
ORIGINAL PAPER

Integration Process Simulator: a tool for performance
evaluation of task scheduling of integration processes

Daniela L. Freirea,b and Rafael Z. Frantzb, Fabricia Roos-Frantzb and
Vitor Basto-Fernandesa

a University Institute of Lisbon (ISCTE-IUL) ISTAR-IUL, Lisbon, Portugal
b Unijúı University, Department of Exact Sciences and Engineering, Ijúı, Brazil

ARTICLE HISTORY

Compiled May 10, 2023

ABSTRACT

Due to large volumes of data from Cloud Computing and from the Internet
of Things, the companies’ software ecosystem requires an efficient integration of
applications and services. Performance improvement from integration platforms’
runtime systems is directly related to task scheduling strategies from integration
processes. It is still a challenge to find the proper heuristic for a given integration
process subject to high inbound data rates. This article proposes a simulation
tool for the field of Enterprise Application Integration, which implements different
scheduling heuristics and allows the extraction of performance metrics. Three task
scheduling heuristics were simulated during the integration process, and the results
were evaluated through statistical tests.

KEYWORDS
Application integration; task scheduling algorithm; workflow scheduling; simulation
tool; high volume data

1. Introduction

Enterprises are being impacted by the vast amount of data to be processed by Cloud
Computing (CC) services in the era of large data volume (Ritter, May, & Rinderle-
Ma, 2017), having to meet new requirements from end-users, such as fast response and
low latency time (Fernández-Cerero, Fernández-Montes, Jakóbik, Ko lodziej, & Toro,
2018). The increasing number of heterogeneous devices connected to the Internet
of Things (IoT) produce a large volume of information, providing knowledge and
creating more business opportunities for enterprises. To cope with large data volumes,
enterprises should integrate IoT with CC, so that they could create more value from
generated data and develop smart applications for the users (Aazam, Huh, St-Hilaire,
Lung, & Lambadaris, 2016).

Enterprise Application Integration (EAI) is the field of study that provides method-
ologies, techniques and tools for the design and implementation of integration pro-
cesses (Frantz, Corchuelo, & Roos-Frantz, 2016; Ritter, Rinderle-Ma, Montali, &
Rivkin, 2021). Integration platforms are tools which allow software engineers to

CONTACT Daniela L. Freire. Email: danielalfreirer@icmc.usp.br

rzfra
Máquina de Escrever
This is a draft version, please refer to the following URL
to download the final version of this article.

https://doi.org/10.1080/17477778.2022.2041989

design, implement, run and monitor integration processes. The conceptual model of
an integration process is a workflow composed of segments of atomic tasks connected
by communication channels desynchronising one task from another (Kanagaraj &
Swamynathan, 2016). Data, wrapped in messages, are received from applications,
processed by tasks in the workflows and delivered to destination applications. Cur-
rently, several open-source integration platforms support the integration patterns
documented by Hohpe and Woolf (2004) and implement the Pipes-and-Filters archi-
tectural style (Alexander, Ishikawa, & Silvertein, 1977). Pipes depict message channels
and filters represent atomic tasks that implement a particular integration pattern
to process messages. In integration platforms, the runtime system is the component
responsible for executing tasks; it manages jobs, which are composed of a number
of tasks, and distributes computational resources among such tasks (Frantz et al.,
2016). The runtime system primary function is task scheduling (Guo, Yu, Tian, &
Yu, 2015; Hilman, Rodriguez, & Buyya, 2018). The pay-as-you-go charging model
of Cloud Computing Services stimulates a task scheduling mechanism focused on
minimising costs (Freire, Frantz, Roos-Frantz, & Sawicki, 2019) and able to handle
with large volumes of data from IoT (Shoukry, Khader, & Gani, 2019). That comes in
handy with emerging market demands for quality of software, flexibility and response
times (Fan, Zhai, Li, & Wang, 2018).

In runtime systems, threads represent computational resources used to execute tasks
of an integration process. There are two main execution models for runtime systems
in the literature: process-based and task-based (Alkhanak, Lee, Rezaei, & Parizi,
2016; Blythe et al., 2005; Boehm, Habich, Preissler, Lehner, & Wloka, 2011; Frantz,
Corchuelo, & Molina-Jiménez, 2012). In the former model, a thread was assigned to
an instance of the integration process, so that the thread could execute every task of
the workflow over an inbound message, so that this message would flow throughout
the process. After every task in the workflow has been executed, the thread is released.
In the latter model, a thread is assigned to an instance of a task, so that this thread
is used to execute the task over the inbound message which reaches the task. When
the task is finished, an outbound message is written to the channel that connects
the current task to the next one in the workflow, so the thread is released. The
execution of the message in the next task depends on assigning an available thread
to this very task. This article addresses the task-based execution model, where a
performance degradation was detected in scenarios with high input rates of messages.
Such scenarios were caused by the accumulation of execution requests from initial
tasks in detriment of others, due to the heuristic algorithm for task scheduling, which
uses a First-in-First-Out (FIFO) strategy (Frantz et al., 2012).

