
A DOMAIN-SPECIFIC LANGUAGE TO DESIGN ENTERPRISE
APPLICATION INTEGRATION SOLUTIONS

RAFAEL Z. FRANTZ ∗

Department of Technology, Unijuí University.

Rua do Comércio, 3000. Ijuí 98700-000, RS. Brazil.

ANTONIA M. REINA QUINTERO †

ETSI Informática, University of Seville.

Avda. Reina Mercedes, s/n. Sevilla 41012. Spain.

RAFAEL CORCHUELO ‡

ETSI Informática, University of Seville.

Avda. Reina Mercedes, s/n. Sevilla 41012. Spain.

Enterprise Application Integration (EAI) solutions cope with two kinds of problems
within software ecosystems, namely: keeping a number of application’s data in synchrony
or creating new functionality on top of them. ESBs provide the technology required
to implement a variety of EAI solutions at sensible costs, but they are still far from
negligible. It is not surprising then that many authors are working on proposals to endow
them with domain-specific tools to help software engineers reduce integration costs. In
this article, we introduce a proposal called Guaraná. Its key features are as follows: it
provides explicit support to devise EAI solutions using enterprise integration patterns
by means of a graphical model; its DSL enables software engineers to have not only
the view of a process, but also a view of the whole set of processes of which an EAI
solution is composed; both processes and tasks can have multiple inputs and multiple
outputs; and, finally, its runtime system provides a task-based execution model that is
usually more efficient than the process-based execution models in current use. We have
also implemented a graphical editor for our DSL and a set of scripts to transform our
models into Java code ready to be compiled and executed. To set up a solution from this
code a software engineer only needs to configure a number of adapters to communicate
with the applications being integrated.

Keywords: Domain-Specific Language; Enterprise Application Integration.

1. Introduction

Nowadays, most companies run many applications in their software ecosystems 20

to carry out their business activities. These applications are frequently software
packages purchased from third parties or legacy systems.
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Figure 1. A typical EAI solution.

A recurrent challenge is to make these applications interoperate with each other
to keep their data synchronised or to create new functionality 15. It is not uncommon
that the integration is performed by a user who copies data from an application
and pastes it into another. This is obviously not scalable, which motivates many
companies to invest in automated EAI solutions.

Unfortunately, applications are not usually easy to integrate due to many rea-
sons, e.g., the technologies on which they rely are different, their APIs are not
compatible from a semantic point of view, or they might not provide an API at
all, which is the case of many web applications. Additionally, EAI solutions must
take three important constraints into account 28, namely: first, the applications
being integrated should not be modified at all since a change might seriously af-
fect or even break down other business processes; second, they must keep running
independently from each other since they were designed originally without taking
integration concerns into account, i.e., no additional coupling must be introduced;
finally, integration must be performed on demand, as new business requirements
emerge and require new services to be created on top of the existing applications 2.

The previous problems usually turn into costs that are far from negligible. Ac-
cording to a recent report, the cost of integrating a new application into a software
ecosystem is from 5 to 20 times higher than developing it 31. These figures make
it clear that integrating business applications is quite a serious challenge that has
promoted a research field known as Enterprise Application Integration (EAI).

From an abstract point of view, a typical EAI solution is composed of several
wrapping processes that are responsible for interacting with the applications, and
several orchestration processes that are responsible for managing a flow of mes-
sages amongst them, cf. Figure §1. Processes use ports to communicate with other
processes or with applications by means of links; ports abstract away from the
actual communication mechanism, which may range from an RPC-based protocol
over HTTP to a document-based protocol implemented on a database management
system.

Enterprise Service Buses (ESB) 1, 5 provide the technology required to imple-
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ment the previous abstractions and cope with the problems and constraints that
were mentioned previously. Typical ESBs provide so-called adapters or connectors,
which are used to communicate with the applications being integrated, and an
orchestration language to define workflows of messages amongst processes and/or
applications. Java Business Integration (JBI) is an specification of a pluggable ar-
chitecture of services 2 to which several ESBs have adhered, e.g., Open ESB, Petals
ESB, ServiceMix or its commercial version, Fuse ESB 24. In JBI, adapters and con-
nectors are referred to as binding components, and the orchestration language used
is the Business Process Execution Language (BPEL) 25. There are many types of
binding components available nowadays, which allows solutions to connect to almost
any existing application. The catalogue includes binding components for databases,
files, SOAP/HTTP, RSS, SMTP, RMI/IIOP, JMS, HL7, LDAP, DCOM, and so on.
Our research focuses on Open ESB.

Although BPEL is quite a common orchestration language, it is too general. It
provides only general constructs like invoke, receive, reply, assign, throw, wait, or
compensate. It does not provide explicit support to the whole set of the well-known
Enterprise Integration Patterns (EIPs) 15 that are used extensively in the EAI Com-
munity. A few EIPs can be implemented directly as part of an orchestration process,
e.g., filters, routers or mergers; many others, however, need to be implemented sep-
arately as independent services that need to be invoked by an orchestration 33. This
results obviously in inefficiency, but also in difficulties to understand and maintain
the resulting solutions. This has motivated many software engineers to use Camel 16

or Spring Integration 8, since these tools help use many EIPs inside orchestration
processes; obviously, they do not rely on BPEL.

Model Driven Development (MDD) is an approach to software development in
which models are first-class citizens and the centre of the development process 13.
Domain-Specific Languages (DSLs) play an important role in MDD. Every DSL
is supported by an abstract syntax, aka, metamodel, that provides a number of
concepts that can be used to devise solutions to problems in a given domain; the
solutions are specified by means of a concrete syntax that allows to represent the
concepts in the metamodel textually or graphically; such solutions are usually re-
ferred to as models, and the key is that they must be accompanied by a number
of transformations to translate them into code written in a programming language.
Overall, using models allows software engineers to devise solutions to their problems
at a proper abstraction level and relieves them from the burden of dealing with the
rather low-level constructs provided by programming languages.

In this article, we present a proposal called Guaraná. Its main advantages with
regard to similar proposals are as follows: it provides explicit support to devise
EAI solutions using enterprise integration patterns by means of a graphical model;
its DSL is graphical, and it enables software engineers devise EAI solutions at a
high-level of abstraction; not only provides the DSL the view of a process, but also
a view of the whole set of processes of which EAI solutions are composed; both
processes and tasks can have multiple inputs and multiple outputs; and, finally, its
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runtime system provides a task-based execution model that is usually more efficient
than the process-based execution models in current use. We have also implemented
a graphical editor for our DSL a set of scripts to transform our models into Java
code ready to be compiled and executed. To set up a solution from this code a
software engineer only needs to configure a number of adapters to communicate with
the applications being integrated. Our results were implemented in the laboratory
using the following tools: Eclipse Helios as the workbench, the Eclipse Modelling
Framework (EMF) 29 to implement the metamodel, the OCLInECore plug-in 32 to
implement constraints in the metamodel, the EuGENia plug-in 18 and the Graphical
Modeling Framework (GMF) 9 to implement the editor, the Dresden OCL Toolkit 6

to validate the OCL specification, and MOFScript 22 to implement our model-to-
text transformations. This implementation helped us validate our proposal on a
non-trivial, real-world case study.

The rest of this article is structured as follows: Section §2 presents the related
work and compares other proposals to ours; Section §3 presents Guaraná in a nut-
shell so that readers can have an overall idea of the proposal; Section §4, presents
the abstract syntax of our DSL, and Section §5 complements it with a concrete
syntax; Section §6 reports on the runtime system that supports our proposal; Sec-
tion §7 summarises the transformations we have devised to translate Guaraná into
Java code; Section §8 summarises one of the task toolboxes we have devised for
Guaraná; Section §9 reports on a validation we have performed using a non-trivial,
real-world integration problem; finally, Section §10 reports on our main conclusions.

