Revista Brasileira de Computacdo Aplicada, April, 2019

DOI: 10.5335/rbca.v11i1.8784
‘UPF EDITORA RBC A Vol. 1, No 1, pp. 4858

de Passo Fundo Homepage: seer.upf.br/index.php/rbca/index
ISSN 2176-6649

ORIGINAL PAPER

Towards optimisation of the number of threads in the
integration platform engines using simulation models
based on queueing theory

Igor G. Haugg!, Rafael Z. Frantz!, Fabricia Roos-Frantz!, Sandro
Sawickil e Benjamim Zucolotto?

!Universidade Regional do Noroeste do Estado do Rio Grande do Sul
*{ihaugg,rzfrantz,fabriciar,sawicki,benjamim.zucolotto} @unijui.edu.br

Received: 2018-10-23. Revised: 2019-02-27. Accepted: 2019-03-05.

Abstract

The use of applications is important to support the business processes of companies. However, most of these
applications are not designed to function collaboratively. An integration solution orchestrates a group of
applications, allowing data and functionality reuse. The performance of an integration solution depends
on the optimum configuration of the number of threads in the runtime engine provided by the integration
platforms. It is common that this configuration relies on the empirical knowledge of the software engineers,
and it has a direct impact on the performance of integration solutions. The optimum number of threads may
be found by means of simulation models. This article presents a methodology and a tool to assist with the
generation of simulation models based on queuing theory, in order to find the optimum number of threads
to execute an integration solution focusing on performance improvement. We introduce a case of study to
demonstrate and experiments to evaluate our proposal.

Key words: Simulation; Queueing Theory; Enterprise Application Integration; Integration Platforms; Business
Process Simulation.

Resumo

0 uso de aplicativos é importante para suportar os processos de negdcios das empresas. No entanto, a maioria
desses aplicativos ndo foi projetada para funcionar de maneira colaborativa. Uma solucdo de integracdo
orquestra um grupo de aplicativos, permitindo a reutiliza¢ao de dados e funcionalidades. O desempenho de
uma solucdo de integracdo depende da configuracgdo ideal do niimero de threads no motor de execugdo das
plataformas de integracdo. Atualmente essa configuracdo depende do conhecimento empirico dos engenheiros
de software e portanto tem um impacto direto no desempenho das solu¢des de integracdo. O nimero ideal de
threads pode ser encontrado por meio de modelos de simulacdo. Este artigo apresenta uma metodologia e uma
ferramenta para auxiliar na gera¢ao de modelos de simula¢dao baseados na teoria das filas a fim de encontrar
o ndmero ideal de threads para executar uma solugdo de integra¢do com foco na melhoria do desempenho.
Apresentamos um caso de estudo para demonstrar e experimentos para avaliar nossa proposta.

Palavras-Chave: Integracdo de aplicativos corporativos; Plataformas de integracdo; Simula¢do; Simulacao de
Processos de Negdcios; Teoria das filas.

48

http://dx.doi.org/10.5335/rbca.v11i1.8784
http://seer.upf.br/index.php/rbca/index

Haugg et al./ Revista Brasileira de Computagdo Aplicada (2019), v.11, n.1, pp.48-58 | 49

1 Introduction

The use of applications is important to support
the business processes of companies. Companies
usually have various applications in their software
ecosystem, which are developed in-house or
acquired from third parties. This way, the software
ecosystem becomes heterogeneous, with applications
that have possibly been developed using different
programming languages and data models, running
on different operating systems, and, generally,
have not been designed to work in a collaborative
form. It is common that the business processes
involve data and functionality present in distinct
applications, what requires collaboration amongst
these applications. Enterprise application integration
(EAI) is a research field that concerns with the
development of methodologies, techniques and tools
to make different applications, which were not
developed with the purpose of working together, to
collaborate (Hohpe and Woolf; 2012). An integration
solution orchestrates a group of applications, without
the perception that they are being integrated, and
without causing dependency in the applications
with the solution, allowing data and functionality
reuse (Ritter et al.; 2017).

There are several message-based integration
platforms available in the market for the development
of integration solutions. Amongst the platforms
that represent the state-of-the-art technology
are Camel (Ibsen and Anstey; 2017), Spring
Integration (Pandey; 2015), Mule (Dossot et al.;
2014), Petals (Surhone et al.; 2010), Apache
Flume (FLU; 2017), Apache Nifi (NIF; 2017) and
Guarana (Frantz et al.; 2016). These platforms
support the integration patterns documented by Hohpe
and Woolf (2012), which have consolidated as a
reference in the integration market when creating
integration platforms, and follow the architectural

style of pipes-and-filters (Hohpe and Woolf; 2012).

In an integration solution, pipes represent message
channels, and filters represent atomic tasks that
implement a concrete integration pattern to process
encapsulated data in messages. The adoption of this
architecture allows to desynchronising the tasks that
make up the integration solution.

Usually, these integration platforms provide a
domain-specific language, a development toolkit,
an environment for testing, a monitoring system,
and a runtime engine (Freire, Frantz, Roos-Frantz
and Sawicki; 2019). The domain-specific language is
focused on the elaboration of conceptual models with
an abstraction level close to the problem domain. The
development toolkit is a set of software tools that
allows the transformation of the conceptual model
into an executable code. The environment for testing
allows trying individual parts or all the integration
solution. The monitoring tool is used to follow,
at execution time, the operation of the integration
solution and to detect errors that may occur during
the processing of messages. The runtime engine
provides all the support necessary to execute these
integration solutions. Therefore, its performance is
directly related to the performance of the integration
solutions.