The heuristic algorithm chosen must improve the execution performance of runtime
systems integration processes, especially where high input rates of messages are
seen. The heuristic must guarantee an appropriate response time to the message
processing and proper harnessing computational resources. However, a heuristic may
be optimal for a given integration process and user-parameters, but inappropriate for
some other integration process and user-parameters. Straightforward heuristics such
as FIFO are usually adopted to achieve consistent results through all scenarios, which
includes high and low input rates of messages. However, the performance may vary
significantly depending on many factors (different input rates of messages, workloads,
type of message traffic, among others (Qureshi, Shah, & Manuel, 2011)), once a
single heuristic is rarely optimal for all cases. The simulation-approach can evaluate
traditional and novel heuristics and measure their impact on the integration processes
execution performance. Thus, a simulation tool able to reproduce the implementation

2

of integration processes - and subject to high input rates of messages - must be
developed. It is noteworthy that no other proposal was found in the literature review.
The closest one found was that of Haugg, Frantz, Roos-Frantz, Sawicki, and Zucolotto
(2019), but the simulator is limited to a single heuristic and allows the monitoring
of only one metric: the number of threads. There are several simulators in the
commerce for task scheduling, but they are concerned either with the simulation in
cloud computing environment or switch network distribution; they are not specific for
integration processes with significant metrics to evaluate the execution performance
of such integration processes. Such commercial simulators served as inspiration for the
development of a simulator in the EAI context.

This article approaches simulation in the field of EAI by proposing a simulation tool,
and developing an experiment aimed at answering the following research question:

RQ: Is it possible to extract performance metrics through simulation, by using
different heuristics for task scheduling in the execution of integration processes
under high workloads?

The hypothesis for this research question is that:

H: It is possible to develop a simulator to record performance metrics, which is
also able to evaluate different heuristics for task scheduling in the execution of
integration processes under high workloads.

The idea is an Integration Process Simulator (IPS) which can evaluate various
heuristics for task scheduling of integration processes in runtime systems. IPS is a
specific simulator for integration processes, with the possibility of monitoring metrics
that are unique in this context, for instance: the number of messages processed, the
number of incoming messages not processed, makespan and throughput. Besides, the
simulator is adapted to receive specific parameters from integration processes, such
as the number of input, outputs, communications channels, tasks (and their specific
operations), threads, etc. Not only the traditional FIFO heuristic was implemented,
but also two new heuristics: Multi-queue Round Robin (MqRR) and Queue Priority
(qPrior) (Freire, Frantz, Roos-Frantz, & Basto-Fernandes, 2021). Such proposals look
at a fair allocation of threads to integration process tasks in scenarios of high volumes
of data. However, the architecture of the IPS makes the incorporation of other heuristic
algorithms possible; it simulates several scenarios with varying message input rates,
total and/or initial messages workload, simulation time and integration processes.
Additionally, several performance metrics are provided by the IPS, such as throughput,
the number of processed messages and remained messages. As a proof-of-concept, the
heuristic was simulated in the execution of three integration processes. The results
of the simulation were statistically validated with the ANOVA and the Scott &
Knoot tests, which confirmed the hypothesis. Thus, the simulator allows the adequacy
analysis of runtime systems from integration platforms, once it handles high workloads
seen in modern EAIs.

This this article is organised as follows: Section 2 introduces works related to heuris-
tic simulators for task scheduling; Section 3 describes the characteristics of scheduling
in integration processes; Section 4 formulates the problem of task scheduling on
integration processes; Section 5 presents the algorithms of the simulator; Section 6
presents a proof-of-concept to validate the heuristic simulator; while Section 7, the
conclusions and future works.

3

2. Related Work

This section discusses tools which simulate heuritics for task scheduling in the
Cloud. Once ideas can be borrowed and adapted in the context of EAI, they may
be seen as related work. It is important to stress, though, that the target of these
proposals is either task scheduling of services or tasks in the Cloud; on the other hand,
this proposal targets task scheduling in integration processes. Most of the articles on
heuristics for task scheduling develop their algorithms in a programming language,
without taking into account benchmarking standardized methods, frameworks and
tools - for instance, Gupta, Gupta, Choudhary, and Jana (2019); Riaz, Kazmi,
Kazmi, and Shah (2018); T. Zhang, Pota, Chu, and Gadh (2018). Despite the lack
of standardisation of the tools, some simulation tools were found, mainly regarding
task scheduling for Cloud Computing. Table 1 lists the tools found in related works
and indicates the research field where each of them is employed. In the following
paragraphs, these proposals will be discussed.

