible
to establish the order in which the events must occur.

2.4. Enterprise Application Integration: Guaraná Technology
Guaraná technology provides a domain-specific language that enables the

design of integration solutions with a high level of abstraction using concrete
graphical syntax and intuitive modelling concepts. This modelling language
is based on the integration patterns documented by Hohpe and Woolf (2004).

The conceptual models designed using the Guaraná technology are platform-
independent. Thus, software engineers do not need specific expertise in low-
level integration technologies in order to develop integration solutions. This
feature allows engineers to focus their efforts on designing models that ad-
dress the problem.

Conceptual models are developed using the Guaraná technology in a
graphic language. The transformation of the models into an executable code
is obtained through model-driven engineering. In this way, models designed
using the technology can be reused, to automatically generate integration so-
lutions to be executed in different technologies. A schema for the conceptual
models using the Guaraná technology is shown in Figure 4. In the Guaraná
technology, tasks are classified according to their semantics.

� Routing tasks: this class of tasks does not change the status of mes-
sages; it only forwards them through a process.

� Modifying tasks: modifying tasks add or remove message data with-
out changing the schema. An example of this functionality is the task
that adds data to the correlated message.

� Transforming tasks: transforming tasks translate one or more mes-
sages into a new message with a different schema.

� Stream dealer tasks: these are tasks that work with a stream of bytes
and help to compress/decompress, encrypt/decrypt or encode/decode
messages.

� Mapping tasks: mapping tasks change the format of messages that
are processed, for example, from a byte stream to an XML document.

9

� Communicator tasks: communicator tasks are used on ports to in-
teract with communication components, often called adapters.

Figure 4: Conceptual model of Guaraná technology

Guaraná technology provides an implementation using a task-based run-
time engine, which di�erentiates it from other integration technologies that
use a process-based execution model. In the task-based model, threads are
allocated at the task level, allowing parallel processing of di�erent messages
by the same process. In the process-based model, the threads are allocated
to the process; thus, when message processing begins, the other threads are
blocked until the process is �nished.

3. Related Work

Many di�erent types of problems that use Petri nets as a simulation
model have been proposed in the literature. Some approaches use timed
and coloured Petri nets to model automation processes and describe the
concurrence and dynamic synchronization in distributed systems.

Taghinezhad-Niar et al. (2017) modelled an algorithm using a coloured
Petri net to perform task scheduling in federated cloud systems, in an ef-
�cient manner, considering the service level agreement (SLA) requirements
of the users. Wang et al. (2015) proposed an approach to capture the in-
teractions that occur between collaborating systems or components using

10

object-process methodology and coloured Petri nets, with the objective of
creating an executable architecture model for a system of systems (SoS). Du
et al. (2018) used hierarchical coloured Petri nets for modelling industrial de-
sign collaborative system work�ow, providing a valid work�ow model for the
process management of industrial design collaborative systems. Kaur et al.
(2017) proposed a novel scheme for e�cient frequency support in a smart-
grids environment by modelling a �eet of electric vehicles using coloured Petri
nets. Hu et al. (2017) proposed a similarity computing method based on the
Levenshtein distance and a Petri net logic, aiming to improve the e�ciency
of the similarity computation between a service request and the existing ser-
vice processes in renting or recommending cloud-service processes. Liu et al.
(2017) presented a novel coloured generalized stochastic Petri net model for
IT infrastructures, which re�ects the dynamic behaviour and service request
processing procedure under the active-active mechanism. The experimental
results of the simulations were obtained using CPN Tools.

Sun et al. (2018) proposed a novel shared control method based on fused
fuzzy Petri nets for combining robot automatic control and brain-actuated
control. The authors consider that the use of both fuzzy controls and Petri
nets is robust and e�ective. Zhang et al. (2018) presented a method for
diagnosing power-grid faults using intuitionistic fuzzy logic. For this pur-
pose, the authors obtained a diagnostic model for power systems that could
calculate the certainty and the uncertainty of electrical device fault events
using intuitionistic fuzzy Petri nets. Li et al. (2018) reported that no e�cient
methods have been proposed for the liveness analysis of general unbounded
Petri nets, except for some of their subclasses. In this sense, the authors
present an e�ective method for comprehensively analysing the properties of
general unbounded Petri nets using a lean reachability tree. Similarly, an
extension to recon�gurable Petri nets was proposed by Tigane et al. (2017),
in order to provide a suitable tool for the formal modelling and veri�cation
of recon�gurable systems. Arciniegas et al. (2017) presented the modelling
of an automation process for an electric car production line using Petri nets
and GRAFCET with a shared resource. The proposal uses three concurrent
processes: fabrication of the mechanical structure, assembly of the electric
motor and assembly of the car batteries. An et al. (2017) developed a model
for a signal control system with transit priority using coloured Petri nets.
According to the authors, the proposed model ensures that transits can pass
through intersections with less delay or no delay.