These message-based integration platforms have
been constructed using Java Technology (Schildt;

2017) and their runtime engine is organised around a
first-in-first-out (FIFO) queue and a set of threads.
The queue is used to store tasks that are ready to
be executed in an integration solution, and the
execution of these tasks depends on the availability
of threads in the runtime engine. Threads represent
computational resources within the instance of
the Java Virtual Machine (Lindholm et al.; 2014)
in which the runtime engine executes. They are
managed by a mechanism provided in Java called
Executor (Lindholm et al.; 2014), which allows to
create and allocate threads and pools of threads
within the runtime engine to execute an specific
integration solution. The configuration of these pools
is an important activity involved in the deployment
and execution of integration solutions and is
commonly performed by software engineers Freire,
Frantz and Roos-Frantz (2019). In a simplified way,
it means to define the size of the pool, i.e., the
number of threads that must be used by the runtime
engine to execute an integration solution. Currently,
this configuration relies on the empirical knowledge
of software engineers, which brings risks because
a low number of threads causes the accumulation
of tasks to be executed in the queue, leading to a
poor performance. An over dimensioned number of
threads increases computational costs with memory
and CPU time involved in the process of context
switching of these threads and leads to a negative
impact on the performance as well (Pusukuri et al.;
2011).

In this article, we introduce a methodology that
can be used to estimate the optimum number of
threads that must be configured at the runtime
engine to execute an integration solution seeking at
best performance. This methodology is supported by
a software tool named ModelGen, which allows for the
analysis of an integration solution taking as input its
conceptual model and generates a simulation model
based on Queuing Theory (Klcinrock; 1975). This
simulation model can be run on Simulink (Chaturvedi;
2017) to provide the optimum number of threads. We
demonstrate our methodology and ModelGen in action
through a case of study called Café (Hohpe; 2005).
Café has become a benchmark in the studies and
evaluation of integration platforms and it describes
how customer orders are processed in a coffee shop.
We have used Guarana as the target integration
platform, which means we have considered the
conceptual model of Café designed in this platform
and data from its runtime engine was used as input
to ModelGen. Then, the simulation model generated
and the number of threads found is tightly dependent
to this integration platform. We have simulated this
integration solution under different input rates for
inbound messages to analyse its performance with
variation on the number of threads and reported our
experiments in a dedicated section.

The rest of this article has its structure organised
as follows. In Section 2 we present our review on
the literature for related works. Then, in Section 3
we provide a brief background on Queuing Theory,
the theoretical model that abstracts the runtime
engine of the message-based integration platforms
considered in this article, and on the Guarana
integration platform. We then present in Section 4
our methodology and in Section 5 the supporting

50 |

Haugg et al./ Revista Brasileira de Computagdo Aplicada (2019), v.11, n.1, pp.48-58

tool names ModelGen to automate the generation of
simulation models, followed by the demonstration
of our proposal in a case of study in Section 6. Next,
in Section 7 we present the experiments we have
conducted; and, finally, in Section 8 we discuss our
main conclusions.

2 Related Work

Our literature review has identified some works
that look to provide an estimate on the optimum
number of threads in pools, aiming at achieving best
performance, without depending on the empirical
knowledge of the software engineers. Mufioz and
Ruspini (2014) propose a simulation method based
on queuing theory an fuzzy logic to estimate the
number of threads and to estimate the entrance in
the queue and the service time, with values provided
by software engineers. Our proposal differs from
theirs in the type of queuing theory used, and in the
approach to collect the entrance and service time,
this values are taken as an input in our tool. The
work by Ju et al. (2015) sought, through a prediction
model, to determine the optimum number of threads
to execute applications in heterogeneous systems
and with multiple processors. The prediction
model developed seeks to optimise the number
of threads considering the behaviour and the

characteristics of the architecture of the application.

With the optimisation, the authors sought to adjust
dynamically the process of mapping threads to many
cores. Our proposal differs from theirs in that they
sought to contribute for optimising the performance
of multiple processors systems, while the present
work seeks to optimise the runtime engine. Son and
Wysk (2001) present a structure and an architecture
for the automatic generation of simulation models,
intended to be used for real-time simulation of
factories control. This work differs from ours in
that the architecture used by these authors was
not based on a queue, and the models are built
aiming only at the factories. Dancheva et al. (2016)
describe the implementation of a tool for setting
dynamically the number of threads in the OpenMP
environment, based on the current state of the
runtime. Machine learning techniques are used to
find the number of threads and the decision of which
number of threads will be used is defined at the time
of execution. This work differs from ours in that it
uses the machine learning technique to predict the
optimum number of threads, while in our work it
is necessary to create different simulation models,
each simulation model with a specific number of
threads and then execute the simulation models in
the Simulink software. Jung et al. (2005) sought
to maximise the performance of simultaneous
multi-threaded execution (SMT) processors by using
adaptive execution techniques in order to find the
optimum number of threads automatically during
the execution. To find the optimum number of
threads, a build preprocessor generates a code that,
based on dynamic feedback, determines the optimum
number of threads at runtime. This work differs
from ours because it seeks to maximise performance
for only SMT processors, and uses dynamic execution
techniques with dynamic feedback to automate

the process of discovering the optimum number of
threads. However, in our proposal, we try to find
the optimum number of threads for the runtime
engine, without considering the type of processor
and to discover the number of threads it is necessary
to execute computational simulations. Lee et al.
(2010) present a dynamic system that automatically
adjusts the number of threads in an application,
in order to optimise the efficiency of the system.
Using the dynamic compilation system, the authors
developed a software called Thread Tailor, which
combines threads by communication patterns to
reduce synchronization overhead. Thread Tailor uses
off-line analysis to predict the type of topics that
exist at runtime and the communication patterns
between them, based on the architecture, the
dynamic state of the system, and the communication
and synchronization relationships between threads.
This work differs from ours in that the software
developed by the authors seeks to reduce the
overhead of thread synchronization, whereas in our
proposal, we seek to find the number of threads
using computational simulations.

3 Background

This section provides background information on key
topics to understand our proposal.