GridSim is a simulator proposed by Buyya and Murshed (2002), built on top of
SimJava library (Howell & McNab, 1998). It allows the modeling and simulation
of heterogeneous Grid resources, users and application models, in the research field
of Grid Systems. The simulator evaluates popular scheduling algorithms and new
proposals. Some performance metrics provided by it include the average budget spent
by each user for processing jobs; the average time at which the user experiment is
terminated with a varying number of users competing for resources; and the number
of jobs processed by each user when a varying number of users are competing for
resources.

CloudSim, proposed by Calheiros, Ranjan, Beloglazov, Rose, and Buyya (2011),
is based on SimJava (Howell & McNab, 1998) and GridSim (Buyya & Murshed,
2002) and focuses on Infrastructure as a Service (IaaS), and operation environment
features in Cloud Computing. It supports the allocation of several virtual machines and
migration policies. This tool allows the simulation of space and time-shared scheduling
policies. Makespan is the performance metric, which computes the fastest completion
time and cost.

WorkflowSim is a simulator, proposed by Kanagaraj and Swamynathan (2016),
built on top of CloudSim (Calheiros et al., 2011), that offers support for workflow
scheduling and execution in the Cloud Computing research field. This simulator allows
the comparison of new heuristics with popular scheduling algorithms, such as the
Critical Path Algorithm, the First Come First Serve, MaxMin and MinMin. Makespan
is its performance metric.

TrueTime is a Matlab/Simulink-based simulation tool, proposed by Cervin and

Årzén (2018), that has been developed at Lund University since 1999 (Eker & Cervin,
1999). It provides models of multi-tasking real-time kernels and networks used in
simulation models for Networked Embedded Control Systems. TrueTime gathers
metrics such as input-output latency and deadline overruns.

SCORE, proposed by Fernández-Cerero et al. (2018), is based on the Google Omega
lightweight simulator (Schwarzkopf, Konwinski, Abd-El-Malek, & Wilkes, 2013). It
tests energy-efficiency, security, and scheduling strategies in Cloud Computing envi-
ronments. This simulator evaluates heuristics, such as Random, Spread tasks to the
maximum, Greedy minimising energy, Greedy minimising makespan, Spread tasks to
the minimum and Spread tasks to the minimum with randomness. It stores some
performance metrics such as the time for a job to wait in the queue until its first task

4

is scheduled; the time a job remains in the queue until it is scheduled; and yet, the
average scheduler utilisation rate.

Sphere, proposed by Fernández-Cerero, Fernández-Montes, Ortega, Jakóbik, and
Widlak (2019), is based on SCORE (Cervin & Årzén, 2018) and follows the design
and simplifications developed for the Google Omega simulator (Schwarzkopf et al.,
2013). This tool enables the simulation of large-scale Edge Computing scenarios by
focusing on resource management, scheduling and energy-efficiency policies. Some of
the performance metrics provided are: makespan, the time jobs wait for their first task
to be scheduled, and the time jobs wait for all their tasks to be scheduled.

GAME-SCORE, proposed by Fernández-Cerero, Jakóbik, Fernández-Montes, and
Ko lodziej (2019), is the extension of SCORE (Cervin & Årzén, 2018) and follows the
design pattern: a hybrid approach between discrete-event and multi-agent simulation.
Its main aim is simulating energy-efficient IaaS on Cloud Computing. Some of the
performance metrics provided are: makespan, the time jobs wait for their first task to
be scheduled and the time jobs remain in the system while all their tasks are scheduled.

Table 1. Related works summary.
Ref. Name Research field
Buyya and Murshed (2002) GridSim Grid Systems
Calheiros et al. (2011) CloudSim Cloud Computing
Kanagaraj and Swamynathan (2016) WorkflowSim Cloud Computing

Cervin and Årzén (2018) TrueTime Embedded Control Systems
Fernández-Cerero et al. (2018) SCORE Cloud Computing
Fernández-Cerero, Fernández-Montes, et al. (2019) Sphere Edge Computing
Fernández-Cerero, Jakóbik, et al. (2019) GAME-SCORE Cloud Computing
[Our Proposal] IPS Enterprise Application Integration

3. Background

This section presents an integration process that uses the integration patterns
documented by Hohpe and Woolf (2004), and the Pipes-and-Filters (Alexander et
al., 1977) architectural style. The elements of the task scheduling are defined, and the
task-based model is described (also approached by this article).