11

Strz¦ciwilk et al. (2018) used simulation with Petri nets to evaluate and
verify waiting times and tra�c intensity, focusing on analysis of a priority
queuing system supporting quality of service (QoS). Allani et al. (2018) pro-
posed a a coloured Petri net combined with timed Petri nets to model work-
�ow management systems based on documents with time constraints. Wang
et al. (2018) presented a stochastic timed Petri net-based healthcare work-
�ow and resource modelling technique. The authors proposed a simulation
framework that supports the analysis of optimal provisioning of resources,
ensuring timely care services.

Entezari-Maleki et al. (2017) proposed a model based on timed coloured
Petri nets to evaluate the service composition in multi-cloud environments,
minimizing the number of clouds involved in a service request. Shmeleva
(2017) speci�ed online statistical analysis algorithms using coloured Petri
nets. The authors reported that the same approach can be implemented
for other statistical moments and other networking technologies. Zeineb
et al. (2016) proposed a formal modelling and validation approach based
on coloured Petri nets for the development of a generic model representing
the overall behaviour of the di�erent components of a smart grid.

The current literature reports that Petri net analysis allows the evaluation
of the structure and dynamic behaviour of the system modelled. The result
of this evaluation may lead to improvements or changes in the system. Our
work, however, proposes the behaviour analysis of, and the identi�cation of
possible performance de�ciencies in, the integration solution based on the
identi�cation of the length of stay of messages in the system and on the
message accumulation in the slots, considering di�erent processing priorities,
while still in the project phase, by means of the development of a formal
simulation model using coloured and timed Petri nets.

4. Translating an Integration Solution model into Timed and Coloured
Petri nets

In this work, we propose the translation of the Guaraná conceptual model
into a timed and coloured Petri net model. This translation o�ers several ad-
vantages. The main bene�t is the fact that timed and coloured Petri nets are
very well-established mathematical models. In addition, timed and coloured
Petri nets use simple components, and there are several tools available for
Petri net simulation and analysis.

12

4.1. Case Study and Software Ecosystem
The problem of integration is a reality in the marketing area. Its role is

to disseminate advertisements from various customers, using advertisement
stations called local stations. The software ecosystem is composed of eight
heterogeneous applications: social networks, video monitor, SM media, re-
mote access, advertising station, hardware monitor, printer and reporting
system.

The data �ow starts with the creation of the advertisement to be dis-
closed. In the sequence, the �le is received by the system and stored in a
database. In this way, the publishing process begins. The company �lters
the database to �nd advertisements that have not been published, to be
shared on social networks. To send the advertisement to the local station,
the company uses remote access software. In this software, the advertisement
is included in a folder mapped by a tool that manages the reproduction of
videos. The hardware monitor has the function of monitoring the behaviour
of the following properties: status of the network, printer, temperature and
the hardware of the local station. The company monitors each of these pieces
of software individually.

Figure 5 shows the integration �ow of the conceptual model. The inte-
gration process begins at portP0, consulting the database for �les. The �les
are transformed into a message, which is sent to the task �lter(T0) using the
slot S0. The task replicator (T1) distributes the messages to a task translator
(T2) and a task replicator (T3). A copy of the message is sent to the task
correlator (T5). The task context content enricher(T6) receives the message
through slotsS8 and S9. The task translator (T7) translates the message into
the advertising station application. The merge task(T8) receives all inputs
from the video monitor, hardware monitor and printer applications and for-
wards them to the task assembler(T9). The task translator (T10) translates
the message and sends it to portP7 and to the reporting system application.

In order to solve the problem of integration of the di�erent applications,
a temporal analysis was performed using tokens with di�erent processing
priorities, to identify the behaviour of the following variables during the
whole process, aiming to �nd performance bottlenecks: (i) the average time
of tokens in the places and (ii) the maximum number of tokens stored in the
places.

