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ABSTRACT. Companies seek technological alternatives that provide competitiveness for their business
processes. One of them is integration platforms, software tools that build integration solutions, which allow
the different applications that make up the software ecosystem to work synchronously and that new appli-
cations or functionality be incorporated with the least impact in the existing ones. The runtime system is
the component of the integration platform responsible for managing the computational resources that run
the integration solution. Among these resources are the processing units, called threads, or sets of those
threads, called thread pools. The performance of the runtime systems is directly related to the number of
threads available to run the integration solution, but scaling the number of threads that provide a shorter
response time is a challenge for software engineers. If this quantity is undersized, it may cause a delay in
the execution; if it is overestimated, it could cause a waste of computational resources. This article presents
a mathematical model, defined by differential equations, that establishes the optimum number of threads,
which maximizes the expected performance gain by minimizing the execution time of the integration solu-
tion. In addition, it presents the mathematical model application, which assists the analysis of the expected
gain in different architecture scenarios and quantity of threads.

Keywords: enterprise application integration; multithread programming; runtime system; mathematical
modelling; integration platforms.

1 INTRODUCTION

The set of applications that compose the software ecosystem of companies is usually heteroge-
neous, because such applications have been acquired over time, without the concern of communi-
cation between them [15]. In addition, technological advancement has led to the incorporation of
cloud computing software services, what has left software ecosystems even more heterogeneous.
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170 OPTIMIZATION OF THE SIZE OF THREAD POOL IN RUNTIME SYSTEMS

The business processes of the company need to provide fast and reliable answers, and for that,
their applications and services need to be prepared to work together. Enterprise Application In-
tegration (EAI) is the research field that provides methodologies, techniques and tools to support
the development of integration solutions, which allow the different applications of the ecosystem
to work synchronously and enable new applications to be incorporated, with the least impact on
the existing ones [17].

With the growth of multi-core architectures, the industry has started to focus on multithreaded
applications [41]. Thereby, several tools have been released to improve the performance of the
applications [22, 47, 23, 7]. Considering this scenario, some integration platforms that support
threads creation and management have been developed, such as Mule [10], Camel [20], Spring
Integration [13], Petals [42], WSO2 ESB [21] and Guaraná [14, 16].

Integration platforms are specialized software tools to design, implement, monitor and execute
integration solutions. An integration solution implements a workflow composed of different
atomic tasks that run through that flow [18]. Typically, these platforms provide a domain-specific
language, development toolkit, monitoring tools, and a runtime system. The specific-domain
language allows the creation of conceptual models for the integration solution. The development
toolkit is a set of tools that allows transforming the conceptual model into an executable code.
Monitoring tools are used to detect failures that may occur during the execution of an integration
solution. The runtime system provides the support needed to run the integration solution [19].

The tasks that make up an integration solution are executed by computational resources present
in the runtime system, in this article called execution threads. Threads are used in multithread
programming to permit simultaneous execution of tasks. Multithread programming architecture
follows two models: thread-per-request and threads pool [37]. The former generates a thread for
each execution request of a task, and it is destroyed at the end of the execution. In threads pool,
threads are created and maintained; the latter executes the task and, at the end of the execution,
it releases the thread to the pool.

In the thread pool model, it is possible to set parameters, such as: number of threads in the
pool, maximum number of threads allowed in a pool, maximum time interval that a thread will
be idle waiting for a new task, among others. Experimental studies suggest that thread pool
architectures can have an impact on performance [1, 37, 25] and, to keep computing resources
working properly, the supply of these resources must accompany variations in the workload
requested [8].

Experimental researches indicate that a thread pool model can significantly improve system per-
formance and also reduce response time [49, 34, 37]. These benefits make thread pool systems to
be adopted by a large number of popular applications. Despite the advantages, multithread pro-
gramming is more complex because it meets both quality attributes and performance parameters.
The configuration of the threads depends on the empirical knowledge of software engineers, who
must scale the number of threads in the pools in the runtime systems, in order to provide adequate
performance, achieving a shorter response time and a greater workload in order to fulfill the req-
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uisitions. If the number of threads in the pool is greater than necessary, it can cause a waste of
computing resources, since at a low demand moment the threads will be idle. In contrast, if the
number of threads in the pool is lesser than required, it will cause a slower execution and may
fail to meet quality attributes [6, 4].