2. Related work

The catalogue of Enterprise Integration Patterns (EIPs) proposed by Hohpe and
Woolf 15 puts a foundation to the majority of proposals in the field of EAI, including
ours. This catalogue describes a number of recurring problems in EAI and a number
of proposals to solve them. The catalogue is informal, in the sense that it is not
intended to provide a tool by means of which a software engineer can devise, build
and deploy an EAI solution; contrarily, it can be viewed as a cookbook that a
software engineer can use to have a better understanding of common solutions to
common EAI problems, without committing to a particular technology or tool.

Scheibler et al. 27 presented an approach to enable the use of EIPs for EAI in
the context of the Software as a Service (SaaS) business model. They claimed that
this model relieves software engineers from setting up the environment where an
EAI solution is executed, and the same pattern implementation can be reused by
different solutions once they are provided as services. Although it is an interesting
approach for EAI, it differs from ours because it is narrowly focused on the SaaS
business model, which is not our focus.

Dirgahayu et al. 7 introduced a language and a set of patterns to design EAI
solutions in the context of web services. Their focus was on the design of orchestra-
tion processes and how to represent their interactions. They do not provide explicit
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Property Camel Spring BizTalk Guaraná

Context EAI/B2BI EAI/B2BI EAI/B2BI EAI/B2BI

Model API/Textual API/Textual Textual/Graphic API/Graphic

Kind of DSL Internal Internal External External

Routing slip Dynamic Static Static Static

Table 1. Scope properties.

support for EIPs, but model EAI solutions as compositions of processes that inter-
act amongst themselves and/or with the applications being integrated. The authors
mentioned that this is important to increase the level of abstraction and to enable
business analysts to participate actively in the design of EAI solutions.

Yuan 33 presented a tool that helps generate code for EIPs automatically. EIPs
are configured with their inputs and outputs and the tool maps them onto BPEL
processes. The author stresses that it is not usually possible to implement EIPs
relying solely on BPEL constructs; in such cases, a part of the EIP must be imple-
mented as independent web services. Unfortunately, this proposal does not provide
a DSL like ours, but only a tool to translate some EIPs.

Camel 16 and Spring Integration 8 provide fluent APIs 10 by means of which
it is possible to implement solutions using constructors that are very close to the
EIPs; however, they are totally bound to the Java technology. Therefore, they do
not provide the same level of abstraction as our DSL.

BizTalk 21 and IBM WebSphere 17 are related commercial tools. The former pro-
vides a BPEL-like DSL, whereas the latter relies fully on BPEL. Hohpe & Tham 14

and Scheibler & Leymann 26 devised a cookbook with many hints to implement
EIPs using these tools.

From the analysis of the literature and tools, we conclude that Camel, Spring In-
tegration, and BizTalk are the most closely related proposals. To compare Guaraná
to these tools, we have built a comparison framework with a set of objective prop-
erties that are classified into scope, modelling, and technical properties. We report
on the comparison framework in the following subsections.

2.1. Scope Properties

A scope property represents a feature whose absence can greatly hinder or even
invalidate a proposal for a particular purpose. Table §1 summarises the scope prop-
erties that we have identified, namely:

Context: We distinguish amongst the following contexts: Enterprise Application
Integration (EAI), in which the emphasis is on integrating applications to
keep their data in synchrony or to implement new functionalities on top of
them; Enterprise Information Integration (EII), whose emphasis is on pro-
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viding a live-view of the data handled by the integrated applications; and
Extract, Transform, and Load (ETL), whose goal is to provide a materi-
alised view on which we can apply data mining techniques. In the previous
cases, we implicitly assume that the integrated applications belong to the
same organisation. Recently, the integration of applications that belong to
different organisations is becoming more and more widespread; this context
is known as Business to Business Integration (B2BI), if the integration is
performed on the server side, or Mash-up, if the integration is performed
on the client side, usually on a web browser.

Model: There are several kinds of models in widespread use, namely: APIs, tex-
tual or graphic models. An API-based tool provides a library that software
engineers can use to create their EAI solutions. The resulting models are
thus written in general-purpose programming languages and rely on calls
to the API. Text-based and graphic-based tools provide a complete DSL to
design EAI solutions, i.e., they minimise the need to use a general-purpose
language.

Kind of DSL: There are two kinds of DSLs, namely: internal and external 10. An
internal DSL consists of a language which is defined using a general-purpose
language as host, and thus conforms to its syntax; many such internal DSLs
rely on so-called fluent APIs. External DSLs do not follow any general-
purpose language’s syntax, instead they are defined in a separate language.

Routing slip: This term is generally used to refer to the routes that a message
in an EAI solution follows. A route can be designed either statically or
computed dynamically. Proposals that support dynamic routing slips are
appropriate in settings in which the kind of applications to be integrated
are known beforehand, but the actual instances may change at run time.
For instance, think of a company that provides stock exchange forecasts and
has a number of applications that deliver similar information; if dynamic
routing slips are supported, the decision on which application should be
used and the exact route that the messages needs to follow may be delayed
until the EAI solution is running.

2.2. Modelling Properties

A modelling property is a feature that is not so critical as a scope property. Lacking
a modelling property does not make it impossible to use a tool, but may lead to a
design that is more complex and less intuitive than it should be; this obviously may
have an impact on maintenance costs. Table §2 summarises the modelling properties
we have identified, namely:

Views: The most common view is the process view. It allows to model processes
that act as centralised orchestrators, i.e., they help co-ordinate the activities
of other processes or applications 4. This is an imperative view, in the sense
that processes make it explicit what has to be done at each time. BPEL
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Property Camel Spring BizTalk Guaraná

Views Process Process Process Process/Solution

EIP support Yes Yes No Yes

Stateful tasks Yes Yes No Yes

Task cardinality 1 : N 1 : N 1 : N/N : 1 M : N

Process cardinality 1 : N 1 : N M : N M : N

Table 2. Modelling properties.

is the most prominent language used to design orchestration processes. On
the contrary, a solution view is a choreography view in which one can have
an overall picture of what is going on, but there is not a centralised process
that co-ordinates it all; contrarily, the behaviour of the solution can be seen
as the co-ordinated behaviour of the processes of which it is composed. This
is the reason why these views are usually referred to as declarative. WS-
Choreography 30 is the most prominent language to specify choreographies.

EIP support: The catalogue of EIPs by Hohpe and Woolf 15 is a de-facto stan-
dard. It is then desirable for a tool to provide explicit support for at least
the most common EIPs, since this saves software engineers from the burden
of implementing them from scratch.

Stateful tasks: A task may require to store its state throughout different execu-
tions. It is useful in situations in which a task performs an incremental
computation that involves a series of messages. Examples of such tasks in-
clude aggregating a sequence of messages or filtering out a message that is
semantically equivalent to a previous one.

Task cardinality: Most common tasks get one message as input and produce one
message as output, e.g., filters, translators, or mappers. There are others
that require multiple inbound messages and produce multiple outbound
messages. A typical such task is a message enricher, which gets a data mes-
sage and a context message as input and enriches the former with informa-
tion provided by the latter. In Table §2, task cardinalities are represented as
a : b, where a and b denote the maximum number of inbound and outbound
messages allowed, respectively; N and M denote ‘many’.

Process cardinality: Similarly to tasks, a process may require one or multiple
inbound messages to work and may produce one or multiple outbound
messages. In Table §2, process cardinalities use the same notation as task
cardinalities.