3.1 Queuing Theory

In system modelling studies, it is common to have
dimensioning problems in which the solution is
complex. Usually, the objective is to dimension
the correct quantity of equipment or resources,
and also to optimise the system being studied.
In computing systems, when there is a large
accumulation of processes waiting to run in the
queue, performance bottlenecks may arise. In
this case, the scaling of the system is required.
To assist with this process, the area of Queuing
Theory arises (Klcinrock; 1975).Queues are expensive
and when they become too large, performance
bottlenecks may arise. A common approach to
minimise performance problems generated by
queues is to increase computational resources to run
software systems. However, it brings costs for a
company and so queue theory is an important tool
to help understand and optimise the system most
often avoiding this cost. A queue system consists of
customers, arrival process, service process, number
of servers, queue and queue discipline. Customers
come from a population. The arrival process is
defined by the behaviour of the customers arrivals in
the system, which can be deterministic or stochastic.
Service process follows the same concept as arrival
process; it can be deterministic or stochastic. The
server number represents the servers available to
serve the customers that are waiting in queue. The
queue is where customers wait until some server is
available. The queue discipline defines the order in
which customers are selected from the queue to the
service (Prado; 2014).

Haugg et al./ Revista Brasileira de Computagdo Aplicada (2019), v.11, n.1, pp.48-58 | 51

3.2 Runtime Engine

The runtime engine is responsible for running
integration solutions. Its core element is the
Scheduler, which is responsible for coordinating all
activities present in an execution. The Scheduler
has a queue of tasks, a pool of threads, monitors
and its own logging system. The queue is used to
store tasks waiting to be processed and follows
the FIFO discipline. The pool of threads represent
a set of servers on the task queue. In this way,
whenever new tasks enter in the queue, all the
threads are notified, and then the competition to poll
a task from the queue starts. The Scheduler must
be provided with a configuration XML file, which
includes information about the number of threads to
be allocated to its pool, the type of monitors to be
active to capture statistical data and the periodicity
to capture this data, and the log file to report
warnings and exceptions that may occur during
the execution. The Scheduler starts by loading and
parsing the configuration file, creating the indicated
number of threads, activating required monitors and
initialising the logging system (Frantz et al.; 2011).

3.3 Guarana Integration Platform

Guarand is the result of a joint research effort
between academy and company to develop an
innovative platform for application integration.
This platform is currently in version 1.4 and was
developed with the Java programming language.
Guarana follows the style of message-based
integration and provides support for several
integration patterns (Hohpe and Woolf; 2012)
to implement a variety of atomic tasks. This
platform allows the modelling, deployment, and
monitoring of integration solutions using a graphical
interface. This environment supports the following
constructors: message, task, slot, port, and
resources. Message is the information transmitted
and transformed into the integration solution. Tasks
are units that perform a certain processing on
the messages flowing in the integration solution,
such as filtering, copying, transforming, dividing,
regrouping. Slots perform the connection between
tasks, or between tasks and ports. Ports abstract the
communication mechanism an integration solution
uses to interact with the resources being integrated.
Resources represent sources of information that are
typically in applications or databases (Frantz et al.;
2011).

Figure 1 shows the interface of the designer where
conceptual models for integration solutions can
be elaborated. The modelling occurs in Panel (A),
with tasks dragging from Panel (C). In Panel (A),
software engineers can connect tasks, slots, and
ports to form the integration solution. Panel (C)
provides several tasks organised in groups, such
as: router, modifier, and transformer. Panel (B)
provides general functions, such as save, copy, past,
print. The tasks and ports configuration takes place
in Panel (D), which has elements to perform the
configuration of the selected task. The graphic model
developed can be exported to an Extensible Markup
Language (XML) format. The resulting models

Figure 1: Guarana user interface to design
integration solutions.

obtained with Guarana are platform-independent,
so engineers do not need to have skills on a low-
level integration technology when designing their
solutions. Furthermore, this design can be re-used
to automatically generate executable EAI solutions
for different target technologies.

4 Methodology

This section introduces our methodology, which is
divided into four main steps: conceptual modelling,
model transformation, simulation, and analysis.
Figure 2 provides an overview of this methodology.

In the conceptual modelling step, the workflow of
the integration solution is developed by the software
engineer using the graphic concrete syntax of the
domain-specific language provided by the integration
platform. This graphic model is transformed into a
textual representation, based on the XML format.
This feature is provided by the integration platform,
which uses this format to internally store conceptual
models in its repository. XML is a standard machine-
readable format and is the base representation for
the integration solution.

Step 1 Step 2 Step 3 Step 4
Conceptual Mode\lmg Model Transformation Simulation Analysis
Guarana ModelGen | Simulink | | Excel
Export
[Complementary
Graphlc Model Information
Transform Generates Export Export
A4 A4
Textt isti
ex ual Model Textual Model Statistical Graphs
XML Import MDL Import Data Import

Figure 2: Overview of the proposed methodology.

In the model transformation step, the XML file
is imported by ModelGen at its graphical interface.
ModelGen, by means of model transformation,
produces the corresponding simulation model for the
target integration platform. The simulation model
is represented using the Model Definition Language
(MDL) format, which is the standard format used
by Simulink Matlab (Higham and Higham; 2005).
Simulink is a simulation tool integrated with Matlab
which allows modelling, simulating, and analysing
systems. Furthermore allows to model event-based
systems with the SimEvents library and is the
supporting software tool in the next step. The
transformation of the XML model into the simulation

52 |

Haugg et al./ Revista Brasileira de Computagdo Aplicada (2019), v.11, n.1, pp.48-58

model occurs through the capture of all the tasks
represented in the XML, so each task is transformed
into an entity in the MDL model. Software engineers
have also to provide complementary information to
configure ModelGen. This information are provide
through the graphical interface of the ModelGen
tool and regards the number of threads to be
experimented, the input rate for inbound messages
to be simulated and the total duration time for the
simulation under these rates.

The simulation step is performed using Simulink,
and the software engineer only needs to import and
run the simulation model generated in the previous
step. There is no need to perform more settings for
its operation. After executing the simulation model,
results containing statistical raw data that can be
exported and has to be analysed.

The last step concerns with the analysis of the
raw data produced during the simulation. In our
methodology we propose to perform this analysis
using a spreadsheet, like Microsoft Excel (Winston;
2016), since exported data by Simulink can be
imported into Excel and the graphs be straight
generated for the analysis of the simulation
behaviour.

5 Supporting Tool

In this section we introduce ModelGen, which is a
Java-based software tool to automate the generation
of simulation models taking as input the conceptual
models exported by integration platforms.