It is possible to consider that the performance of the applications also depends on the throughput
provided by the thread pool. In this case, an important aspect to determine the performance of the
thread pool is the size of the pool. The larger the thread pool, the more simultaneous tasks can be
handled, and a faster response time is provided. However, when the thread pool size increases, the
management overhead can degrade system performance. In this way, dealing with this trade-off
is important for the system optimization [49].

This article proposes a mathematical formulation that characterizes the costs associated with
adopting the thread-by-request and thread pool architectures and obtains the optimum size of
the thread pool, maximizing the expected gain by minimizing the execution time of a solution.
Furthermore, the article presents the application of the mathematical formulation, comparing the
expected gain to the use of the thread pool architecture of the related different costs of using the
threads.

The remainder of this article is organized as follows. Section 2 discusses works related to threads
optimization. Section 3 develops the mathematical formulation of the problem. Section 4 brings
the application of the mathematical formulation. Finally, Section 5 presents the conclusions.

2 RELATED WORK

Many different types of techniques for dynamically optimizing the number of threads have been
proposed in the literature. Some approaches consider schemes to predict the optimal thread
pool [49, 30, 43, 29], other works use dynamic feedback and runtime information [31, 2, 32].
There are also researches aimed at studying power performance trade-offs [9, 28, 39, 3, 32, 38],
effect of OS level factors [12, 11, 46, 48, 33] and scheduling techniques [26, 2, 45].

Lee et al. [27] present a dynamic system that automatically adjusts the number of threads in
an application in order to optimize system efficiency. Using a dynamic compilation system, the
authors developed an application called Thread Tailor, which combines threads by communica-
tion patterns to decrease synchronization overhead. Thread Tailor uses off-line analysis to pre-
dict what type of threads will exist at runtime and the communication patterns between them
based on the architecture, dynamic system state, and communication and synchronization rela-
tionships between threads. They used a baseline of number of threads equal to the number of
cores for performance comparisons and dynamically leverage the code generation to optimize
away unnecessary synchronization after combining threads. Moreover, they emphasize that there
is significant limitation of most OS-based thread scheduling researches. According to the au-
thors, these techniques typically do not recognize communication and synchronization patterns
that provide important hints as to where and when threads should leverage. Wu et al. [48] ob-
served that hardware or OS techniques may not be able to infer enough information from the
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application code, aiming at the most efficient adaptation points. In this way, to determine the
number of threads required to execute an application, probably the OS and hardware cannot infer
enough information concerning the application to make efficient choices, indicating, with this,
the use of dynamic compilation.

Suleman et al. [41] propose a framework to dynamically control the number of threads at runtime
based on the application behaviour. They use a simple analytical model that captures the impact
of data synchronization at execution time. This technique checks a piece of an application par-
allel region and executes it sequentially to find synchronization and communication elements
between them. Afterwards, it analyses these points to estimate the optimal number of threads for
each region. In this work, the authors demonstrate that there is no advantage of using a number
of threads larger than the number of cores. In this sense, other researchers have made similar
discussions. Nieplocha et al. [32] demonstrated on real hardware that some applications saturate
shared resources in the Sun Niagara processor with only 8 threads, although the hardware has
support for 32 simultaneous threads. Saini et al. [35] made similar observations with different
types of processors about performance degradation. In contrast, Pusukuri et al. [33] demonstrate
that, in a 24-core system, many of the PARSEC programs require much more than 24 threads to
maximize speedups.

Jung et al. [24] presented performance estimation models and techniques for generating an adap-
tive execution code for simultaneous multithreading (SMT) architectures. The adaptive execution
techniques determine an optimal number of threads by means of dynamic feedback and time of
execution. With this, a compiler preprocessor generates a code that automatically determines
at runtime the optimal number of threads for each parallel loop in the application. The authors
avoid executing some parallel loops in parallel or change the number of threads to run the loops
optimally if the performance degradation of the loops exceeds a predefined threshold value at
runtime. Both articles, by Jung and Suleman, propose monitoring the execution and using simi-
lar models for predicting the appropriate number of threads of a given system state. Agrawal et
al. [2] present also an adaptive task scheduler technique that provides continual parallel feedback
for the job scheduler of the application. Similarly, Pusukuri et al. [33] presented a technique for
dynamically determining the appropriate number of threads without recompiling the application
or using complex compilation techniques or modifying Operating System policies. They devel-
oped a framework called Thread Reinforcer. According to the authors, not only is the Thread Re-
inforcer effective in selecting the number of threads, it also has very low runtime overhead. Other
researches that consider scheduling techniques based on different application characteristics and
dynamic estimates of the system resources usage were also presented by [51, 45] and [26]. These
approaches, however, only allocate threads when necessary, and do not consider the impact of
the number of threads in the applications. This behaviour was discussed by [27], who observed
that the OS and hardware cannot infer enough information concerning the application to make
efficient choices as to determining the number of threads than an application should leverage.