2.3. Technical Properties

Technical properties are features whose absence might have an impact on how easy
programming is, on the performance of a solution, or on how easy managing it is.
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Property Camel Spring BizTalk Guaraná

Execution model Process-based Process-based Process-based Task-based

Typed messages No No Yes No

Architecture for adapters Yes Yes Yes No

Table 3. Technical properties.

Table §3 summarises the technical features we have identified, namely:

Execution model: A typical approach is to use a database to store inbound mes-
sages until all of the messages needed to start a process arrive. Then, the
runtime system assigns one thread to execute its tasks. We refer to this
model as a process-based execution model. Note that if a task makes a
request to an external resource, the assigned thread remains blocked until
it receives the response. It is common that messages from EAI solutions
are handled with a low priority by the integrated applications, so as not to
disturb them; there are cases in which a message received by an application
requires the intervention of a person; in other cases, an application is actu-
ally an already-deployed EAI solution. Therefore, the response to a request
is not usually instantaneous, but may take a time that ranges from seconds
to minutes, hours or even days 12. The problem with the process-based ex-
ecution model is that the thread assigned to a process may remain blocked
and inactive for a long time, which amounts to wasting system resources.
The task-based execution model does not suffer from this problem. In this
model, threads are assigned to tasks, instead of processes; this allows to
use system resources more efficiently 11, 19. This lower level of granular-
ity allows tasks to be executed the sooner as there is a message available
to them, without having to wait for all of the messages needed to start a
process.

Typed messages: Messages must usually go through a series of tasks that route,
transform or modify them. It is then desirable that messages are typed, so
that the runtime system can catch messages that are routed incorrectly the
sooner as possible.

Architecture for adapters: It is desirable for a mechanism to design new
adapters to exist, since this makes it possible to integrate applications that
use new technologies as necessary. A shared repository of such adapters is
also a must. JBI provides a specification to design new adapters, i.e., bind-
ing components, and there are several repositories available on the Web.
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3. Guaraná in a nutshell

In this section, we first provide an overview of our proposal and then delve into the
main concepts supported by our DSL.

3.1. The overall picture

Guaraná refers to a project whose goal is to provide software engineers with tools
they can use to devise and implement EAI solutions at sensible costs. Figure §2
presents the overall picture.

Guaraná provides a metamodel that supports a number of concepts that software
engineers can use to devise their EAI solutions. Note that the metamodel is divided
into two parts, namely: a core, which supports a subset of concepts that are assumed
to be useful across a wide range of EAI solutions, and a series of task toolboxes,
which support subsets of tasks that are assumed to be specific to a given domain
of integration. We provide additional details on the metamodel in the following
subsection.

A software engineer can use the concepts defined in the metamodel to create
his or her own models, which are specific solutions to specific integration prob-
lems. Such models are graphic and allow to devise EAI solutions at a high level of
abstraction. Guaraná also provides a set of transformations by means of which a
software engineer can translate his or her models into Java code. This code relies on
a runtime library that provides base classes to implement the concepts supported
by the metamodel.

Note that the Java code plus the runtime library are not enough to implement
an EAI solution; it is also necessary a number of binding components. Whereas
the Java code must be compiled and deployed to the runtime system that supports
Guaraná, the binding must be configured and deployed to Open ESB independently.
The processes of which the solution is composed shall use these binding components
to interact with the applications being integrated or with other processes.
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3.2. The metamodel

Figure §3 presents a conceptual map in which we present the concepts with which
we deal to model EAI solutions. The root concept is solution, which represents a
collection of processes that co-operate to integrate a number of applications.

Processes serve two purposes, namely: there are processes that allow to wrap
applications and processes that allow to integrate them. The former are reusable
processes that endow an application with a message-oriented API that simplifies
interacting with it. Implementing such a wrapping process may range from using a
JDBC driver to interact with a database to implementing a scrapper that emulates
the behaviour of a person who interacts with a user interface 3. Orchestration pro-
cesses, on the contrary, are intended to orchestrate the interactions with a number
of wrapping processes and other orchestration processes.

Processes rely on tasks to perform their wrapping or their orchestration activ-
ities. Simply put, a process can be viewed as a message processor. A message is
an abstraction of a piece of information that is exchanged and transformed across
an EAI solution. The structure of messages depends completely on the solutions in
which they are involved.

Tasks are extremely dependent on the context, which makes it of little interest
to think of a general-purpose collection of tasks. Instead, we decided to provide dif-
ferent task toolboxes for different integration contexts, e.g., HL7-oriented tasks in
health contexts, HIPPA-oriented tasks in insurance contexts, RosettaNet-oriented
tasks in business-to-business contexts, or SWIFT-oriented tasks in financial con-
texts, to mention a few. Each toolbox results in a different version of the DSL and
a specific editor. The toolbox on which we report in this article is the most general
one, since it provides a collection of general-purpose tasks that provide the founda-
tions for many other special-purpose task toolboxes. In Figure §3, we illustrate the
main categories of tasks only; cf. Section §8 for a complete description.
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Note that our proposal does not preclude several tasks (including several in-
stances of the same task) from executing in parallel. This makes it impossible for
tasks to communicate directly to each other. Instead, they communicate indirectly
by means of slots. A slot acts as a buffer in-between tasks, i.e., they allow a task to
output messages that shall be processed asynchronously by another task.

Processes use ports to communicate with each other or with the applications
involved in an EAI solution. Simply put, the purpose of a port is to abstract away
from the details required to interact with a binding component, which, in turn,
abstracts away from the details required to interact with an application or with a
process. Binding components are used by means of a special kind of task, referred to
as communicator. The interaction with an application occurs at one or more layers,
i.e., data layer, data access layer, business logic layer, and user interface layer. Ports
can be either entry or exit ports, depending on whether they were designed to read
messages from a process or an application, or to write messages to them.

Note that ports usually need to transform the messages they transfer, which
implies that they are composed of tasks, as well. This means that they also need
slots to help their tasks work as much asynchronously as possible. Another subtle
implication is that there must be a slot to communicate a task in a port to a task
in the process to which the port belongs. We refer to such slots as interslots.

4. Abstract syntax

This section describes the part of our metamodel, aka abstract syntax, that is related
to the core DSL. Figure §4 provides an overall picture to guide the reader through
the following subsections.

4.1. EAI solutions

Solution is the root class of our metamodel, and it represents an EAI solution. A
Solution has a name property, which is used for documentation purposes only, and
consists of one or more Processes, one or more Applications, and one or more Links. A
Solution must fulfill the following invariants:
context Solution

inv: applications->isUnique(name)

inv: processes->isUnique(name)

inv: links->isUnique(name)

They state that the names of the applications, processes and links must be
unique. Note, however, that an application and a process may have the same name,
since there are not any chances to mistake them.

4.2. Processes

Class Process represents either a wrapping or an orchestration process. A Process is
composed of at least one EntryPort, at least one ExitPort, at least one Task, and at
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name : Name
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Figure 4. Main constructors of Guaraná.

least two Slots. A Process has to fulfill the following invariants:

context Process

inv: tasks->union(entryPorts.tasks->union(exitPorts.tasks))->isUnique(name)

inv: slots->isUnique(name)

inv: entryPorts->union(exitPorts)->isUnique(name)

inv: tasks->select(oclIsKindOf(Communicator))->size() = 0

inv: let interslots: Set(Slot) = slots->select(s: Slot |

not self.tasks->includes(s.source) and self.tasks->includes(s.target) or

self.tasks->includes(s.source) and not self.tasks->includes(s.target)) in

interslots->size() = self.entryPorts->size() + self.exitPorts->size()

These invariants state that tasks, slots and ports must have unique names, that
a process cannot contain any tasks of kind Communicator because these tasks are
specific to ports, and that there can be only a interslot per port.