An integration process is a computational program that connects applications,
synchronising the exchange of data and functionalities amongst them. An example of
an integration process, proposed by Hohpe (2005), is the «Processing Order», depicted
in Figure 1. The «Processing Order» integration process connects five applications:
«Ordering System», «Widget Inventory», «Gadget Inventory», «Invalid Items Log»
and «Inventory System». «Ordering System» represents a source application that
delivers new orders data to the integration process. Each order is wrapped inside a
«message» which contains the order data. A message with a new order is split into
individual messages, which must contain only one item. Messages are routed either
to the «Widget Inventory» or the «Gadget Inventory» depending on their contents.
Messages with items that do not belong in any of these inventories are then routed
to «Invalid Items Log». The «Inventory System» application represents a final data
sink that responds according to the availability of items. Processing of one order
corresponds to one «job» instance. Generally, there are many jobs being processed at
a particular point in time, reason why there are many job instances.

In the workflow of an integration process, a «path» is the set of uncoupled tasks
connected by communication channels whereby an inbound message flows through,

5

Invalid

Items Log

Gadget

Inventory

Ordering

System Inventory

System

tstart

tx1

t1end

t2end

tx2

t1 t2

t3

t4

t5 t6

t7 t8

t9

t10

t11 t12

Widget

Inventory

Figure 1. Processing Order conceptual model.

from source applications to sink applications. An integration process is a «workflow»
composed of several segments of tasks sequentially arranged in parallel, or both ways.
Parallel segments are parts of a path which can be executed in parallel. The inbound
message process corresponds to the execution of all tasks of the path whereby the
message flows from the source to the destination application.

A task implements an integration pattern and every pattern represents an atomic
and specific operation on message processing, such as transforming, filtering, splitting,
joining or routing. Depending on the integration pattern that a task implements, it
can have one or more inputs and one or more outputs. There is an order of dependence
for the tasks that determines their order of execution. Thus, a message can only be
processed by a task after it has been processed by each predecessor task. An outbound
message of a task is written to the communication channel that connects this task with
the next successive task in the path.

Runtime systems supply services to applications implemented on top of them (Ap-
pel, n.d.). The «scheduler» is the key element that manages and orchestrates all
activities of the elements of a runtime system, by accomplishing an inbound mes-
sage processing. Computational resources to execute the tasks are managed by the
scheduler. In runtime systems of integration platforms, these resources are «threads»
and they are usually grouped in «thread pools» to avoid the creation of consecutive
threads, and allow handling requests of tasks more quickly (Jeon & Jung, 2018). A
thread is the smallest unit of a computational program that can be managed by the
runtime system. It is also an abstraction piece of a physical and independent processing
unit, or even a central processing unit (CPU) core.

The execution model of runtime systems establishes how tasks must be executed
and how threads must be allocated during the processing of messages, in an integration
process (Freire, Frantz, & Roos-Frantz, 2019). This article addresses the task-based
model, once it allows treating task instances, i.e., tasks assigned to be executed by a
thread. In this model, a task is ready to be executed when there are messages in all
communication channels (inputs) to that task. The request of execution of a ready

6

task is annotated in a waiting queue. Ready tasks wait in the queue until there is
an available thread to execute them. An available thread selects a task of the queue,
following an execution policy, e.g. FIFO.

The scheduler creates, manages, and releases threads. It can also configure the pool
by determining parameters such as the initial and the maximum number of threads,
and the maximum lifetime of an idle thread. The scheduler assigns threads to execute
instances of tasks; after an instance of the task has been executed, the thread is
released and goes back to the pool. The processing of a message in the successive task
now depends on a new assignment of an available thread from the pool to this very
task. A message is processed according to the order of dependence of the tasks in the
path. Tasks in sequential segments are sequentially executed, whereas tasks in parallel
segments can be executed in parallel - after all, there is no dependency between them.

4. Problem Formulation

This section shall represent the task scheduling problem from the «Processing
Order» integration process through a Directed Acyclic Graph (DAG), where the
mathematical model is formulated. A DAG can represent the task scheduling model
and the constraints of tasks execution. An integration process is described as a
workflow W composed of k tasks, being an extension of the DAGs with weighted
vertices (Ei, Ti), where Ti = {ti,1, ti,2, · · · , ti,k} is the set of vertices and E is the set of
edges. Every vertex in the graph represents a task of the process; each edge represents
a communication channel between tasks, and indicates precedence constraints between
tasks. Every edge has a weight, which represents the waiting time of the task in the
queue (Saifullah, Li, Agrawal, Lu, & Gill, 2013). The «Processing Order» integration
process is represented by DAG in Figure 2.

Figure 2. Processing Order represented in a DAG task model.

There are 17 nodes, which represent the following 16 tasks: tstart, t1end, t2end, t1,
t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12, tx1

, tx2
, where tstart is a starting dummy node,

and t1end and t2end are ending nodes. The nodes tx1
, tx2

represent tasks that send and
receive information to/from applications. There are 19 edges, which represent the 19
communication channels.