Schwarzrock et al. [38] state that parallel applications are usually executed using the maximum
number of threads allowed by the hardware available to maximize performance. They consider
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that this approach may not be the best when it comes to energy efficiency and may even lead
to performance reduction in some particular cases. The authors demonstrated that there is a po-
tential gain by automatically adapting the number of threads during runtime in the multithread
application OpenMP considering the trade-off between energy save and performance. Lorenzon
et al. [31] also investigated general-purpose and embedded multicores to achieve optimal trade-
offs between performance and energy. Similarly, [5, 39, 3, 9] and [28] can also dynamically
adjust the number of threads based both on performance and power optimization.

Some researchers have proposed schemes to predict the optimal thread pool size based on heuris-
tic elements [30]. However, this strategy usually is hard due to complexity and overhead. In
contrast, Xu et al. [49] developed a set of performance metrics for quantitatively analysing the
thread pool performance. Similarly, a methodology to identify threads with performance devia-
tions in pools based on the dissimilarity of their resource usage metrics was proposed by [43].
The work presented by [29] proposes a dynamic thread pool method to solve the high concur-
rency problems. According to the authors, the dynamic thread pool method is more efficient than
the traditional pool.

Our approach, however, characterizes the costs associated with adopting the thread-per-request
and thread pool architecture and obtains the optimum size of the thread pool, maximizing the
expected gain and minimizing the execution time of a solution. For that, it presents the application
of the mathematical formulation, comparing the expected gain with the use of the thread pool
architecture of the related different costs of using the threads.

3 PROBLEM FORMULATION

This section generically describes the operation of the current model of runtime systems of inte-
gration platforms and introduces a mathematical formulation to determine the optimum number
of threads for their pools and the gain obtained with this configuration of the thread pool.

3.1 Current model

The implementation of concurrency or parallelism in the execution of tasks is complex in most
programming languages[50]. Originally, the mechanism for concurrent programming of pro-
gramming languages was inspired by the concurrency principles of operating systems. Therefore,
languages have been incorporating new features into this mechanism, such as the use of threads
to execute program algorithms in the so-called multithread programming.

With the concurrent execution of software tasks, when some threads are locked, waiting for some
operation, others may be performing tasks. Threads can share a single address space and all their
data, as well as be easily created and destroyed because they do not have any resources associated
with them. This fact is very useful when the number of required threads changes dynamically and
quickly. In addition, the use of threads provides a performance gain in applications that have high
computational effort and I/O, since they allow these activities to overlap[44].
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The classes in the Java API provide settings, which give flexibility to thread pools, such as:
indicate the number of threads kept in the pool, even without executing; indicate the maximum
number of threads allowed in a pool, that is, how much a thread pool can grow; determine the
maximum amount of time that a surplus thread will idle, waiting for a new task; define the type
of queue used to hold the tasks before execution [36]. Figure 1 illustrates a task queue and a
thread pool of a runtime system of an integration platform.

Thread pool
Task queue

t1 t2 t3

Figure 1: Thread pool and task queue of a runtime system.

There are several task queues options in the Java concurrent API which serve different needs
such as: messaging, producer-consumer, parallel tasks. Some of them work as a limited buffer,
where the tasks are kept as elements of an array and the tasks are selected by the First-In-First-
Out (FIFO) policy; others work with an unlimited queue and organized in a specified order of
priority, where at the beginning of the queue is the task with the highest priority; others allow the
tasks to be scheduled with a predefined delay time for their execution and can only be obtained
from that queue when that delay time expires. At the beginning of the queue is the task that has
expired the longest.