To understand the first invariant, recall that both processes and ports can con-
tain tasks, and they all must have different names. Thus, for each process, we need
to calculate the set of tasks of which it is directly composed, union the set of tasks
in its entry and exit ports.

Note, however, that the invariant regarding slots is slightly different, since we
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do not need to calculate the slots of a process, union the slots of its entry and exit
ports; instead we can simply write slots->isUnique(name). The reason is that, at least
in theory, interslots belong to both a process and a slot; unfortunately, EMF does
not allow to model such situations. The only solution is that property slots holds all
of the slots involved in a process, including the slots in its entry and exit ports.

The last invariant also deserves an explanation. It states that there can be only
one slot connecting the tasks that are contained in a port to the tasks that are
contained in the corresponding process, i.e., there can be at most one interslot per
port. The most difficult part of the invariant is the identification of interslots: they
are calculated as the set of slots whose source task is not included in the set of tasks
of which a process is directly composed, but the target is, or vice-versa. Note that if
a source or a target task in a slot does not belong to a process itself, it must belong
to one of its ports, which implies that the original slot is actually an interslot.

4.3. Ports and links

Ports are composed of tasks and slots, that get connected by Links; these, in turn,
can be either ApplicationLinks, which connect Applications to Ports, or IntegrationLinks,
which connect EntryPorts to ExitPorts. Recall, however, that the inability to represent
interslots as shared objects prevented us from modelling the slots of which a port is
composed as a proper containment property. Instead, we need to calculate the slots
of which a port is composed by means of a derivation, namely:

context Port::slots: Set(Slot)

derive: tasks->collect(outputSlots)->union(tasks->collect(inputSlots))

Another derivation is property link; recall that every port must be connected to
a link so that messages can be transferred. The problem is that links should belong
to both a solution and some of its ports, which is not possible. This is the reason
why property link is also derived, namely:

context Port::link: Link derive:

let appLink: Link = ApplicationLink.allInstances()->any(port = self) in

let intLink: Link = IntegrationLink.allInstances()->any(source = self or target = self) in

if not appLink.oclIsUndefined() then appLink else intLink endif

Note that the derivation is defined in class Port. This is the reason why the
formula tries to find both an application and an integration link whose port is
the current context; depending on whether the port is actually connected to an
application or to a process, either appLink or intLink shall not be undefined.

Furthermore, ports must fulfill the following invariants:

context Port

inv: tasks->isUnique(name)

context EntryPort
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inv: tasks->one(oclIsKindOf(Communicator))

inv: tasks->one(oclIsKindOf(InCommunicator))

context ExitPort

inv: tasks->one(oclIsKindOf(Communicator))

inv: tasks->one(oclIsKindOf(OutCommunicator))

The previous invariants state that the tasks in a port must have unique names,
that an EntryPort must have one Communicator of kind InCommunicator, and that an
ExitPort must also have one Communicator of kind OutCommunicator. Whilst the former
kind of communicator is used to read messages from a binding component, the latter
is used to write messages to the binding component.

There is a final invariant: we do not allow for ‘looping’ processes, i.e., processes
in which a port is connected to another port in the same process. To avoid this kind
of anomaly, we introduced the following invariant in our metamodel:

context IntegrationLink:

inv: not (source.process = target.process)

4.4. Tasks and slots

Every task has a name, a set of inputs, a set of outputs, and an executionBody. Both
inputs and outputs are connected to slots at run time and hold messages; the execu-
tion body is a piece of Java code that implements the activities that must be carried
out. Inside the execution body, a software engineer may reference the messages held
in the inputs and outputs.

Every task must fulfill the following invariants:

context Task

inv: inputs->union(outputs)->isUnique(n: Name | n)

inv: inputSlots->collect(s: Slot | s.relatedInput) = inputs

inv: outputSlots->collect(s: Slot | s.relatedOutput) = outputs

These invariants state that both inputs and outputs must have unique names,
that no input or output can be disconnected from a slot, and that no input or
output is connected to more than one slot. Note that every slot has a property
called relatedInput and a property called relatedOutput; they indicate to which task
inputs and outputs they are connected, respectively. Thus, our invariants require
that the set of related inputs of the input slots must coincide with the set of inputs
of every task; similarly, the set of related outputs of the output slots must coincide
with the set of outputs of every task. This guarantees that every input or output is
connected to one and only one slot.

Every slot must fulfill the following invariants:

context Slot

inv: not (target = source)
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Datatype Base Constraint

Name String [a-zA-Z_]([a-zA-Z_0-9])*

HostName String [a-zA-Z0-9\-]{1,62}((\.[a-zA-Z0-9\-]{1,62})+\.[a-zA-Z]{2,6})?

JndiName String [a-zA-Z_@$]([a-zA-Z_@$0-9])*(/[a-zA-Z_@$0-9]+)*

PositiveInteger int minInclusive = 0 and maxInclusive = 65534

Table 4. Datatypes used in our metamodel.

inv: target.inputs->includes(relatedInput)

inv: source.outputs->includes(relatedOutput)

inv: let sourceProcess: Process = Process.allInstances()->any(p: Process |

p.tasks->union(p.entryPorts.tasks)->

union(p.exitPorts.tasks)->includes(self.source)) in

let targetProcess: Process = Process.allInstances()->any(p: Process |

p.tasks->union(p.entryPorts.tasks)->

union(p.exitPorts.tasks)->includes(self.target)) in

sourceProcess = targetProcess

These invariants state that every slot must connect different tasks, that they
must be properly connected to the inputs and outputs of the corresponding tasks,
and that they cannot connect tasks in different processes. Note that the association
between Process and Slot is not backwards navigable because of the problem to model
interslots; this implies that we need to calculate explicitly the process to which the
source and the target tasks of every slot belong. To calculate it, we need to iterate
over the whole set of process instances to find a process whose tasks, union the
tasks of its entry and exit ports contain the source or the target task of every slot.

4.5. Datatypes

In the metamodel, we refer to the following data types: Name, which represents a
subset of Java identifiers; HostName, which represents DNS host names; JndiName,
which represents a subset of JNDI names; and PositiveInteger, which represents 16-
bit positive integers. They allow us to constraint some properties of the metamodel
that need to be copied verbatim by our transformations. Table §4 summarises the
definitions of the previous datatypes.

5. Concrete syntax

Table §5 shows the concrete syntax we use to represent the classes provided by our
abstract syntax.

Since tasks are provided in toolboxes that are not part of the core language, the
symbol that we depict in Table §5 to represent them is generic. (Cf. Section §8 for a
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Icon Class Icon Class

X

Application IntegrationLink

Process ApplicationLink

EntryPort Slot

ExitPort Task

Table 5. Concrete Syntax.

complete description of our general-purpose task toolbox.) Note the small bulges on
the sides of the icon; they represent the inputs and the outputs. Slots are connected
to tasks using these bulges.

Note that the syntax regarding processes and ports is abbreviated, i.e., this is
the syntax used to hide the details; they both are containers, which implies that
they can be represented making it explicit their internal structure, as well.

6. Runtime system

In this section, we describe the semantics of the runtime system that supports
Guaraná. The runtime system adheres to the metamodel in Figure §5, where Runtime
represents the root class. Roughly speaking, a runtime system is composed of the
following objects:

• At least two BindingComponent objects that represent the binding compo-
nents with which a solution must interact. Note that in cases in which an
EAI solution is used to provide new functionality to an existing applica-
tion, two binding components are still required to interface with it: one
to retrieve information and another to write information. This justifies the
need for both the runtime system and its binding components to know each
other (note that the association between both classes is bidirectional).