The overview of the internal process of the tool
responsible for generate the models can be visualised
in the Figure 3. The process starts by reading a textual
file in XML format, this file is loaded into the user
interface of ModelGen, where additional information
is also added. The textual model contains the tasks

and their interconnections in the integration solution.

Complementary information includes: simulation
time, input rate, number of threads and execution
time of each task. Simulation time is where users can
inform the execution time for the simulation model
generated. Input rate represents how many messages

the integration solution receives for each unit of time.

Number of threads determines the amount of threads
that the simulation model will use in the experiments,
the execution time of each task represents the total
time to individually execute a task of the integration
solution, and is calculated automatically by the tool.

Internally, on model generation, ModelGen
performs the transformation of each task received
in the textual model into the Model Definition
Language (MDL) format, that is, each task is
transformed into a block called entity. The model
transformed into the MDL format is the model
equivalent to the integration solution model. To
performs the simulation, additional data that the
user has informed are needed. Therefore, in this step
the tool adds the execution times of each task, the
input rate, the total simulation time and the number
of threads.

In addition, the MDL model of the runtime engine
is also added, this model is fixed independent of
the integration solution received, because it contains
elements that do not need to be modified. While

ModelGen

User Interface Model Generation Textual Model (MDL)

p— T f) Integration =
= Read XML ransformation ——; Solution MDL! —_

/ Runtime
Complementary__|_{ Engine

Information

Textual Model (XML) MDL Model

modeled
in MDL
format

[Fixed part of the model

Figure 3: Overview of ModelGen.

|£| ModelGen X

File Input Rate (msals)

T~)

Threads

Tasks Execution Time
Splitter7 0.531
Distributor40 0.003
Replicator9 0.553
Replicator25 0.553
Translator11 0.303
Correlator59 0.004
Translator31 0.303
Correlator15 0.004
Context-based Enri61 0.005
Context-based Enri18 0.005
Merger53 0.001
Aggregator55 0.082 v

Generate Simulation Model \o

Simulation Time (s)

ge

Figure 4: User interface of ModelGen.

the other parts are dependent on each integration
solution.

Finally, the generated model is formed by the MDL
model of the integration solution, in conjunction with
the MDL model of the execution engine.

The main user interface of ModelGen can be seen in
Figure 4. Component (A) has the function of opening
a file selector in which the user can search the XML
file containing the conceptual model of the target
integration solution. In (B), it is possible to select
the number of threads to be configured at the runtime
engine to execute the integration solution. In (C), the
input rate for inbound messages to the integration
solution has to be provided. This value corresponds
to messages per second. Field (D) allows for the
specification of the simulation time, i.e., the amount
of time to run the simulation.

After reading the XML, data is automatically
displayed in (E), which is composed of the columns:
tasks and execution time. Tasks represent the list
of tasks present in the integration solution. The
execution time represent the time that each task
takes to execute in the simulation. This values have
to be provided by software engineers and generally
can be obtained by means of the monitoring tools
provided by the integration platforms. ModelGen is
able to store these values for an integration solution,
and automatically fill this editable column in its
future executions. Button Generate Simulation
Model (F) generates the fully configured simulation
file in MDL format. This file has to be imported and
run in Simulink with no need of any further settings
by the software engineer.

Haugg et al./ Revista Brasileira de Computagdo Aplicada (2019), v.11, n.1, pp.48-58

Barista
Cold Drinks

T4 21

T5

T3

Orders
g1t T2

e BEs

P1

; H
B2 m - P e

v.’l P 1P3
H ; AV
! [

-
-

17 Waiter

5 S2 o
>
B ., . 28

P6

>

' Barista %
i Hot Drinks::

¥y

P4]

P ALY
[

Figure 5: Conceptual model for the Café integration solution.

6 Case of Study

This section presents a case of study based on
the Café (Hohpe; 2005) integration problem to
demonstrate our proposal. Café illustrates how
requests are processed in a coffee shop and has been
used in the area of enterprise application integration
to demonstrate the application and viability of
proposals.

6.1 Context of the Integration Solution

The process begins with a customer making a request
for the cashier, who then registers the order in the
system and adds it to a queue of orders. An order can
include hot and cold drinks which are prepared by
different baristas. When all drinks that correspond
to the same order have been prepared, they will
be delivered by the waiter. Each order has a tray
associated with it, which is used to deliver it to the
customer.

6.2 Conceptual Model

The integration solution must be able to receive
requests from the queue of requests, send requests
for the baristas to prepare the appropriate drinks
and notify the waiter when an order is completed.
Figure 5 presents a conceptual model for the
integration solution designed using the domain-
specific language provided by Guarana integration
platform.

The integration solution starts at input port P1,
which waits for new customer requests. Each order
results in a message with the drinks to be prepared
and the messages generated are added to slot S1. Task
T1 is used to separate each message in several other
messages so that it is possible to send the request to
the correct barista. This means that the part of the
message that contains the request for a hot drink is
sent to the barista for hot drinks, and in the same
way with cold drinks. After that, the messages are
sent to task T2, which sends the messages to the
correct destination. Task T3 replicates the messages

to Cold Drinks Barista application, so that one copy
can be sent to the barista and another copy to task
T5, which correlates the barista’s response to the
copy on hold. Task T6 enriches the copy on hold
with the information returned by the Cold Drinks
Barista application. Task T4 transforms the messages
into the format necessary for the Cold Drinks Barista
application to understand them. Messages that are
sent to the Hot Drinks Barista application behave the
same way. After the preparation of the drink, the
barista messages are gathered in a single slot S2 by
the T7 merger task. The drinks prepared are then
withdrawn from this slot and reassembled to a single
message again, so that the output port P6 writes the
resulting message to Waiter application.

6.3 Simulation Model

The simulation model automatically generated by
ModelGen for Café integration solution is presented
in Figure 6. This model is organised into a set of
entities, a queue, a server, data extraction blocks,
and graphics generators. For each integration
solution, the simulation model varies the entities
block, since they represent specific tasks in the
integration solution.