The task queue interacts with the size of the pool as follows: (i) if there are fewer threads running
in the pool than the amount that has been set, a new thread will always be added to the pool
instead of queuing more tasks ; (ii) if the number of threads running in the pool is equal to
or greater than the amount that was set, more tasks will be queued rather than adding a new
thread to the pool; (iii) if a task request cannot be queued, a new thread is created as long as the
number of threads running is smaller than the maximum limit, otherwise, the task will be rejected.
The runtime system of an integration platform is a mechanism capable of providing hardware
and software capabilities that allow defining how an integration solution should be performed,
regardless of the programming language that is being used by the integration solution. In a more
comprehensive definition, it can be said that the runtime system is the engine that dynamically
determines the behaviours that an integration solution will have during execution.

The most common runtime system models have the following main elements: scheduler, task
queue, task, threads, monitors. The scheduler is the central element of the runtime system. It
manages all the runtime system activities. The scheduler has a task queue, a set of threads, and
monitors. The task queue stores the tasks in the order of priority in which they should be pro-
cessed. Each task can only be executed when it reaches the execution time for which it was
scheduled. The default is that this execution time is a unit of time after its entry in the queue, that
is, that the task is immediately ready to be executed. If the task has been scheduled for a future
time, this task will have to wait for this deadline to expire. Each available execution thread checks
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the task queue and performs the task according to its schedule. The available threads process the
tasks concurrently.

The monitors provide statistics on memory usage, CPU and on the task queue, recording informa-
tion such as the percentage of memory usage, system time, usage time consumed for execution,
queue size, and total number of tasks that were processed. Monitors are run by specific threads
that become active at regular intervals of time units defined by software engineers to record the
information and store it in a file and then become inactive until the next interval. The settings for
the scheduler are usually made through an XML file, which contains: number of threads, files for
statistics generated by monitors, monitors running frequency and logging system to notify about
warnings and errors. Scheduler initialization takes place by loading and parsing the configuration
file, initializing the logging system, and creating the job queue. The runtime system is not ini-
tialized when it is created, but when the software engineer decides to start it. When the scheduler
is started, the monitors and threads are started too. Threads are enabled to recurrently check the
task queue for ready-to-run tasks. This strategy causes threads to keep running tasks, as long as
there are tasks to be performed.

3.2 Mathematical analysis

Below is presented a mathematical analysis to determine a model for the runtime gain with
the use of a thread pool and an optimal pool size to maximize this gain. For this analysis, the
following premises are assumed:

• each thread pool has the same execution priority and receives an equal portion of CPU
time;

• the performed tasks have similar computational complexity, and there is no significant
difference in relation to the use of CPU and memory required to execute them;

• the overall costs of processing the pool are calculated from the weighted sum of the fac-
tors that affect the processing latency, so it does not consider each specific factor that
impacts the time elapsed between the execution request of the task until the completion of
its execution.

Two costs are considered in units of time: the first, c1, is the cost associated with creating and
destroying a thread individually; the second, c2, is the cost of maintaining and executing threads
in a pool. Assuming that the same operating system and same integration solution is used, c1 and
c2 are constants. Also, the cost of creating and destroying a thread that is not bound to a pool is
greater than the cost of assigning and releasing threads in a thread pool, that is, c1� c2 [30].

The cost associated with a pool of size n when the total number of concurrently running threads is
x is shown in Table 1. It compares the costs of not having a pool, adopting the thread-by-request
architecture, with the costs of the pool, adopting the thread pool architecture, obtaining the gain
of a pool of size n by the difference between these cases.

Tend. Mat. Apl. Comput., 20, N. 1 (2019)
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Table 1: Comparison between the threads-by-request architecture and the thread pool
architecture.

threads-per-request threads pool

1 � x � n c 1 . x c 2 . n ( c 1 . x - c 2 . n )

x > n c 1 . x c 2 . n + c 1 . ( x - n ) n . ( c 1 - c 2 )

Costs of the architecture
Case Expected gain

• 0 < x≤ n: the number of threads running is lesser than the number of threads available in
the pool. In this case, the pool is sufficient to execute the task demand and the cost will
be c2 ·n, this is the cost of maintaining the n threads in the pool. With the adoption of the
threads-per-request architecture, the cost will be c1 · x, this is the cost, c1, of creating and
destroying the number of threads being executed, represented by the variable x. Therefore,
the gain in adopting the pool architecture is the difference between c1 · x and c2 ·n.

• x > n: the number of tasks running is greater than the number of threads in the pool, so
the cost in the thread pool architecture will be increased by the cost of creating additional
threads to supply the demand, c1 · (x−n), resulting in an equal total cost to c2 ·n+c1 · (x−
n). Then, in the second case, the gain in adopting the threads pool architecture is given by
the difference between c1 · x and c2 ·n+ c1 · (x−n).