• A ThreadPool, which is basically a container of threads the runtime system
manages to run tasks when they are ready to be executed. Note that the
Runtime itself runs on a thread that is not part of this pool.

• A ReadyQueue, in which the RunTime references the tasks that are ready
to be executed, but cannot run because there is not a free thread in the
ThreadPool. Note that every Runtime also has a container called tasks that is
intended to store references to all of the tasks for which it is responsible,
i.e., the tasks in ReadyQueue are a subset of the tasks in container tasks.

• A ChannelBoard, which is responsible for managing a set of Channels. In
the previous sections, we made an explicit difference between slots and
links. However, strictly speaking, both can be viewed as buffers that allow
to decouple tasks from each other. This allows us to model them both
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isFree() : EBoolean

Thread

getTypeName() : EString
doWork(e : Exchange) : void
isFinished() : EBoolean
isReady() : EBoolean
messagesWritten(c : Channel) : Message
messagesRead(c : Channel) : Message

outputs : EString[1..*]
inputs : EString[1..*]

Task

includes(t : Task) : EBoolean
peekAny() : Task
updated() : EBoolean
removed(t : Task) : EBoolean
added(t : Task) : EBoolean

ReadyQueue

contents : EString
identifier : EString

Message

written(m : Message) : EBoolean
read(m : Message) : EBoolean

Channel

includes(c : Channel) : EBoolean
updatedOnFinished(prestate : ChannelBoard, t : Task) : EBoolean
updatedOnStart(prestate : ChannelBoard, t : Task) : EBoolean

ChannelBoard

onFinishTask() : void
onStartTask() : void

Runtime

write(c : Channel, m : Message) : void
read(c : Channel, m : Message) : void

application : EString

BindingComponent

peekThread(t : Task) : Thread
peekFinished() : Task
released(h : Thread) : EBoolean
assigned(h : Thread, t : Task) : EBoolean
peekFree() : Thread

ThreadPool

assignedTo
0..1

threads
1..*

tasks

0..*

messages
0..*

channels
2..*

channelBoard
1

tasks
1..*

readyQueue
1

threadPool
1

bindingComponents

runtime

2..*

1

start() : void
getAllPorts() : Port[]
setTaskStateMonitor(r : Runtime) : void
addTask(t : Task) : void
addPort(p : Port) : void

Process

getTypeName() : EString
start() : void
setTaskStateMonitor(r : Runtime) : void
addTask(t : Task) : void
setCommunicator(c : Communicator) : void
getInterSlot() : Slot
bindSourceSlot(s : Slot) : void
bindTargetSlot(s : Slot) : void

Port

Slottasks
1..*

tasks
1..*

ports
2..*

source
1

target
1

EntryPort ExitPort

Exchange

inputs
0..*

outputs
0..*

Figure 5. Guaraná’s runtime system metamodel.

as abstract communications channels in our RunTime. A Channel stores a
collection of Messages; note that they are not queues since tasks are free to
select the messages in the order that best suits their semantics. We provide
a class called Slot to implement in-memory slots, and the task toolbox must
provide classes InCommunicator and OutCommunicator to read from or write
to a link it by means of the appropriate binding component, cf. Section §8.
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Idle

AssignThread

entry / onStartTask()

ReleaseThread

entry / onFinishTask()

[not readyQueue.peekAny().oclIsUndefined() and

 not threadPool.peekFree().oclIsUndefined()]

[not threadPool.peekFinished().oclIsUndefined()]

Figure 6. Guaraná’s runtime statechart.

An interesting point is that our runtime system does not deal with processes
or ports themselves, but with the tasks and slots of which they are composed.
Processes are organisational units that Guaraná supports to facilitate modularising
and deploying EAI solutions. However, it is not necessary to deal with them in
the runtime system except to make the previous organisation explicit in the code;
for such a purpose, we provide classes Process, Port, EntryPort, and ExitPort in our
runtime.

When a process is deployed to a runtime system, its tasks and slots, including
the tasks and slots in its ports, are added to the list of tasks managed by the
runtime system, and the slots are added to the channel board. In other words,
the same runtime system can deal with multiple tasks and channels involved in
different solutions. Note that this deviates significantly from the runtime systems
used in many ESBs since threads are allocated on a per-task policy, instead or a
per-process policy; this has an impact on the efficiency since system resources can
be used more efficiently, cf. Section §2.

In the following subsections, we present the semantics of our runtime system
and the binding components. Note that the remaining components are active, too,
but not autonomous, i.e., the activities of the thread pool, the ready queue or
the channel board are monitored and controlled by the previous components. Our
description of the semantics builds on the well-known Structural Operational Se-
mantics method 23, which is particularly well-suited to describe the semantics of
concurrent systems like ours.

6.1. Semantics of the runtime system

Figure §6 presents a state chart that provides a bird’s eye view of the semantics
of our runtime system. Roughly speaking, the thread in which the system runs
is idle until any of the following conditions hold: a task is available in the ready
queue and a thread is free in the thread pool, in which case operation onStartTask
is executed, or a task that is currently assigned to a thread has finished working,
in which case operation onFinishTask is executed. The rest of the time, the thread
assigned to the runtime system is idle, which maximises the resources available to
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execute productive tasks.
The previous operations constitute the core of the runtime system. The formal

specification of operation onStartTask is as follows:

context Runtime::onStartTask(): void

pre: not readyQueue.peekAny().oclIsUndefined()

pre: not threadPool.peekFree().oclIsUndefined()

post: let t: Task = readyQueue@pre.peekAny() in

let h: Thread = threadPool@pre.peekFree() in

readyQueue.removed(t) and

threadPool.assigned(h, t) and

channelBoard.updatedOnStart(channelBoard@pre, t)

The precondition of this operation makes it sure that there must exist a task
ready to be executed and a free thread to run it. In the postcondition, we simply
fetch that task and that thread and make it sure that the task was removed from
the ready queue, the thread was assigned to run the task, and the channel board is
updated to make it sure that the messages that the task requires are removed from
the corresponding channels. The reason why operation updatedOnStart requires the
pre-state of the channel board to be passed as a parameter shall become clear later.

The specification of operation onFinishTask is as follows:

context Runtime::onFinishTask(): void

pre: not threadPool.peekFinished().oclIsUndefined()

post: let t: Task = threadPool@pre.peekFinished() in

let h: Thread = threadPool@pre.peekThread(t) in

threadPool.released(h) and

channelBoard.updatedOnFinished(channelBoard@pre, t) and

readyQueue.updated()

In this case, the precondition requires that the thread pool must contain a thread
that is assigned to a task that has finished executing. In this case, the runtime system
must release the thread, the channel board must be updated so that the messages
produced by the task that has finished executing are written to the appropriate
channels, and, finally, the ready queue must be updated since new tasks might have
become ready to execute on account of the previous messages.

6.2. Semantics of the binding components

Binding components are autonomous, and they run inside an ESB, i.e., they run in
parallel and outside the control of our runtime system. Note that a complete speci-
fication of binding components is beyond the scope of this article, cf. Christudas’s 2

book for further details. In the model in Figure §6, we have abstracted away from
the many details involved in configuring the many types of existing binding com-
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ponents, and we just highlight the operations the runtime system requires, namely
read and write.

The read operation is intended to model situations in which an application or
a process reads a message from a channel. (Note that in these cases, the channel
must necessarily be a link.) The specification is as follows:

context BindingComponent::read(c: Channel, m: Message): void

pre: runtime.channelBoard.includes(c)

post: c.read(m)

The precondition is a sanity check that requires that the channel was included
in the set of channels managed by the runtime system with which the binding
component is associated. The postcondition makes it sure that messages are removed
from the channel after reading them.