Every entity has an attribute that must be
configured with a value that determines the interval
between the generation of two instances of that
entity. In the simulation model, this value is
calculated from the input rate provided at the
user interface of ModelGen. In addition, two other
attributes have to be configured in the entity blocks,
they are: type and time of service. Attribute type is
used to distinguish between one entity and another,
and it also allows entities to be identified in other
blocks of the simulation system. The attribute time
represents the time that the servers will take to
execute the entity. Both attributes are configured
at ModelGen. Entities generated by entity blocks
are sent to the Entity Input Switch block. This
block has the function of sending the entities to
the Work Queue block, which represents the task
queue. The queue has an infinite size and it is

54 |

Haugg et al./ Revista Brasileira de Computagdo Aplicada (2019), v.11, n.1, pp.48-58

Entity
Splitter (T1)
Entity
Distributor (T2)

IEHEIII:::::::::

ReplicatorCD (T3)

Entity

ReplicatorHD (T8)

Entity
TranslatorCD (T4)
CorrelatorCD (T5)
Entity |
TranslatorHD (T9)

Entity
CorrelatorHD (T10)

Context-based EnriCD (T6)

.Eﬂﬁﬂ.l:::::::::

Context-based EnriHD (T11)

.Eﬂﬂ'lb:::::::::

Merge (T7)

IIEHHHIIF::::::::::::

Aggregator (T12)

y

[H!\!E

m
3
[=
=
<

|

Y !%4\‘\[&

L

Entity
Input Switch

FIFO

Work Queue

in

Save

Graphics

=

Average Size

,IE

Number of Entities

=0

Threads

Entity Terminator

Save out

in

Figure 6: Simulation model generated by ModelGen.

possible to generate several types of graphs, which RQ2: Does the optimum number of threads to execute

represent system statistics. This queue follows the
FIFO discipline.

Threads block represents the servers, i.e., the RQ3:

threads available for the execution of the integration
solution. The time that the entities remain in this
block is previously defined in the attribute time. After
entities are executed, this block sends the entities to
the output, which occurs in the Entity Terminator
block. The simulation model also includes two blocks
called Save in and Save out, which are used to monitor
the number of input and output messages in the
model.

7 Experiments

In this section we report on the experiments we
have conducted to evaluate our proposal. The
conceptual model for the Café integration solution
introduced in Figure 5 was implemented at Guarana
integration platform and run to collect execution
data from the runtime engine to this integration
solution. A textual model representation for the
conceptual model was exported from Guarana and
taken as input by ModelGen, which have generated
a corresponding simulation model to be performed
in Simulink Matlab. In the following sections we
describe our experiments and analyse the results
found with Café running at Guarana integration
platform and its corresponding simulation model
running at Simulink Matlab.

7.1 Research Question

We have selected three research questions we want
to answer with our experiments. They are:

RQ1: What is the optimum number of threads to be

configured in the runtime engine of Guarana
integration platform to run the Café solution
under a given message input rate?

an integration solution increases by increasing the
message input rate?

By increasing the number of threads, the
perf;)rmance of the runtime engine increases as
wells

7.2 Environment

The experiments were carried out on a machine
equipped with 16 processors Intel Xeon CPU E5-4610
V4, 1.8 GHz, 32GB of RAM, and operating system
Windows Server 2016 Datacenter 64-bits. Java SE
version 8.0 update 152 was installed and is required
to run Guarana integration platform version 1.4.
Simulink Matlab version R2016a was also installed
to run the simulation. To minimise interferences, no
other software was installed at the machine and it
was disconnected from the Internet.

7.3 Variables

In this section we present the dependent and
independent variables considered in our experiments,
which are the following:

- Dependent: number of messages processed. This
variable represents the number of messages
processed by the Café integration solution and
delivered by its exit port pé to the Waiter. This
variable was measured in the execution of the
actual integration solution at Guarana and in
the execution of the corresponding simulation
model at Simulink Matlab.

- Independent: running time, input rate, number of
threads. Running time represents the amount of
time each experiment with the Café integration
solution run at Guarana and the time considered
for running the simulation. We have considered
a fix amount of 120 seconds for this variable all
over our experiments. Input rate represents the
number of messages which have been injected to

Haugg et al./ Revista Brasileira de Computagdo Aplicada (2019), v.11, n.1, pp.48-58 | 55
Threads 5000 msg/s 6000 msg/s 7000 msg/s 8000 msg/s 9000 msg/s 10000 msg/s
Plat. Sim. Plat. Sim. Plat. Sim. Plat. Sim. Plat. Sim. Plat. Sim.
1 29738 18685 29786 20586 28901 19667 27650 17559 17320 21658 13646 20422
3 46450 79267 65822 89961 52084 58459 43023 71873 32746 72178 25847 75322
6 40225 72726 46200 81064 66614 82217 83618 75601 35479 79025 28308 81500
9 33598 67633 49322 67642 63253 67643 81525 67648 31768 60460 31767 73366
12 34669 69354 49642 60237 61618 73145 77828 57856 24544 56132 27182 54828
15 34984 64341 50897 62138 62451 73540 65722 62155 24500 58026 26695 57862
18 35439 61525 50149 74186 63238 70816 67154 64284 24499 59134 26013 61249
21 36165 59830 49184 69766 62484 65212 67159 64434 24499 55430 29482 55430
24 36119 59365 48680 70735 62246 64223 68592 61909 24449 56584 29187 55156
Table 1: Number of messages processed at the integration platform and the simulation.
the integration solution per second. The input LOx10" R I
rates considered were 5000, 6000, 7000, 8000, 4 - = 6000 msgs
9000, and 10000 messages per second (msg/s). 2.0x10° L AT A X~ oomes]
With rates lower than 5000 msg/s the integration /’ '\-‘\._ n Tl Toeneees
solution processes all injected messages using ~ SAe A oA A
6.0x10"] E

only one thread, so they were not considered.

Number of threads represent the number of
threads available to run the runtime engine, the
number of threads chosen for the experiments
were: 1, 3, 6, 9, 12, 15, 18, 21, and 24. The
combination of input rates and the number of
threads allowed us to measure the number of

messages processed in 54 different experiments.

7.4 Execution and Data Collection

In both, Guaranda and Simulink Matlab, each

experiment out of the 54 was repeated 25 times.