The number of threads running simultaneously tends to vary throughout the execution time of an
integration solution, depending on some factors such as the computational complexity of the tasks
being performed, message size and message input rate. The probabilistic behaviour of a random
variable will be described by its probability density function. A probability density function is a
function p(x) that satisfies the following properties:

• p(x)≥ 0

•
∫

∞

−∞
p(x)dx

• Given a function p(x) satisfying the above properties, then f (x) represents some
continuous random variable X , so that:

P(a≤ X ≤ b) =
∫ b

a
p(x)dx

The probabilities associated with a continuous random variable X can be calculated from the
distribution function. Given a random variable X , the distribution function of X is defined by:

FX (x) = P(X ≤ X)∀x ∈ R

By the Fundamental Theorem of Calculus, the probability density function is the derivative of
the distribution function:

p(x) =
d
dx

FX (x)

Tend. Mat. Apl. Comput., 20, N. 1 (2019)
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By definition, if X is a continuous random variable and h : R→R is any function, then Y = h(X)

is a random variable and its expected value E is given by:

E [h(X)] =
∫

∞

−∞

h(x) · p(x)dx

To compute the gain of adopting the thread pool architecture, it is assumed that this quantity
represented is a random variable with the probability distribution f (x). Equation 3.1 expresses
the expected gain, E(n), in adopting the thread pool architecture [40]:

E(n) =
n

∑
r=o

(c1 · r− c2 ·n). f (r) +
∞

∑
r=n+1

(c1 ·n− c2 ·n). f (r) (3.1)

Getting the optimal pool size is equivalent to finding the number of threads for the pool, n∗, which
generates the highest gain, which means minimizing the associated costs. This gain, E (n∗), can
be expressed as in Equation 3.2:

E (n∗) = supE (n): n ∈ N (3.2)

The discrete probability f (x) can be replaced by p(x)·dx, where p(x) is the probability density,
leaving the expected gain for the pool expressed as in Equation 3.3:

E(n) =
∫ n

0
(c1 · r− c2 ·n) · p(r)·dr +

∫
∞

n
(c1 ·n− c2 ·n) · p(r)·dr (3.3)

The optimal pool size that maximizes the expected gain by adopting the thread pool architecture
can be found by the first order derivative, shown in Equation 3.4:

∂E
∂n

=−c2 + c1 ·
∫

∞

n∗
p(x)·dx = 0 (3.4)

Deriving Equation 3.4, the second order derivative is obtained in relation to n and the expected
gain is kept positive if the condition is satisfied:

∂ 2E
∂n2 =−c1 · p(x)≤ 0 (3.5)

ζ = c2/c1 is defined as the cost ratio of keeping a thread in the pool, c2, for the cost of creating
and destroying a thread c1, and dividing Equation 3.4 for c1:

∫
∞

n∗
p(x)·dx = c2/c1 = ζ . (3.6)

Tend. Mat. Apl. Comput., 20, N. 1 (2019)
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Then, ∫
∞

o
p(x)·dx =

∫ n∗

o
p(x)·dx+

∫
∞

n∗
p(x)·dx = 1

it results, ∫ n∗

o
p(x)·dx = 1− c2/c1 = 1−ζ . (3.7)

Since pool size is an integer, it can be determined by Equation 3.8, where bsc is the next integer
smaller than s. ∫ bn∗c

o
p(x) ·dx≤ 1− c1/c2 ∴

∫ bn∗c
o

p(x) ·dx≤ 1−ζ∫ bn∗+1c

o
p(x) ·dx > 1− c1/c2 ∴

∫ bn∗+1c

o
p(x) ·dx > 1−ζ

(3.8)

By Equation 3.8, the optimal size of the pool is proportional to ζ . The higher the cost of creating
threads, c1, or the lower the maintenance cost of the pool, c2, the larger the pool size will be.

Equation 3.7 and Equation 3.8 show that the ideal thread pool size, n∗, depends not only on ζ ,
but also the workload of the integration solution, which is the number of tasks being performed,
represented by the probability density, p(x). Equation 3.8 considers these associated costs and
obtains optimal pool size by maximizing the expected gain.