Using coloured and timed Petri nets it was possible to represent di�erent
tokens and also assign time to each of them. The simulation tool used was
CPN Tools (for coloured Petri nets). This tool has its own programming

13

Figure 5: Conceptual model of the integration solution using the Guaraná technology

language for describing attributes of network elements. This language pro-
vides declarations of colour sets (types), variables, constants, functions and
procedures.

In order to perform the temporal analysis of the developed computational
model, three types of priorities were de�ned: token with high priority, to-
ken with medium priority and token with low priority. For each priority, a
time was assigned: high priority (time 1), medium priority (time 2) and low
priority (time 3). These priorities, in a real system, represent messages of
di�erent types and sizes.

We use the correspondence analysis of the models to map the Guaraná
notation onto coloured and timed Petri nets. Three main steps were used.
a) Determining the visions that will be the subject of analysis. This step
focuses on particular aspects of the system. b) Determining the feasibility of
a vision to be mapped to RdP. It is possible to determine the feasibility of the
mapping process after the detailed analyses. c) Elaborating an equivalence
table between the Guaraná notation and RdP. The mapping process can be
seen as a mechanism of identifying correspondences between the components
(diagrams) of the models (visions) and the features present in RdP. Figure
6 shows the equivalence between the main elements of the Guaraná and

14

the timed and coloured Petri nets technologies. The main elements of the
Guaraná technology are tasks, slots and messages, which are analogous to
the transitions, places and tokens respectively in the Petri net. In Petri nets,
places and arcs have a similar function to slots. The arcs link a place to a
transition and indicate the direction of �ow of the tokens.

4.2. Mathematical Formulation of the Integration Problem

The formal representation of the simulation model is expressed by Equa-
tion 6, where P represents the set of places (Equation 7),T represents the
set of transitions (Equation 8), I represents the mapping of the input arcs
and O that of the output arcs (Equation 9 and Equation 10 respectively),
A r is the set of arcs (Equation 11,K is the capacity associated with each
place (Equation 12),W is the weighting function (Equation 13) andM o is
the initial marking function (Equation 14). The tasks are represented by
the following variables: A1 (assembler),Z1 (correlator), M 1 (merge), R1,
R2 (replicator), T1, T2, T3, T4 (translation), F1 (�lter) and E1 (content en-
richer). The heterogeneous applications are represented by the variablesSm,
V m, Sn, Rs, Hm and Pr.

If RdP is a Petri net, then:

RdP = f P; T; W; I; A r ; O; Mo; K g (6)

P = f S0; S1; S2; S3; S4; S5; S6; S7; S8; S9; S10;

S11; S12; S13; S14; S15; S16; S17; S18; S19g
(7)

T = f P0; F1; R1; T1; P1; R2; T2; P2; Z1; E1; T3;

P3; P4; P5; P6; M1; A1; T4; P7g
(8)

I = f (Sm; P0); (S0; F1); (S1; R1); (S2; T1); (S3; P1);

(S4; R2); (S5; T2); (S6; P2); (S7; Z1); (S8; Z1);

(S9; E1); (S10; E1); (S11; T3); (S12; P3); (S3; M1);

(S14; M1); (S15; M1); (S16; M1); (V m; P6);

(S17; A1); (S18; T4); (S19; P7)g

(9)

15

O = f (P0; S0); (F1; S1); (R1; S2); (R1; S4); (T1; S3);

(P1; Sm); (R2; S5); (R2; S8); (T2; S6); (P2; S7);

(Z1; S9); (Z1; S10); (E1; S11); (T3; S12); (P3; S13);

(P4; S14); (P5; S15); (P6; S16); (M 1; S17); (P5; P r)

(A1; S18); (P1; Sn); (P4; Hm)(T4; S9); (P7; Rs)g

(10)

A r � (P � T) [(T � P) (11)

K : P ! N [f1g (12)

W : A r ! N+ (13)

M o : P ! N

such as:

8p 2: M o(p) � K (p)

(14)

The values of the transition �ring rates are described according to Equa-
tion 15, considering the order of the setT. The term "�ring rates" refers to
�ring percentages, but these are represented and implemented in simulators
in decimal form. The �lter task must eliminate repeated messages, so its
�ring rate is 95% ("0.05" in Equation 15). This means that 5% of messages
will not go forward in the model (this rate is estimated). The rest of the tasks
have no restrictions, i.e., all tokens have the same chance of being executed
("1" in Equation 15). The �lter task is needed to eliminate the errors in
messages.