According to Grinstead and Snell (2012), when an
experiment is repeated a large number of times,
as the number of repetitions increases, the sample
mean of the variables approach the population
mean. Usually, the population mean is found with

approximately 20-30 repetitions (Sargent; 2010).

Outliers in these executions were removed using
Tukey method (Tukey; 1977). A first set of 225
executions were used to warm-up the Java Virtual
Machine, and their values for the dependent variable
discarded, since according to Pinto et al. (2014),
the first executions tend to be considerably slower
than the later ones since the Java Just-in-time
compiler collects data and decide on the possible
optimisations.

Data was collected at Guarana integration platform
using active monitors, which after the running time
establish for the experiment stored the number of
processed messages at log files. These log files were
imported into Excel, allowing their visualisation
and graph generation. The data collection for the
executions of the simulation model in Simulink
Matlab occurs in a similar way by means of building
blocks that represent monitors.

7.5 Results

The results regarding the number of messages
processed by Café running at Guarana integration
platform and its corresponding simulation model

running at Simulink Matlab are provided in Table 1.

Each value in this table is the average computed for
the 25 repetitions in each combination of input rate

4.0x10"

Messages processed

2.0x10*

0.0

Threads

Figure 7: Number of messages processed by the
integration platform.

and thread number, excluding possible outliers. The
Guarana integration platform results are flagged
as “Plat” and the simulation results are flagged
as “Sim”. Values highlighted in bold represent the
highest number of messages processes in each input
rate.

The average number of messages processed by
Café running at Guarana integration platform in the
54 experiments is presented in Figure 7. The x-axis
represents the number of threads, and the y-axis the
number of messages processed in each input rate.
Figure 8 presents the average number of messages
processed in the simulation. The x-axis represents
the number of threads, and the y-axis the number
of messages processed. Fits of the experimental data
shown by lines are also present (more detail below).

Analysing experimental data from Figures 7 and 8
were observed peaks of messages processed by
specific threads. With input rate of 5000 msg/s, the
highest number of messages processed with the
integration platform and simulation were obtained
using 3 threads, 46450 and 79267, respectively.
The same happens with input rate of 6000 msgy/s,
the highest number of messages processed is still
obtained with 3 threads, counting 65822 messages
for the integration platform and 89961 messages
in the simulation. For input rates of 7000, 8000,
and 9000 msg/s, the highest number of messages
processed was always reached using 6 threads.
With this number of thread and an input rate of
7000 msg/s, 66614 messages were processed by the
integration platform and 82217 messages in the

56 |

Haugg et al./ Revista Brasileira de Computagdo Aplicada (2019), v.11, n.1, pp.48-58

1.0x10° T T T T T T T T
8.0x10' F / pr T TG .

6.0x10" -

4.0x10"

i
f
H

f Exp. - Fit - Input Rate
H

f P —— 5000 msg/s

4 — — 6000 msg/s

7000 msg/s

A —-— 8000 msg/s

® —--- 9000 msg/s

H [Rp—

2.0x10"

0.0 I I I I I I I I
0 3 6 9 12 15 18 21 24

Figure 8: Number of messages processed in the
simulation.

simulation; with an input rate of 8000 msg/s, 83618
messages were processed by the integration platform
and 75601 in the simulation; and, with an input rate
of 9000 msg/s, 35479 messages were processed by
the integration platform and 79025 messages in the
simulation.

When experimenting the integration platform
and the simulation with an input rate of 10000
msg/s, the highest number of messages processed
by the integration platform was reached with

the use of 9 threads, counting 31767 messages.

However, in the simulation the highest number of
messages processed was reached using 6 threads,
counting 81500 messages. In this input rate,
the optimum number of threads required to run
the integration solution differs, probably due to
external interference on the environment in which
the integration platform runs. Although we have
repeated the execution, since this repetition is
automatically programmed and execution only takes
120 seconds, and execution of other software process

at the operating system may caused this interference.

In all other input rates experimented, the optimum
number of threads was always the same at the
integration platform execution and the simulation.

The lines in Figures 7 and 8 were obtained
fitting the experimental data using the sum of
two distributions. The first one was a log-normal
function used to identify the peak of processing of
messages. The second one was a logistic function
used to characterise the saturation of processing
of messages. The parameters of each function
were restricted at data range observing the trend
empirically. A scan of all set possibilities was
performed in order to obtain those resulted in the
smallest difference between experimental and fitted
data. The most efficient Threads obtained by the fit
were (Plat. and Sim. for input rate): 3 and 4 for 5000
msg/s, 3 and 4 for 6000 msg/s, 6 and 6 for 7000
msg/s, 7 and 5 for 8000 msg/s, 5 and 5 for 9000
msg/s, and 6 and 5 for 10000 msg/s.

7.6 Discussion

Our experiments with the integration platform
and the simulation model demonstrate there is
a partial relation between the number of threads

and the number of messages processed. In every
input rate considered, increasing the number of
threads has a positive impact on the number of
messages processed up to a certain number of
threads. Then, keeping increasing threads do not
result in the increasing of processed messages
as well. Adding more threads after that number
of threads in which the highest performance in
terms of message processing was found, leads to
a deterioration of the overall performance, i.e., a
reduction of the number of messages processed
in every input rate experimented. This behaviour
may be related with the time that the Java Virtual
Machine takes to perform the context switch and
manage the threads, such as saving local data and
the program pointer of the current thread execution,
and loading the local data and the program pointer of
the next thread to be executed (Pusukuri et al.; 2011).
Keeping increasing the number of threads shows this
degradation persists also up to a certain number of
threads and then our experiments demonstrate that
finally, from this point by increasing the number of
threads there is no more positive or negative impact
on the performance.

It was also observed that by increasing the input
rate, the number of messages processes tend to
decrease. This occurs because there will be more
occurrences of tasks from the beginning of the
integration flow in the FIFO queue to be executed
by the threads. This behaviour also leads to an
increment of the amount of time a message takes to
complete the integration flow.