4 EXPERIMENTAL RESULTS

This section shows the application of the mathematical formulation to find the optimal size of the
thread pool, considering the cost associated with creating and destroying a thread individually,
c1, and the cost of maintaining and executing threads from a pool, c2, considering different
probability density functions p(x). Additionally, we present graphics show that the gain of a pool
of size n corresponds to the results found analytically with the proposed mathematical model.
The expected gain is defined as the difference between the associated costs in the adoption of the
thread pool and in the adoption of the thread-per-request architecture.

4.1 Research question

To achieve the goal of this work, we seek to answer the following research question:

Is it possible to provide a mathematical formulation to obtain the optimum size of the
thread pool of a runtime systems of integration platforms, maximizing the expected
gain by minimizing the execution time of an integration solution?

To answer this question, we have proposed a mathematical model, defined by differential equa-
tions, which was presented in Section 3.2. With this research, we are aiming to contribute to a
novel approach focused on Enterprise Integration Application area to deal with thread pool size.

Tend. Mat. Apl. Comput., 20, N. 1 (2019)
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4.2 Variables

By means of the mathematical models represented by Equation 3.3 and by Equation 3.8 are ob-
tained the optimal thread pool size of runtime systems of integration platforms and the expected
gain with the use of this number of thread in the pool in terms of saving time in the adoption of
the thread pool architecture. Therefore, the measured variables are:

• n∗ - the optimal number of threads in the pool.

• E(n∗) - expected gain.

The optimal size of the pool depends of the cost of creating threads c1, on the cost of maintenance
of the pool c2, and on the workload of the integration solution, which is the number of tasks being
performed, represented by p(x).

4.3 Scenarios

In this application of the mathematical formulation, forty scenarios are considered in order to
obtain the optimal number of threads in the pool, using four different probability density func-
tions and ten different cost ratios of keeping a thread in the pool, and sixteen scenarios in order
to obtain the expected gain as a function of the number of pool threads, using four different prob-
ability density functions, four different cost ratios and the number of threads in the pool varying
continuously in a given range.

In order to obtain the optimal number of threads in the pool n∗, four probability density functions
with ten values of cost ratio are used. The set of values that ζ can assume is represented by Z,
where Z = { 0.000001, 0.00001, 0.0001, 0.001, 0.005, 0.01, 0.1, 0.5, 0.8, 1}.

The scenarios are:

• p(x) represented by a uniform distribution with ζ ∈ Z.

• p(x) represented by an exponential density with ζ ∈ Z.

• p(x) represented by a density of Pareto with ζ ∈ Z

• p(x) represented by a Gama density with ζ ∈ Z.

Aiming to achieve the expected gain as a function of the number of threads in the poo E(n),
four probability density function with four values of cost ratio and number of threads varying
continuously from 0.8 to 1 are used.

The scenarios are:

• p(x) equal to a uniform distribution using ζ ∈ {0.01,0.1,0.5,0.8}.

• p(x) equal to an exponential density using ζ ∈ {0.01,0.1,0.15,0.2}.
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• p(x) equal to a density of Pareto using ζ ∈ {0.1,0.15,0.2,0.5}.

• p(x) equal to a Gama density using ζ ∈ {0.1,0.15,0.2,0.5}.

4.4 Execution

In the cases listed below, the optimal size of a thread pool is determined from the equations 3.7
and 3.8 and it is assumed that probability density is:

1. a uniform distribution,

p(x) =

{
0.1, if 0≤ x≤ 10,

0, otherwise.
(4.1)

Then, ∫ bn∗c
o

0.1 ·dx≤ 1−ζ ∴ bn∗c ·0.1≤ 1−ζ∫ bn∗+1c

o
0.1 ·dx > 1−ζ ∴ bn∗+1c ·0.1 > 1−ζ

The optimal size of the pool is n∗ = 10 · (1−ζ ).

Assuming ζ = 0.1 seconds, we have the optimal pool size n∗ = 9.

2. an exponential density,
p(x) = e−x (4.2)

Then, ∫ bn∗c
o

(e−x) ·dx≤ 1−ζ ∴−eb−n∗c+1≤ 1−ζ∫ bn∗+1c

o
(e−x) ·dx > 1−ζ ∴−eb−(n

∗+1)c+1 > 1−ζ

The optimal size of the pool is: n∗ =− ln(ζ ).

Assuming ζ = 0.01 seconds, we have the optimal pool size n∗ = 5.