The specification of operation write is similar, namely:

context BindingComponent::write(c: Channel, m: Message): void

pre: runtime.channelBoard.includes(c)

post: c.written(m) and runtime.readyQueue.updated()

The precondition is also a sanity check to make it sure that the channel to
which the message is being written is actually a channel managed by the runtime
system to which the binding component is associated. The postcondition makes it
sure that the message was actually written to the channel, i.e., it is stored in the
channel, and that the queue of tasks that are ready for execution is updated. Note
that, contrarily to reading from a channel, writing to a channel may be ready for
execution the task that reads from that channel.

6.3. Semantics of tasks

Note that tasks are not autonomous since they cannot decide when to start execut-
ing. Instead they provide an interface to the runtime system by means of which it
can schedule them for execution.

The interface a task must implement provides the following operations:
◃ isReady: This is a boolean operation by means of which a task can report

that it is ready to be executed, i.e., the channels from which it reads have
enough messages for the task to run.

◃ isFinished: This is a boolean operation that helps a task report that it is
finished, i.e., the thread to which it was assigned can be released and reused
to run other tasks.

◃ messagesRead: This operation takes a channel as input and must return the
set of messages a task can read from that channel. Note that messages are
not actually read until the task starts executing.

◃ messagesWritten: This operation takes a channel as input and returns the
set of messages a task can write to that channel. Note that calling this
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operation does not make sense unless the corresponding task has finished
executing, and that the messages are not actually written until the runtime
system releases the corresponding thread.

◃ doWork: This is the operation threads call on the tasks to which they are
assigned. It is assumed to implement a specific-purpose activity which de-
pends on the task toolbox under consideration. In this article, we report
on the most general toolbox, in which the semantics of this operation is
described by property executionBody in our metamodel, cf. Figure §4. Note
that this operation gets an Exchange as parameter. An exchange wraps the
inbound messages that the task must process, and the outbound messages
the task produces when the doWork operation finishes executing. Inbound
messages are loaded from the inputs of the task and the outbound messages
are written to the outputs.

6.4. Ancillary semantics

In this section, we describe the semantics of the remaining classes in the runtime
system. Note that most of the operations have already being used intuitively in the
previous subsections. Here, we describe them formally.

The thread pool. Class ThreadPool abstracts away from the intricacies of manag-
ing a pool of threads. The interface of this class provides the following operations:

◃ peekFree: This operation returns a thread in the pool that is not assigned to
a task. We assume that the implementation of this method is deterministic,
i.e., consecutive invocations return the same thread as long as the state of
the thread pool does not change. Its specification is as follows:

context ThreadPool::peekFree(): Thread

body: threads->any(isFree())

◃ assigned: This operation simply checks whether a given thread is assigned
to a given task. Its specification is as follows:

context ThreadPool::assigned(h: Thread, t: Task): EBoolean

body: h.assignedTo = t

◃ released: This operation complements the previous one, since it checks
whether a given thread was released. Its specification is as follows:

context ThreadPool::released(h: Thread): EBoolean

body: h.isFree()

◃ peekThread: This operation takes a task as input and returns the thread to
which it is assigned, if any. Its specification is as follows:

context ThreadPool::peekThread(t: Task): Thread

pre: threads->one(assignedTo = t)

post: result = threads->any(assignedTo = t)
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Class Thread abstracts away from the details of the Java threads we used to
implement our runtime system. The specification is simple, since we just need an
operation to determine whether a given thread is free or not. The specification of
this operation is as follows:
context Thread::isFree(): EBoolean

body: assignedTo.oclIsUndefined()

The ready queue. Class ReadyQueue models a queue of tasks, and it provides the
runtime system with the following operations:

◃ peekAny: This operation returns any of the tasks that are waiting in the
queue. We assume that the implementation of this method is deterministic,
i.e., consecutive invocations return the same task as long as the state of the
ready queue does not change. Its specification is as follows:
context ReadyQueue::peekAny(): Task

body: tasks->any(true)

◃ removed: This operation checks if a given task was removed from the queue.
Its specification is as follows:
context ReadyQueue::removed(t: Task): EBoolean

body: tasks->excludes(t)

◃ added: This operation complements the previous one, since it checks if a
given task was added to the queue. Its specification is as follows:
context ReadyQueue::added(t: Task): EBoolean

body: tasks->includes(t)

◃ updated: This operation checks if the queue was updated; recall that this
must happen after a task finishes executing and writes a number of messages
to the appropriate slots, or every time an application or a process writes a
message to a link. Its specification is as follows:
context ReadyQueue::updated(): EBoolean

body: Task.allInstances()->select(isReady())->forAll(t: Task |

self.tasks->includes(t))

The channel board. Objects of class ChannelBoard help manage the channels that
are associated with a given runtime system. It provides the following operations:

◃ includes: This is a simple operation to check if a channel is managed by a
given channel board. Its specification is as follows:
context ChannelBoard::includes(c: Channel): EBoolean

body: channels->includes(c)

◃ updatedOnStart: This operation helps the runtime system check that all of
the messages read by a given task are removed from the corresponding
channels when it starts executing. Its specification is as follows:
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context ChannelBoard::updatedOnStart(prestate: ChannelBoard, t: Task): EBoolean

body: prestate.channels->forAll(

c1: Channel | t.messagesRead(c1)->forAll(

m: Message | self.channels->one(c2: Channel |

c1 = c2 implies c2.read(m))))

Not only requires this operation a reference to the task that is going to
be executed, but also the previous state of the channel board. Recall that
this operation is used in the postcondition of operation onStartTask, which
implies that task t has been scheduled for execution and that the messages
it processes must have been read from the corresponding slots. Thus, the
specification requires that every message that was about to be read by t in
the prestate of operation onStartTask, must have been effectively read in the
poststate.

◃ updatedOnFinish: This operation complements the previous one since it
checks that all of the messages produced by a task are effectively written
to the corresponding channels. Its specification is as follows:

context ChannelBoard::updatedOnFinished(prestate: ChannelBoard, t: Task):
EBoolean

body: prestate.channels->forAll(

c1: Channel | t.messagesRead(c1)->forAll(

m: Message | self.channels->one(c2: Channel |

c1 = c2 implies c2.written(m))))

As it was the case before, this operation requires both a reference to
the task that has just been executed and a reference to the prestate of
the channel board. This is required to make it sure in the postcondition of
operation onFinishTask that all of the messages produced by this task are
effectively written to the appropriate channels.

7. Transformations

In this section, we describe the transformations we have devised to translate
Guaraná models into Java code. Unfortunately, the original transformations are
very verbose, which makes them not appropriate for an article. In the sequel, we
have resorted to a simplified notation in which the executable code is enclosed within
angle brackets; the remaining text is assumed to be copied verbatim.

7.1. Transforming processes

This transformation is executed on every process found in a model, and it produces
a Java class that includes slots, tasks, entry and exit ports declarations, plus a
constructor that initialises them all. The transformation is as follows:

1: package ⟨Process.name⟩;
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2: ⟨Import classes⟩
3: public class ⟨Process.name⟩ extends Process {

4: ⟨Slots declaration⟩
5: ⟨Tasks declaration⟩
6: ⟨EntryPorts declaration⟩
7: ⟨ExitPorts declaration⟩
8:

9: public ⟨Process.name⟩() {

10: ⟨Slots initialisation⟩
11: ⟨EntryPorts initialisation⟩
12: ⟨ExitPorts initialisation⟩
13: ⟨Tasks initialisation⟩
14: }

15: }

Line §1 declares a package with the name of the process being transformed; the
classes that correspond to the ports shall also be placed within this package to avoid
name clashes with other ports in other processes.