Despite the number of messages processed differs
in the execution of Café at Guarana integration
platform and its corresponding simulation model
running at Simulink Matlab, it was possible to
validate the simulation model since in every input
rate the number of threads that give the best
performance is the same for the integration platform
and the simulation.

It is observed that the experimental results of
more efficient Thread did not match perfectly with
the adjusted results but indicated the behaviour.
We argue that a challenge is to get more processed
message data in function on the number of threads.
Thus the fits can express with more reality the
experimental data. Nevertheless, the fits are
presented as the beginning of the search for a
mathematical model able to foresee the behaviour of
the number of messages processed as a function of
the threads.

7.7 Threats to Validity

The integration platform we have considered in
our experiments requires Java Virtual Machine to
run, and this machine runs over Windows operating
system. Thus, any system process that runs at the
same time that the Java Virtual Machine process is
likely to impact on the running experiments. This
can be more critical if the concurrent system process
runs and requires computing resources, such as disk
access or demands high processing CPU. These will
have a direct impact on the number of messages
processed and consequently affects the optimum
number of threads. Simulation performed with
Simulink Matlab is less likely to be influenced by

Haugg et al./ Revista Brasileira de Computagdo Aplicada (2019), v.11, n.1, pp.48-58 | 57

external system processes, since the simulation
runs on a virtual environment and does not have
interference in the actual runtime environment such
as for the Java Virtual Machine. The simulation
model could also be improved by considering other
aspects, chiefly related with the actual hardware
in which the integration platforms runs, which

probably affect the number of messages processed.

The results obtained are also dependent on the
integration solution and the integration platform, so
it is not possible to generalise the results to other
solutions and to other platforms. The approach we
have taken in this article is static, which means
we analyse the integration solution for a given
integration platform not during its execution. Our
proposal works on data that must be extracted from
a previous execution of the integration solution. This
characteristics make the proposal tightly coupled
with the hardware in which the integration platform
is running and so the data extracted is valid only for
the optimisation of the number of threads in that
hardware and with that integration platform.

8 Conclusions

With the growth in the use of enterprise applications
in companies, there is an increasing need for
integration amongst these applications. This
integration can be performed through different
platforms. The integration platforms run integration
solutions in runtime engines. Runtime engines are
important for the performance of the solutions, and
therefore, finding the optimum number of threads for

the execution of these engines has great importance.

In this article we have presented a methodology and
a tool to assist with the generation of simulation
models based on queuing theory, in order to find the
optimum number of threads to execute an integration
solution focusing performance improvement. The
use of this simulation model can be used to empower
software engineers when configuring the runtime
engine of their integration platform to improve the
performance of an integration solution and replaces
the need of empirical knowledge, which may bring
risks. ModelGen also allows to know the limits of an
integration solution, for example, if the software
engineer has a limited hardware available our
approach will assist him to find out the maximum
supported input rate for a given integration solution
running on that hardware.

Experiments were conducted running Café
integration solution at Guarand integration platform
and its corresponding simulation model at Simulink
Matlab. The methodology and our tool support
o generate simulation models to represent the
behaviour of a runtime engine of an integration
platform was validated and the optimum number
of threads to run and get the best performance on
an integration solution was found the same in the
experiments with the integration platform and in
the simulation. Thus, from now on, ModelGen can
be used to forecast the optimum number of threads
for integration solutions at Guarand integration
platforms in a static way. Other experiments can be
conducted to analyse the applicability of ModelGen for
other integration platforms, such as Camel, Spring

Integration, Mule, Petals, Apache Flume, and Apache
Nifi. A dynamic approach has also to be investigated,
since it would make our tool hardware and platform
independent. Maybe this is the most interesting and
challenging step forward to improve ModelGen.

Acknowledgements

This work was partially supported by the Brazilian
Co-ordination Board for the Improvement of
University Personnel (CAPES) under grant number
88881.119518/2016-01, the Research Support
Foundation of the State of Rio Grande do Sul
(FAPERGS) under grant number 17/2551-0001206-2,
and the Brazilian National Council for Scientific and
Technological Development (CNPq).

References

Chaturvedi, D. (2017). Modeling and simulation of
systems using MATLAB and Simulink, CRC Press.

Dancheva, T., Gusev, M., Zdravevski, V. and Ristov, S.
(2016). An OpenMP runtime profiler/configuration
tool for dynamic optimization of the number
of threads, 39th International Convention on
Information and Communication Technology,
Electronics and Microelectronics (MIPRO), pp. 192-197.
http://dx.doi.org/10.1109/MIPRO.2016.7522136.

Dossot, D., D’Emic, J. and Romero, V. (2014). Mule in
action, Manning.

FLU (2017). Apache Flume, https://flume.apache.org.
Last accessed on 03/09/2018.

Frantz, R. Z., Corchuelo, R. and Roos-Frantz,
F. (2016). On the design of a maintainable
software development kit to implement integration

solutions, The Journal of Systems and Software
111(1): 89-104. http://dx.doi.org/10.1016/j.jss.
2015.08.044.

Frantz, R. Z., Quintero, A. M. R. and Corchuelo,
R. (2011). A domain-specific language to
design enterprise application integration
solutions, International Journal of Cooperative
Information Systems 20(02): 143-176. http:
//dx.doi.org/10.1142/50218843011002225.

Freire, D. L., Frantz, R. Z. and Roos-Frantz,
F. (2019). (in-press). Ranking enterprise
application integration platforms from a
performance perspective: An experience

report, Software: Practice and Experience pp. 1-
21. http://dx.doi.org/10.1002/spe.2679.

Freire, D. L., Frantz, R. Z., Roos-Frantz, F. and
Sawicki, S. (2019). Survey on the run-time systems
of enterprise application integration platforms
focusing on performance, Software: Practice and
Experience 49(3): 341-360. http://dx.doi.org/10.
1002/spe . 2670.

Grinstead, C. M. and Snell, J. L. (2012). Introduction
to probability, American Mathematical Soc.