There is one input task represented by tstart, which has no predecessor task and
two output tasks represented by t1end and t2end, which have no successor task. The
nodes tx1 and tx2 represent tasks that exchange messages with applications during
runtime. Intermediary tasks are represented by ti, where i ranges from 1 to 12.

7

In the integration logic of this conceptual model, an order contains several items.
An order is split into unitary items, which can exclusively belong either to the
«Widget Inventory», to the «Gadget Inventory», or to none of these. The path for a
unitary item belonging to the «Widget Inventory» is denoted by the task segment
s1 = {tstart, t1, t2, t3, t4, tx1, t5, t6, t7, t8, t1end}; for a unitary item belonging to the
«Gadget Inventory» it is denoted by the task segment s2 = tstart, t1, t2, t9, t10, tx2,
t11, t12, t7, t8, t1end ; and for a unitary item that does not belong to any inventory,
it is denoted by the task segment s3 = {tstart, t1, t2, t2end}. Some tasks that can
be executed in parallel in the «Processing Order» integration process are: [t3, t9] ,
[t4, t10] , [tx1, tx2] , [t5, t11], [t6, t12]. Table 2 shows the paths and the classification
from «Processing Order» integration process segments.

Table 2. Processing Order path characterisation.

ID Path
Segment

Sequential Parallel

s1

tstart, t1, t2 t3, t4, tx1, t5
t6, t7, t8, t1end

s2

tstart, t1, t2 t9, t10, tx2, t11
t12, t7, t8, t1end

s3

tstart, t1, t2end

Makespan is a metric of performance well-known by the integration community, de-
fined as the total execution time of the integration process for a given message (Canon
& Jeannot, 2007; Chirkin et al., 2017). It corresponds to the total execution time from
all tasks in the path whereby the message must flow for its complete processing. It
includes all times involved, such as the total CPU time, the waiting time of the tasks
in a queue, and the waiting time of the task in request and response operations with
external applications. It can be inferred that the execution time range of a task tk
is defined as [tetkini

, tetkfin
]. In this article, the total execution time of an integration

process is computed as the elapsed time between the starting time of the first message
entering the workflow STm1

and the ending time of the last message to leave the
workflow ETmnp.

Throughput is a performance measurement based on the amount of work a system
can perform in a given time in a particular environment. The throughput of a computer
system is a function of the environment and workload characteristics. Improvements
resulting from system changes can be evaluated by throughput measurements (Thakur
& Kumar., 2018; Wood & Forman, 1971). In the execution of integration processes,
throughput corresponds to the number of messages processed per time unit and it is

8

calculated as the division of the number of total processed messages, np, by the total
execution time, TET , cf. Equation 1.

Throughput =
np

ETmnp
− STm1

(1)

5. Proposal

This section describes the Integration Process Simulator, a heuristic simulator
for task scheduling in integration processes. The simulator implements the following
heuristics: First-In-First-Out (FIFO), Multi-queue Round Robin (MqRR) and Query-
Priority (qPrior) (Freire et al., 2021). FIFO is a simple heuristic and is adopted in
most integration platforms (Freire, Frantz, Roos-Frantz, & Sawicki, 2019), in which
messages are processed in the same order they enter the workflow. Round Robin
(RR) heuristic is popularly known by its simplicity and considered an efficient and
effective scheduling technique in computing (Y. Zhang, Shen, & Song, 2018), in which
messages are processed in a circular order. Here, two novel heuristics were proposed:
MqRR and qPrior, both based on RR. These heuristics seek to increase the execution
performance from integration processes in overload situations, by facing the dynamic
environment of task scheduling in applications integration. Overload situations happen
when the number of messages accumulated in communication channels is greater than
the number of messages processed in a given time interval.

In FIFO scheduling, a single task queue holds the instances of all tasks. Tasks are
kept in a queue and sorted in descending order of arrival time. The task with the
furthest arrival time is placed in the head of the queue, while the first recently arrived
task is placed in the tail of the queue. Available threads repeatedly poll the queue
for tasks; if there are any pending tasks, threads shall execute them in a head-to-tail
order.

In the MqRR scheduling heuristic, there are multiple task queues and each queue
keeps the instances of a task. Thus, the number of queues is equal to the number of
tasks of the integration process. However, tasks belonging to parallel segments can be
maintained in the same queue to be executed in parallel. Tasks are kept in queues in
descending order of arrival time, and available threads repeatedly poll the queue for
tasks, executing existing tasks from head to tail. Threads recurrently poll task queues
in a circular order, executing each time a predefined number of tasks for every queue.

In the qPrior heuristic there are also multiple task queues, but in this case,
threads recurrently poll the queues following the order of priority. A task having
more predecessor tasks has a higher priority for execution.