At line §2, the transformation constructs the import statements required to have
access to the classes the runtime system provides. Line §3 declares the class for the
process, which extends the Process class provided by the runtime system. Inside this
class, lines §4–§7 introduce a number of attributes that shall reference the slots,
tasks, and ports of which the process being transformed is composed. Lines §9–§14
provide a constructor that initialises the previous objects.

Note that none of the previous declarations or initialisations are difficult, since
they just need to iterate over the appropriate properties of a model and output Java
declarations or initialisations. The only part that requires a little more explanation
is the piece of transformation to initialise ports and tasks. Here we report on the
former; the latter is complex enough to deserve a new subsection.

What follows is the piece of transformation to initialise the entry ports:

1: ⟨Process.entryPorts->forEach(p: EntryPort) {⟩
2: ⟨p.name⟩ = new ⟨p.name⟩();
3: addPort(⟨p.name⟩);
4: ⟨}⟩

The loop at line line:script-entry-port-initialisation:1 iterates over the collection
of entry ports of a process. At line §2, it outputs a new statement to create a port;
recall that every port results in a class with the same name. The following line
binds the port and the process to which it belongs by means of the corresponding
interslot. The transformation of exit ports is equivalent.
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7.2. Transforming ports

This transformation is executed on each port independently, and it results in a Java
class that includes slot and task declarations, plus a constructor that initialises
them all. The transformation is as follows:

1: package ⟨Process.name⟩;
2: ⟨Import classes⟩
3: public class ⟨Port.name⟩ extends ⟨Port.getTypeName()⟩ {

4: ⟨Slots declaration⟩
5: ⟨Tasks declaration⟩
6:

7: public ⟨Port.name⟩() {

8: ⟨Slots initialisation⟩
9: ⟨Communicator initialisation⟩

10: ⟨Tasks initialisation⟩
11: }

12: }

Lines §1 and §2 introduce the package declaration and import the classes that
are required. In the class declaration at line §3, the operation getTypeName is used to
discover the parent class. Inside the class, lines §4 and §5 declare an attribute per slot
and task, respectively. Lines §8–§10 inside the constructor deal with the initialisation
of the previous declarations. Recall that every port must have a communicator so
that it can interact with the corresponding binding component. These tasks are
dealt by the runtime system like every other tasks; however, they must be initialised
in a way that deviates from the rest. We report on how to initialise tasks and
communicators in subsequent subsections.

7.3. Transforming tasks

We have grouped tasks into five groups. The following transformation illustrates
how to initialise tasks that have several inputs and several outputs. The rest of the
groups, except for communicators and a few other tasks, are special cases.

1: ⟨Task.name⟩ = new ⟨Task.getTypeName()⟩()
2: ("⟨Task.name⟩", ⟨Task.inputs.size()⟩, ⟨Task.outputs.size()⟩) {

3: @Override

4: public void doWork(Exchange e) {

5: ⟨Task.executionBody⟩
6: }

7: };

8: ⟨Bind input slots⟩
9: ⟨Bind output slots⟩



26 R.Z. Frantz, A.M. Reina, R. Corchuelo

10: addTask(⟨Task.name⟩);

Note that we create anonymous classes to initialise tasks. Each concrete task is
derived from a class that is provided by a toolbox, which is in turn discovered by
means of a call to operation getTypeName. As a consequence, we need override the
doWork operation only.

The piece of transformation at line §5 writes the execution body inside this
operation. Lines §8 and §9 deal with binding the input and output slots to the
corresponding inputs and outputs of this task. Finally, line §10 adds the task that
has been initialised in the previous lines to the enclosing port or process.

7.4. Transforming communicators

Transforming a communicator is different from transforming other tasks because
they have to interact with binding components. Next, we present the transformation
that deals with InCommunicators in entry ports:

1: ⟨Communicator.name⟩ = new InCommunicator(

2: "⟨Communicator.jndiName⟩",

3: "⟨Communicator.host⟩",

4: ⟨Communicator.portNumber⟩);
5: ⟨Bind output slot⟩
6: setCommunicator(⟨Communicator.name⟩);

InCommunicators are published as remote objects in an RMI registry so that they
can be invoked by binding components. This is the reason why the constructor gets
a JNDI name which identifies the communicator inside the registry, as well as the
host name and the port number where the RMI registry is running. Line §5 binds
the single slot connected with this communicator to its output. Finally, line §6 sets
the communicator to the enclosing entry port.

OutCommunicators are a little more cumbersome since they need to invoke binding
components to write messages. The script to transform them is as follows:

1: Properties props = new Properties();

2: props.setProperty("java.naming.factory.initial",

3: "com.sun.enterprise.naming.SerialInitContextFactory");

4: props.setProperty("java.naming.factory.url.pkgs",

5: "com.sun.enterprise.naming");

6: props.setProperty("java.naming.factory.state",

7: "com.sun.corba.ee.impl.presentation.rmi.JNDIStateFactoryImpl");

8: props.setProperty("org.omg.CORBA.ORBInitialHost",

9: "⟨Communicator.host⟩");

10: props.setProperty("org.omg.CORBA.ORBInitialPort",

11: "⟨Communicator.portNumber⟩");
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12:

13: ⟨Communicator.name⟩ = new OutCommunicator(

14: "⟨Communicator.name⟩",

15: new JbiExitResourceAdapter("⟨Communicator.jndiName⟩", props));

16: ⟨Bind input slot⟩
17: setCommunicator(⟨Communicator.name⟩);

Note that one can have access to a binding component as if it were a regular
EJB. This is why lines §1–§11 set up a Properties object with most of the properties
required to configure a connection with an EJB. Line §13 initialises the out commu-
nicator, which requires to create a JbiExitResourceAdapter; this object implements an
adapter to connect to a binding component given its JNDI name and the previous
properties. Later, the out communicator is bound to its input slot in line §16 and
it is registered with the enclosing exit port in line §17.

7.5. Starter transformation

The previous transformations deal with creating the classes that implement the
processes and the ports of which a solution is composed. These are the pieces that
need now put together by means of the following starter transformation:

1: package ⟨Solution.name⟩;
2: ⟨Import classes⟩
3: public class ⟨Solution.name⟩ {

4: public static void main(String[] args) {

5: Runtime r = new Runtime(⟨number of threads⟩);
6:

7: ⟨processes->forEach(p: Process) {⟩
8: Process ⟨p.name⟩ = new ⟨p.name⟩();
9: ⟨p.name⟩.setTaskStateMonitor(r);

10:

11: Collection<Port> ⟨p.name+"Ports"⟩ = ⟨p.name⟩.getAllPorts();

12: for (Port pt: ⟨p.name+"Ports"⟩) {

13: pt.setTaskStateMonitor(r);

14: }

15: ⟨}⟩
16: r.start();

17: }

18: }

Line §5 instantiates the runtime system with a given number of threads. The loop
in lines §7–§15 iterates over every process in the model, initialises an instance, and
binds it to the runtime system we have created previously by means of operation
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outputs : Name[0..*]
inputs : Name[0..*]
executionBody : EString
name : Name

Task

Router Modifier Transformer StreamDealer Mapper

jndiName : JndiName
portNumber : PositiveInteger
host : HostName

Communicator

compressorType : CompressorType

Compressor

password : Password
cipherType : CipherType

Cipher

charEncode : CharEncodeType
codecType : CodecType

Codec

Figure 7. Partial view of Guaraná’s general-purpose task toolbox.

setTaskStateMonitor; furthermore, the ports are retrieved and registered with the
runtime system as well. Registering a process or a port with a runtime system allows
it to have access to their tasks and slots and to initialise its internal data structures.
Finally, the runtime system is started at line §16. From this point on, the runtime
system behaves as an autonomous object according the semantics we described in
Section §6. The generated Java code from all model-to-text transformations is ready
to be compiled and executed on the runtime system. Software engineers only need
to configure a number of binding components, in Open ESB; they shall be used to
communicate with the applications being integrated.