Td = f 1; 0:05; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1g (15)

4.3. Simulation Model Using Timed and Coloured Petri Nets

The transition T0 was modelled as the portP0, which is the beginning of
the work�ow through the SM media application (database of media). The
transitions P1 and P7 represent the output ports for the social networks
and reporting system applications respectively. The transitionsP4, P5 and
P6 represent the input ports for the hardware monitor, printer and video
monitor applications, and the transitions P2 and P3 are request ports for

16

the remote access and advertising station applications. The modi�er, router
and transformer task equivalences are represented by Figures 7, 8 and 9
respectively.

We translated the tasks in the Guaraná technology into timed and coloured
Petri nets, while maintaining all their functionality. Figure 10 represents the
simulation model developed in timed and coloured Petri nets. The input port
P0 (Figure 11) has the function of inserting messages into the solution to be
processed. Its representation in coloured and timed Petri nets is the transi-
tion P0, which forwards the token to the placeS0. The semantic expression
t@ +tp(t) veri�es how long the message (token) requires for processing. The
output port (Figure 12 sends messages to the integrated applications. Its
equivalent graph is a transition connected to a place in which the token is
stored, and it indicates the end of the process.

Figure 6: Equivalence between Guaraná technology and Petri net components

Figure 7: Modi�er tasks

17

Figure 8: Router tasks

Figure 9: Transformer tasks

Figure 10: Proposed simulation model using timed and coloured Petri nets

18

Figure 11: Entry port using a: Guaraná technology andb: timed and coloured Petri nets

Figure 12: Exit port using a: Guaraná technology andb: timed and coloured Petri nets

The solicitor port requests information from an application. Its equivalent
in timed and coloured Petri nets is shown in Figure 13, in which the transition
P2 is analogous to the portP2, just as the placesS6 and S7 are analogous to
the slotsS6 and S7. Remote access is the application in which the transition
will execute the request through thet variable.

Figure 13: Solicitor and responder ports usinga) Guaraná technology andb: timed and
coloured Petri nets

The semantics of the �lter task does not allow incomplete messages to
enter the system. In timed and coloured Petri nets, this task is represented by
the �lter transition that contains the code (if �lter (f) then 1't else empty))
@tp (t), which allows representation of the function of discarding tokens, as
described in Figure 14.

The translator task adapts the message to the application format. As the
message is analogous to the token, this task is represented by an input place,
a translator transition and an output place, expressing the input, processing
and output of the message using the variablet, as shown in Figure 15.

The correlator task is a very important task within the message �ow,
because it can locate correlated messages that can be processed together. In
Figure 16, this task is represented in the correlator transition, by placesC1

19

and C2 and by transition C2. The placesC1 and C2 and the transition C2

represent a delay in the token, which arrives in the correlator transition and
waits until it �nds its corresponding token. This correspondence is made
through the time of each token: when this time is equal, the token is sent to
the placesS9 and S10, in order to maintain the functionality of this task.

Figure 14: a: Filter task in Guaraná technology and b: �lter task in timed and coloured
Petri nets

Figure 17 shows the model of the replicator task. Its function is to make
copies of the original message without changing its content and to forward
them to the next step of the solution. This model is represented by an
input place, a replicator transition and two output places. The merger task
receives several messages from multiple slots and directs them to a single
slot, as shown in Figure 18. This task takes messages from theS13; S14; S15

and S16 slots and sends them to the merger transition, which groups them
all in the slot S17. The di�erent messages are represented by the variablesa,
b and c.

The context content enricher task receives correlated messages and com-
bines them into a single message. For timed and coloured Petri nets, the
graph that expresses this task is shown in Figure 19. This is the transition
named context content enrich, which only �res when there is at least one
token in each of the placesS9 and S10. Figure 20 shows the assembler task,
whose function is to construct a new message from two or more messages.