3. a density of Pareto,

p(x) =

{
1
x2 , if 0≤ x≤ 1,

0, otherwise.
(4.3)

Then, ∫ bn∗c
o

1
x2 ·dx≤ 1−ζ ∴ 1− 1

bn∗c
≤ 1−ζ∫ bn∗+1c

o

1
x2 ·dx > 1−ζ ∴ 1− 1

bn∗+1c
·0.1 > 1−ζ

The optimal size of the pool is n∗ = 1
ζ

.

Assuming ζ = 0.1 seconds, we have the optimal pool size n∗ = 10.
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4. a Gama density,

p(x) =

{
x · e−x, if x > 0,

0, otherwise.
(4.4)

Then, ∫ bn∗c
o

x · e−xdx· ≤ 1−ζ ∴ 1− (bn∗c+1) · eb−n∗c ≤ 1−ζ∫ bn∗+1c

o
x · e−x ·dx > 1−ζ ∴ 1− (bn∗+1c+1) · eb−(n∗+1)c > 1−ζ

The optimal size of the pool is: (n∗+1) · e−n∗ = ζ .

Assuming ζ = 0.09 seconds, we have the optimal pool size n∗ = 4.

Equation 3.3 is used to calculate the expected gain as a function of the number of pool threads.
In the first case, considering the probability density by the uniform distribution provided by
Equation 4.1, Equation 3.3 results in:

E(n) =−0.05 · c1 ·n2 +(c1− c2) ·n (4.5)

In the second case, considering the density of probability by the exponential function provided
by Equation 4.2, Equation 3.3 results in:

E(n) = c1 · (1− e−x)− c2 ·n (4.6)

In the third case, considering the density of probability by the density of Pareto provided by
Equation 4.3, Equation 3.3 results in:

E(n) = c1 · (1+ lnn)− c2 ·n (4.7)

In the forth case, considering the density of probability by the Gama density provided by
Equation 4.4, Equation 3.3 results in:

E(n) = c1 · (2− (n+2) · e−n)− c2 ·n (4.8)

4.5 Results and Discussion

The results found for the optimal number of threads in a pool using ten values of ζ are shown in
Table 2.

In the first case, with probability density being a uniform distribution, it is found that the optimal
pool size, n∗, is 10 for ζ ranging from 0.000001 to 0.01 seconds; 9 for ζ equal to 0.1; 5 for ζ

equal to 0.5; 2 for ζ equal to 0.8; and 1 for ζ equal to 1.
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Table 2: Optimum pool size versus cost.

ζ
n∗

uniform
distribution

exponential
density

density
of Pareto

density
Gama

0.000001 10 14 106 17
0.00001 10 12 105 14

0.0001 10 9 104 12
0.001 10 7 103 9
0.005 10 5 200 7
0.01 10 5 100 6

0.1 9 2 10 4
0.5 5 1 2 2
0.8 2 1 1 1

1 1 1 1 1

In the second case, with probability density being an exponential, n∗ is 14 for ζ equal to
0.000001; 12 for ζ equal to 0.00001; 9 for ζ equal to 0.0001; 7 for ζ equal to 0.001; 5 to ζ

ranging from 0.005 to 0.01; 2 for ζ equal to 0.1; 1 for ζ ranging from 0.5 to 1.

In the third case, with probability density of Pareto, n∗ is 106 for ζ equal to 0.000001; n∗ is 105

for ζ equal to 0.00001; 104 for ζ equal to 0.0001; 103 for ζ equal to 0.001; 200 to ζ equal to
0.005; 100 to ζ equal to 0.01; 10 for ζ equal to 0.1; 2 for ζ equal to 0.5; and 1 for ζ ranging
from 0.8 to 1.

In the forth case, with probability density Gama, n∗ is 17 for ζ equal to 0.000001; n∗ is 14 for ζ

equal to 0.00001; 12 for ζ equal to 0.0001; 9 for ζ equal to 0.001; 7 to ζ equal to 0.005; 6 to ζ

equal to 0.001; 4 for ζ equal to 0.1; 2 for ζ equal to 0.5; and 1 for ζ ranging from 0.8 to 1.

The variation of the expected gain regarding the number of threads in the pool with different
values of ζ , where ζ = c2/c1 in seconds, when the probability density is a uniform distribution,
an exponential, a density of Pareto or a Gama density; according to the equation 4.5, 4.6, 4.7
and 4.8, respectively, is shown in Figure 2. The larger black dot on the curves shows the number
of threads that provides the highest expected gain for each of the probability density functions.