5.1. Algorithms

Figure 6 in Appendices A.2 presents the flowchart of the simulator. Start receives
the simulation parameters and calls the heuristics to be used in the simulation. The
Integration Process Profile contains the integration process information used as
parameters by the other algorithms. FIFO provides task scheduling through the First-
In-First-Out heuristic. MqRR uses Multi-Queue Round Robin heuristic. qPrior uses
Queue Priority heuristic. Allocate Thread is responsible for managing and allocating
threads that execute tasks of integration processes. The Next Task sends tasks to the

9

next task queue. Operation simulates the task execution. Queue Add adds tasks to
a queue. Queue Add Input adds tasks to the first queue, by simulating the arrival
of messages in the integration process. The pseudo-codes of these algorithms are
presented and detailed as follows.

5.1.1. Start

Start coordinates the simulation of integration processes, cf. Activity 1. It receives
the following parameters: the number of simulations, the maximum duration of the
simulation, the maximum number of messages, the initial number of inbound messages,
the heuristic, and the number of tasks performed at a time (called preemption) - in
case of MqRR and qPrior heuristics. The last input parameter is the number of tasks
executed every time the threads check a queue. Start returns the throughput, the
number of processed messages, and the number of remaining messages. First, Start
creates a vector for the starting time of messages and another for the final time of
messages, besides task queues. If the heuristic to be used is FIFO, it creates a single
queue; if the heuristic is RR, it shall create a queue for every task of the integration
process. After that, it adds the first tasks to the queues and then calls the algorithm
corresponding to the heuristic chosen. Finally, it calculates the throughput and writes
the metrics results in a text file.

5.1.2. Integration Process Profile

Integration Process Profile deals with profiles of integration processes, cf.
Activity 2. It receives the following vectors as parameters: the identification of tasks,
parallel tasks, the execution time of the tasks, the operation of the tasks, the next
tasks and the last tasks. It calculates the number of tasks of the integration process
by measuring the length of the identification from the tasks vector.

5.1.3. First-In-First-Out

This algorithm carries out the task scheduling which uses FIFO heuristic, cf.
Algorithm 3. It receives the following parameters: the task queue, the maximum
duration of the simulation, and the starting time of the first task in the queue.
The algorithm starts by initialising the auxiliary variable: totsize that corresponds
to the queue total size. Afterwards, it repeatedly calls the Allocate Thread activity
to allocate threads and perform tasks until the simulation time expires, or when there
are no tasks left in the queue.

5.1.4. Multi-Queue Round Robin

This algorithm carries out the task scheduling through the MqRR heuristic, cf.
Algorithm 4. It receives the following parameters: task queues, the maximum duration
of the simulation, the starting time from the first task in the queue, the total number
of tasks and the number of tasks to be performed at a time. This last input parameter
is used to indicate the number of tasks that threads must execute every time a queue
is checked. The algorithm starts by initialising two auxiliary variables: totsize and
preempt. The former corresponds to the total size of the queue and the latter to
the number of tasks performed at a time (preemption). The algorithm checks from
the queue of the first task to the queue of the last task, and it continues checking
them in a circular order. When the queue size is smaller than the preempt, the

10

Activity 1 Start

Input: Number of simulations: numsimulation
Input: Maximum duration of the simulation: maxduration
Input: Number of inbound messages: messinbound
Input: Heuristic: policy
Input: Number of tasks performed at a time: preempttask
Output: Throughput : throughput
Output: Number of processed messages: messproc
Output: Number of remained messages: messrem

1: starttime[] . Creates a starting time vector
2: endtime[] . Creates an end time vector
3: while count ≤ numsimulation do . Execution of the simulations
4: if policy = FIFO then
5: queues[0] . Creates a single queue
6: else
7: for [i] = 1 to numtasks do
8: queues[i] . Creates a queue to each task
9: end for

10: end if
11: for [i] = 1 to messinbound do . Creates first tasks in queues
12: starttime[i]← current.T ime . Adds starting times of the messages
13: if policy = FIFO then
14: queues[0]← add(1)
15: else
16: queues[1]← add(1)
17: end if
18: end for
19: switch policy do
20: case FIFO

21: simulationF ile← SimulationFIFO.txt

22: Fifo() . Executes FIFO heuristic

23: case MqRR

24: simulationF ile← SimulationMqRR.txt

25: MqRR()) . Executes MqRR heuristic

26: case qPrior

27: simulationF ile← SimulationqPrior.txt

28: qPrior()) . Executes qPrior heuristic

29: count← count+ 1
30: end while
31: messproc← endtime.size();
32: if messproc > 0 then
33: totmakespan← (endtime[messproc]− starttime[1]) . Calculates total total

execution time
34: throughput← (messproc/(endtime[messproc]− starttime[1]))
35: end if
36: Record Archive(simulationF ile) . Records metrics in a text file