Figure 15: a: Translator task in Guaraná technology and b: translator task in timed and
coloured Petri nets

20

Figure 16: a: Correlator task in Guaraná technology andb: correlator task in timed and
coloured Petri nets

Figure 17: a: Replicator task in Guaraná technology andb: replicator task in timed and
coloured Petri nets

Figure 18: a: Merger task in Guaraná technology andb: merger task in timed and
coloured Petri nets

Figure 19: a: Context content enricher task in Guaraná technology andb: context content
enricher task in timed and coloured Petri nets

21

Figure 20: a: Assembler task in Guaraná technology andb: assembler task in timed and
coloured Petri nets

5. Experiments

In order to understand the behaviour of the integration solution, we ob-
served some variables during the experiment in di�erent operating scenarios.
We analysed the time and the maximum number of messages accumulated
in the slots. We assumed that the task processing time was �xed and the
slots were not FIFO (�rst in, �rst out).

For this purpose, three experiments were de�ned, with 1,000, 5,000 and
10,000 messages, which are equivalent to tokens in the simulation model using
Petri nets. For each experiment, three scenarios were created, as shown in
Table 1. For each scenario con�guration we randomly distributed the number
of tokens according to the three priority types (1, 2 and 3). The priority type
is represented in the table as the variable time. Each scenario was simulated
25 times, to exclude any discrepancies in the data (Grinstead and Snell,
2012). All experiments used priorities 1, 2 and 3, which are equivalent to
colours in Petri nets.

Con�guration 1
Total Token Time

1,000
300 1
300 2
400 3

5,000
1,000 1
2,000 2
2,000 3

10,000
3,000 1
3,000 2
4,000 3

Con�guration 2
Total Token Time

1,000
500 1
250 2
250 3

5,000
3,000 1
1,000 2
1,000 3

10,000
3,000 1
2,500 2
2,500 3

Con�guration 3
Total Token Time

1,000
200 1
600 2
200 3

5,000
1,500 1
2,000 2
1,500 3

10,000
2,000 1
6,000 2
2,000 3

Table 1: Con�gurations of simulation scenarios

22

The simulation model was designed using CPN Tools for Petri nets. This
simulation tool presents the average time of permanence of the messages in
each place and the maximum size of messages accumulated in the places. The
places represent the slots in the conceptual model of the integration solution.

For this model, a set time was created for high, medium and low colours
(priorities). These colours indicate the priority of each message, regardless
of its size. With the creation of the set "time", the variablet was inserted,
which is an element of this set. Associating a time for a colour means adding
a time value to the colour.

Each colour is processed with a di�erent time. A high-priority colour is
processed in a one-by-one time unit, the medium priority is processed two
by two, and the low priority is processed by every three time units. For this
purpose, the functionstp2(x), tpx , f 2(r) and f 1(r) were created.

The tokens were randomly shot into the model using a �ring control
system. This means that, every one, two or three units of time, the control
inserts a token into the entry port of the model randomly based on the value
of its priority. The time increment represents the interval of token entries in
the system.

For the development of the �lter task we created a setF , where F = {int
with 1..20}, consisting of integers between 1 and 20. After that, the Boolean
�lter function fun �lter (x) = (x <= 5%) was created. This means that 95%
of the messages will follow the �ow, and 5% will be withdrawn.

Figure 16 shows the correlator created in Petri nets. The correlator tran-
sition is composed of placesC1 and C2 and transition C2. This task waits
for the arrival of all correlated tokens, to continue the �ow.

In order to generate the inputs of the video monitor, hardware monitor
and printer applications, a speci�c control for the input port has also been
developed. We created a setincrement and the variablesa, b and c, with
these tokens, which were randomly inserted between high, medium, and low
priority colours.

5.1. Discussion
After the con�guration of the simulation model in CPN Tools, the ex-

periments were performed. Initially, we performed simulations with 1,000
messages, presenting the results of the variable "average time of permanence
of the messages in the slots", considering the three scenarios. Di�erent pro-
cessing times were inserted in the messages, according to their priorities, as
shown in Figure 21.

23

Figure 21: Average time of stay of messages in slots (1,000 tokens)

In both scenarios, we realized that the message takes longer to process in
the S7 and S8 slots, because the request portP2 is asynchronous and it needs
to wait to be correlated. Thus, the correlator task causes a delay whenever
it needs to wait for messages that have the same identity to correlate.

Figure 22: Average time of stay of messages in slots (5,000 tokens)

We realized that this situation is repeated in the experiments with 5,000
and 10,000 messages, as shown in Figures 22 and 23 for the three scenarios.

24