8. General-purpose task toolbox

In the previous sections, we have dealt with tasks in an abstract manner. In this
section, we provide an insight into a general-purpose task toolbox that accompanies
Guaraná. Figure §7 sketches the abstract classes that help classify tasks according
to their intended semantics, namely: routers, which do not change the state of the
messages they process, but route them through a process; modifiers, which help add
or remove data from messages, but do not alter their schemata; transformers, which
help transform one or more messages into a new message with a different schema;
stream dealers, which allow to compress, cipher, or encode messages; mappers, which
change the format of the messages they process, e.g., from a stream of bytes into
an XML document; and communicators, which are used to interact with binding
components.

The remaining classes in the toolbox are concrete classes, cf. Tables §6 - §11.
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Icon Class Description

Correlator Analyses inbound messages and outputs sets of
correlated ones.

Merger Merges messages from different input slots into
one output slot.

Resequencer Reorders messages into sequences with a pre-
established order.

Filter Filters out unwanted messages.

IdempotentTransfer Removes duplicated messages.

Dispatcher Dispatches a message to exactly one slot.

Distributor Distributes messages to one or more slots.

Replicator Replicates a message to all of the output slots.

SemanticValidator Validates the semantics of a message.

Table 6. Router tasks.

Icon Class Description

Slimmer Removes contents from the body of a message.

ContentEnricher Adds contents to the body of a message.

HeaderEnricher Adds contents to the header of a message.

HeaderPromoter Promotes a part of the body of a message to its
header.

HeaderDemoter Demotes a part of the header of a message to its
body.

Table 7. Modifier tasks.

9. Validation

The validation was carried out by means of a series of case studies, some of which
were carried out in co-operation with local companies. Due to space constraints we
report on only one case study. It consists of a non-trivial, real-world integration
problem that builds on a project to enhance the functionality of the call centre sys-
tem at Unijuí University. The goal of this EAI solution is to automate the invoicing
of personal phone calls that employees make using the University’s phones.

This EAI solution involves three applications, namely: a Call Centre System
(CCS), a Payroll System (PS) and a Mail Server (MS). Each application runs on
a different platform and was designed without integration concerns in mind. The
CCS records every call every employee makes from any of the University’s phones;
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Icon Class Description

Translator Transforms the body of a message from one
schema into another.

Splitter Splits a message into several messages.

Aggregator Constructs a new message from several messages
produced previously by a Splitter.

Table 8. Transformer tasks.

Icon Class Description

Zipper Compresses a message.

Unzipper Decompresses a message.

Encrypter Encrypts a message.

Decrypter Decrypts a message.

Encoder Encodes a message.

Decoder Decodes a message.

Table 9. Stream-dealer tasks.

it can identify who the employee is because they have a personal number that
they have to enter before dialling the number they wish to call. This number is
used to correlate phone calls with the information in the PS. The MS runs the
University e-mail service, and is used for notification purposes. Note that due to
space limitations, the presentation omits a number of auxiliary systems, e.g., a
Human Resource System that provides personal information about the employees
or an SMS notification system Unijuí uses to text their employees, and, besides,
some implementation details, e.g., the internal structure of the ports or the schema
of the messages.

Figure §8 shows the EAI solution we have devised using Guaraná. It is composed
of three wrapping processes and one orchestration process. The integration flow
begins at entry port (1), which periodically reads the CCS log to find new phone

Icon Class Description

Stream2XMLMapper Maps a stream of bytes onto an XML message.

XML2StreamMapper Maps an XML message onto a stream of bytes.

Table 10. Mapper tasks.



A DSL to design EAI solutions 31

Icon Class Description

InCommunicator Reads messages from a binding component.

OutCommunicator Writes messages to a binding component.

Table 11. Communicator tasks.

Figure 8. The EAI solution designed with Guaraná.

calls. This port produces messages that contain information about several phone
calls, and transfers them to slot (2). Task (3) is a translator that transforms inbound
messages into outbound messages that conform to the canonical schema that was
defined for this EAI solution. Task (4) is a splitter that breaks inbound messages
into several messages, each of which is related to one call only. Exit port (5) writes
these messages to integration link (6), from which the orchestration process can
read them by means of entry port (7). The goal of this process is to filter out (8)
messages about toll-free calls, i.e., only messages that have a cost for the university
are allowed to remain in the workflow. Task (9) is a replicator that copies the
messages it receives to exit ports (10) and (11).

The messages that are sent to port (10) are in turn transferred to port (12),
which is a part of the wrapping process of application PS. First, this message goes
through filter (13) to ensure that only messages with a debit amount remain in the
workflow. Task (14) is an idempotent transfer that prevents duplicated messages to
be sent to the application. Task (15) is a translator that transforms the messages
it receives into new messages for application PS.

The messages that are sent to port (11) are in turn transferred to port (16),
which is a part of the wrapping process of application MS. Filter (17) ensures
that only messages that have an employee e-mail remain in the workflow. This
task prevents application MS from receiving messages that cannot be notified. The
notification summarises the most useful information of every call, e.g, destination
number, call duration, cost, destination city, or state; however, it does not contain
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Figure 9. Screenshot of the Eclipse Guaraná Plug-in.

any technical details since they are removed by task (18), which is a slimmer. Task
(19) is a translator that transforms the messages it receives into outbound messages
that conform to the schema used by application MS.

Figure §9 shows an screenshot of the Eclipse Guaraná plug-in we have developed
in the laboratory. The canvas shows part the EAI solution we have described above.

10. Conclusions

Companies are increasingly relying on ESBs to implement EAI solutions. They
provide a number of binding components software engineers can use to connect to
almost every existing application and a language to design orchestration processes.
The most common such language is BPEL; unfortunately, it is rather low-level, since
it does not support directly many common enterprise integration patterns. This has
motivated many authors to work on domain-specific tools to endow ESBs with the
appropriate abstraction level to model EAI solutions. There are many proposals in
the literature, of which Camel, Spring Integration and BizTalk are the most closely
related to ours.

In this article, we have introduced Guaraná, which is a proposal that aims
at increasing the level of abstraction of ESBs, in an attempt to make it easier for
software engineers to devise, implement, and deploy their EAI solutions. Guaraná is
classified as an external DSL. We have presented Guaraná’s abstract and concrete
syntaxes, we have described the runtime system that supports the proposal, the
transformations that translate Guaraná models into Java code ready to be compiled
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and executed, and a generic task toolbox; we have also reported on the results of
a project we have carried out to validate our proposal. We have also compared
our proposal to others in the literature, and our conclusion is that Guaraná’s key
features are the following: it provides explicit support to devise EAI solutions using
enterprise integration patterns by means of a graphical model; its DSL is graphical,
and it enables software engineers devise EAI solutions at a high-level of abstraction;
not only provides the DSL the view of a process, but also a view of the whole set
of processes of which EAI solutions are composed; both processes and tasks can
have multiple inputs and multiple outputs; and, finally, its runtime system provides
a task-based execution model that is usually more efficient than the process-based
execution models in current use. We have also implemented a graphical editor for
our DSL a set of scripts to transform our models into Java code ready to be compiled
and executed.
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