11

Activity 2 Integration Process Profile

Input: Vector for tasks identification : IdTask[]
Input: Vector for parallel tasks : ParallelTask[]
Input: Vector for the execution time of the tasks : TimeExec[]
Input: Vector for tasks operation: OperTask[]
Input: Vector for the next tasks : NextTask[]
Input: Vector for the last tasks: LastTask[]

1: NumTasks← IdTask.length

Algorithm 3 First-In-First-Out

Input: Task queue: queues[0]
Input: Maximum duration of the simulation: maxduration
Input: Starting time of the simulation: start

1: totsize← queues[0].size . Initialises the queue size variable
2: while totsize > 0 & duration < maxduration) do . Executes the tasks in the

queue
3: if queues[i] 6= ∅ then
4: Allocate Thread(queues[0], totsize) . Allocates threads to tasks in the

queue
5: end if
6: duration← current.Time −start . Updates the duration of the simulation
7: totsize← queues[0].size . Updates the total size of the task queue
8: end while

algorithm executes all tasks in the queue; otherwise, only the number of tasks equals
to the preempt will be executed. The algorithm calls the Allocate Thread activity
to allocate threads and execute tasks while there are tasks in the queue, and the
simulation duration is lower than the input parameter that stipulates maximum
duration.

5.1.5. Queue Priority

This algorithm carries out the task scheduling by the qPrior heuristic, cf. Algo-
rithm 5. It receives the following parameters: the task queues, the maximum duration
of the simulation, and the starting time of input of the first task in the queue, the
total number of tasks and the number of tasks performed at a time. This last input
parameter is used to indicate the number of tasks that the threads must execute every
time a queue is checked. The algorithm starts by initialising two auxiliary variables:
totsize and preempt. The former corresponds to queue total size and the latter to the
number of tasks performed at a time (preemption). The algorithm checks queues from
the highest to the lowest priority task queue. When the queue size is smaller than the
preempt, the algorithm executes all tasks in the queue; otherwise, only the number of
tasks equals to the preempt will be executed. The algorithm calls Allocate Thread

activity to allocate threads and execute tasks while there are tasks in the queue, and
the simulation duration is lower than the input parameter that stipulates maximum
duration.

12

Algorithm 4 Multi-Queue Round Robin

Input: Task queues: queues[]
Input: Maximum duration of the simulation: maxduration
Input: Starting time of the simulation: start
Input: Total number of tasks: numtasks
Input: Number of tasks performed at a time: preempttask

1: totsize← 1 . Initialises the total queue sizes variable
2: preeemp← preempttask . Initialises the preempt variable
3: while totsize > 0 & duration < maxduration) do . Execution of tasks in the

queue
4: for [i] = 1 to numtasks do
5: if queues[i] 6= ∅ then

. Checks whether there is preemption and compares with the queue size
6: if (preempt = 0) or (queues[i].size < preempt) then
7: preempt← queues[i].size
8: else
9: preempt← preempttask

10: end if
11: Allocate Thread(queues[i], preempt) . Allocates threads to tasks in

the queue
12: end if
13: end for
14: totsize← 0
15: for [i] = 1 to numtasks do . Updates the task queues total size
16: totsize← totsize+ queues[i].size
17: end for
18: duration← current.Time −start . Updates the duration of the simulation
19: end while

13

Algorithm 5 Queue Priority

Input: Task queues: queues[]
Input: Maximum duration of the simulation: maxduration
Input: Starting time of the simulation: start
Input: Total number of tasks: numtasks
Input: Number of tasks performed at a time: preempttask

1: totsize← 1 . Initialises the total queue sizes variable
2: preeemp← preempttask . Initialises the variable preempt
3: qprior ← numtasks . Initialises the variable qprior
4: while totsize > 0 & duration < maxduration) do . Execution tasks in the

queue
5: for [i] = numtasks to 1 step−1 do

. Selects queue of higher priority
6: if queues[i] 6= ∅ then
7: qprior ← i
8: i← 1
9: end if

10: end for
11: if (preempt = 0) or (queues[qprior].size < preempt) then
12: preempt← queues[qprior].size
13: else
14: preempt← preempttask
15: end if
16: Allocate Thread(queues[qprior], preempt) . Allocates threads to tasks in the

queue
17: end while
18: totsize← 0
19: for [i] = 1 to numtasks do . Updates the task queues total size
20: totsize← totsize+ queues[i].size
21: end for
22: duration← current.Time −start . Updates the duration of the simulation