Higham, D. and Higham, N. (2005). MATLAB guide,
Society for Industrial and Applied Mathematics -
SIAM.

http://dx.doi.org/10.1109/MIPRO.2016.7522136
https://flume.apache.org
http://dx.doi.org/10.1016/j.jss.2015.08.044
http://dx.doi.org/10.1016/j.jss.2015.08.044
http://dx.doi.org/10.1142/S0218843011002225
http://dx.doi.org/10.1142/S0218843011002225
http://dx.doi.org/10.1002/spe.2679
http://dx.doi.org/10.1002/spe.2670
http://dx.doi.org/10.1002/spe.2670

58 |

Haugg et al./ Revista Brasileira de Computagdo Aplicada (2019), v.11, n.1, pp.48-58

Hohpe, G. (2005). Your coffee shop doesn’t
use two-phase commit [asynchronous messaging
architecturel, IEEE software 22(2): 64-66. http:
//dx.doi.org/10.1109/MS.2005.52.

Hohpe, G. and Woolf, B. (2012). Enterprise integration
patterns: Designing, Building, and Deploying Messaging
Solutions, Addison-Wesley Professional.

Ibsen, C. and Anstey, J. (2017).
Manning Publications Co.

Camel in action,

Ju, T., Wu, W., Chen, H., Zhu, Z. and Dong, X. (2015).

Thread Count Prediction Model: Dynamically
adjusting threads for heterogeneous many-core
systems, IEEE 21st International Conference on Parallel
and Distributed Systems (ICPADS), pp. 456-464. http:
//dx.doi.org/10.1109/ICPADS.2015.64.

Jung, C., Lim, D., Lee, J. and Han, S. (2005). Adaptive
execution techniques for smt multiprocessor
architectures, Proceedings of the tenth ACM SIGPLAN
symposium on Principles and practice of parallel

programming, pp. 236-246. http://dx.doi.org/10.

1145/1065944.1065976.

Klcinrock, L. (1975). Queueing systems, vol. 1: theory,
New York: Wiley.

Lee, J., Wu, H., Ravichandran, M. and Clark, N.
(2010). Thread tailor: dynamically weaving threads
together for efficient, adaptive parallel applications,
ACM SIGARCH Computer Architecture News, pp. 270-
279. http://dx.doi.org/10.1145/1816038.1815996.

Lindholm, T., Yellin, F., Bracha, G. and Buckley, A.
(2014). The Java virtual machine specification, Pearson
Education.

Mufioz, E. and Ruspini, E. (2014). Simulation of
fuzzy queueing systems with a variable number
of servers, arrival rate, and service rate, IEEE
Transactions on Fuzzy Systems 22(4): 892-903. http:
//dx.doi.org/10.1109/TFUZZ.2013.2278407.

NIF (2017). Apache Foundation, https://nifi.apache.

org. Last accessed on 03/09/2018.

Pandey, C. (2015). Spring Integration Essentials, Packt
Publishing Ltd.

Pinto, G., Castor, F. and Liu, Y. D. (2014).
Understanding energy behaviors of thread
management constructs, ACM SIGPLAN Notices,

PP- 345-360. http://dx.doi.org/10.1145/2660193.

2660235.

Prado, D. (2014). Teoria das Filas e da Simulagdo,
Editora de Desenvolvimento Gerencial.

Pusukuri, K. K., Gupta, R. and Bhuyan, L. N.
(2011). Thread reinforcer: Dynamically determining
number of threads via os level monitoring, IEEE
International Symposium on Workload Characterization
(IISWC), pp. 116-125. http://dx.doi.org/10.1109/
IISWC.2011.6114208.

Ritter, D., May, N. and Rinderle-Ma, S.
(2017). Patterns for emerging application
integration scenarios: A survey, Information
Systems 67(Supplement C): 36-57. http:
//dx.doi.org/10.1016/j.1s.2017.03.003.

Sargent, R. (2010). A new statistical procedure
for validation of simulation and stochastic models,
L.C. Smith College of Engineering and Computer
Science.

Schildt, H. (2017). Java: a beginner’s guide, McGraw-
Hill.

Son, Y. J. and Wysk, R. (2001). Automatic simulation
model generation for simulation-based, real-time
shop floor control, Computers in Industry 45(3): 291-
308. http://dx.doi.org/10.1016/30166-3615(01)
00086-0.

Surhone, L., Timpledon, M. and Marseken, S.
(2010). Petals Enterprise Service Bus (Esb), Betascript
Publishing.

Tukey, J. W. (1977). Exploratory data analysis, Mass.
Reading.

Winston, W. (2016). Microsoft Excel data analysis and
business modeling, Microsoft press.

http://dx.doi.org/10.1109/MS.2005.52
http://dx.doi.org/10.1109/MS.2005.52
http://dx.doi.org/10.1109/ICPADS.2015.64
http://dx.doi.org/10.1109/ICPADS.2015.64
http://dx.doi.org/10.1145/1065944.1065976
http://dx.doi.org/10.1145/1065944.1065976
http://dx.doi.org/10.1145/1816038.1815996
http://dx.doi.org/10.1109/TFUZZ.2013.2278407
http://dx.doi.org/10.1109/TFUZZ.2013.2278407
https://nifi.apache.org
https://nifi.apache.org
http://dx.doi.org/10.1145/2660193.2660235
http://dx.doi.org/10.1145/2660193.2660235
http://dx.doi.org/10.1109/IISWC.2011.6114208
http://dx.doi.org/10.1109/IISWC.2011.6114208
http://dx.doi.org/10.1016/j.is.2017.03.003
http://dx.doi.org/10.1016/j.is.2017.03.003
http://dx.doi.org/10.1016/S0166-3615(01)00086-0
http://dx.doi.org/10.1016/S0166-3615(01)00086-0

	1 Introduction
	2 Related Work
	3 Background
	3.1 Queuing Theory
	3.2 Runtime Engine
	3.3 Guaraná Integration Platform

	4 Methodology
	5 Supporting Tool
	6 Case of Study
	6.1 Context of the Integration Solution
	6.2 Conceptual Model
	6.3 Simulation Model

	7 Experiments
	7.1 Research Question
	7.2 Environment
	7.3 Variables
	7.4 Execution and Data Collection
	7.5 Results
	7.6 Discussion
	7.7 Threats to Validity

	8 Conclusions