With probability density being a uniform distribution, n∗ is 10 for ζ equal to 0.01; 9 for ζ equal
to 0.1; 5 for ζ equal to 0.5; 2 for ζ equal to 0.8. With probability density being an exponential, it
is found that the optimal pool size, n∗, is 5 for ζ equal to 0.01 seconds; 2 for ζ equal to 0.1, 0.15
or 0.2 seconds. With probability density of Pareto, n∗ is 10 for ζ equal to 0.1; n∗ is 7 for ζ equal
to 0.15; 5 for ζ equal to 0.2; 2 for ζ equal to 0.5. With probability density Gama, n∗ is 4 for ζ

equal to 0.1; n∗ is 3 for ζ equal to 0.15 or 0.2; 2 for ζ equal to 0.5.

In all cases studied, the total gain increases with the size of the thread pool until it reaches n∗,
afterwards, it begins to decrease, confirming that adding threads to the pool from that value on
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Figure 2: Expected gain versus number of threads.

does not improve the expected gain. In addition, the expected gain of a thread pool is inversely
proportional to the cost relation. It is found that the gain is lower, when ζ = c2/c1 is high, since
the thread maintenance cost is increased.

5 CONCLUSION

To keep up with technological trends and optimize the results of their business processes, compa-
nies are seeking to integrate the applications of their software ecosystem. Integration platforms
are software tools that support the construction of integration solutions, which interconnect the
applications, making them work synchronously. The runtime system is the component of the
integration platforms responsible for running the integration solutions and must offer adequate
performance and efficient use of computing resources so that the solution produces faster results
without financially burdening companies.

One of the challenges faced by software engineers is to empirically scale the number of threads
in the thread pool contained in the runtime systems. When the number of threads in the pool
is oversized, it causes a waste of computational resources and, consequently, a financial waste;
when undersized, it leads to a slower execution, which may fail to meet the quality attributes.
This article proposed a mathematical formulation for the expected gain according to the number
of threads, considering the costs of maintaining the thread pools in relation to the costs of creating
threads as the workload of the integration solution requires. By means of this formulation, we
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obtained the optimum size of the thread pool, which maximizes the expected gain by minimizing
the execution time of the solution.

To verify the mathematical formulation, the expected gain was calculated with four different
functions to represent the probability distribution of the number of threads simultaneously run-
ning in an integration solution and with different cost values related to the two thread utilization
options. Applying the mathematical formulation, it was verified that the total gain increases with
the increase of the number of threads in the pool to the optimum size, and then this gain begins
to decrease. In addition, it was also found that the expected gain of a thread pool is inversely
proportional to the ratio between the cost of maintaining the thread pool and the cost of creating
threads individually on demand.
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RESUMO. As empresas buscam alternativas tecnológicas que proporcionem competitivi-
dade para seus processos de negócios. Uma delas é a integração de plataformas, ferramentas
de software que constroem soluções de integração, que permitem que os diferentes aplica-
tivos que compõem o ecossistema de software trabalhem de forma sı́ncrona e que novas
aplicações ou funcionalidades sejam incorporadas com o menor impacto nas existentes. O
motor de execução é o componente da plataforma de integração responsável pelo geren-
ciamento dos recursos computacionais que executam a solução de integração. Entre esses
recursos estão as unidades de processamento, chamadas de threads, ou de conjuntos de
threads, chamados pool de threads O desempenho do motor de execução está diretamente
relacionado ao número de hreads disponı́veis para executar a solução de integração, mas
escalar o número de �threads� que fornecem um tempo de resposta mais curto é um desafio
para os engenheiros de software. Se esta quantidade for subdimensionada, poderá causar
um atraso na execução; se for superestimada, poderá causar um desperdı́cio de recursos
computacionais. Este artigo apresenta um modelo matemático, definido por equações difer-
enciais, que estabelece o número ótimo de �threads�, o que maximiza o ganho de desem-
penho esperado, minimizando o tempo de execução da solução de integração. Além disso,
apresenta a aplicação do modelo matemático, que auxilia na análise do ganho esperado em
diferentes cenários de arquitetura e quantidade de thread.

Palavras-chave: integração de aplicações empresariais, programação multithread, motor
de execução, modelagem matemática, plataformas de integração.
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