14

5.1.6. Allocate thread

Allocate Thread manages and allocates threads to execute tasks of a queue, cf.
Activity6. It receives the following parameters: a task queue, the maximum duration
of the simulation, the maximum number of messages, the number of tasks performed
at a time and a vector containing the ending tasks. It initialises the auxiliary variable
preempt and then starts with the creation of a thread pool, which must be elastic,
i.e, allowing a variable sized pool to take advantage of multi-core CPUs. Allocate
Thread selects tasks in the queue, from head to tail, until it achieves the number
of tasks equals to the size of the preemption variable (preempt). If the queue size is
smaller than the number of tasks, the algorithm assigns the queue size to the preempt.
Then, it submits the task to the thread pool and calls Operation activity, which is
responsible for the task operation. After the execution, Allocate Thread removes
the task from the current queue and then checks if the task belongs to the vector
containing the ending tasks. If the task is not an end task and the heuristic used has
multiple task queues, the Allocate thread activity calls the Next queue activity
that is responsible for storing the task in the next queue, according to the logic of the
integration process. Finally, it destroys the thread pool.

5.1.7. Next queue

Next Task sends the task to its next queue, in case of heuristics that use multiple
queues, cf. Activity 7. It receives the following parameters: a task, a vector containing
the next task queues, and a vector containing the logic operations of the tasks. It
initialises the auxiliary variable operleng that corresponds to the length of the vector
containing the tasks logic operations. If the length of this vector equals zero, it means
that the task is sequential and must be sent to only one queue. Otherwise, the task
must be sent to one or more queues, depending on the logic operation. Logic operations
of a task can be AND, OR*, and OR. If the operation equals AND, the task must be sent
to all the next queues. If the operation equals OR*, the task must only be sent to the
next queue. The operation OR acts as both AND and OR*, i.e., the task can be sent to
one or more queues. Next Task sends the task to the queues according to the vector
from the next tasks, which contains the information regarding the next task of the
integration process.

5.1.8. Operation

Operation simulates the processing of messages by a task, cf. Activity 8. It receives
the following parameters: a task and the vector from the tasks execution time. It
randomly selects an execution time from this vector, and then waits during this time.
The operation of processing message can be: split, translate, filter, aggregate, route,
etc.

5.1.9. Queue Add

Queue Add adds a task to a queue, cf. Activity 9. It receives a task, and the vector of
parallel tasks as parameters. The latter input indicates when a task can be executed in
parallel with another task. Queue Add checks the heuristic and if it equals FIFO, the
task is added to the FIFO queue; otherwise, the vector of parallel tasks is checked. If
there is a parallel task to the task, it is added to the queue of parallel tasks; otherwise,
it is added to the task in its own queue.

15

Activity 6 Allocate Thread

Input: Task queue: queues[i]
Input: Maximum duration of the simulation: maxduration
Input: Maximum number of messages: maxmessages
Input: Number of tasks performed at a time: preempt
Input: Vector for the last tasks: LastTask[]

1: preeemp← preempttask . Initialises the variable preempt
2: Creates elastic thread pool
3: for [j] = 1 to preempt do
4: if duration < maxduration) then
5: task ← queues.head . Selects the task from the head of the queue
6: if task 6= null then
7: Submits Operation(task) to a thread pool . Executes task
8: for [j] = 0 to LastTask[].length do
9: if task 6= LastTask[j] then lasttask = 1

10: end if
11: end for
12: if lasttask = 0 then
13: Next queue(task) . Stores task in next queue
14: else
15: endtime[]← current.T ime
16: end if
17: Removes task of the queue[i] . Removes task of the queue
18: Shutdown thread pool
19: end if . Compares the queue size with the preemption
20: if queue[i].size < preempt then
21: preempt← queue[i].size
22: else
23: preempt← preempttask
24: end if
25: else
26: i← preempt+ 1
27: end if
28: duration← current.T ime− start
29: if maxmessages>starttime.size() then
30: Queue Input Add() . Adds messages in first queue every 100 tasks

executed
31: else
32: duration← maxduration
33: end if
34: end for

16

Activity 7 Next queue

Input: Task : task
Input: Vector of next tasks : NextTask[]
Input: Vector of operation tasks: OperTask[]

1: operleng ← OperTask[task].length . Initialises the auxiliary variable with the
vector size

2: switch operleng do
3: case 0 . Sequential task
4: nexttask ← NextTask[task][1]
5: Queue Add(nexttask) . Adds the task in its next queue

6: case 1 or 2 . Fork task
7: if operleng = 2 then
8: operrad = random OperTask[task][] . Randomly selects one of the

operations
9: else

10: operrad = OperTask[task] . Selects the task operation
11: end if
12: if operrad = or then . Can choose one of the next tasks
13: nexttask = randomNextTask[task][1] . Randomly selects one of the

next task
14: Queue Add(nexttask) . Adds the task to its next queue
15: else
16: if operrad = and then . Send to all next tasks
17: for [i] = 1 to NextTask[task].length do
18: nexttask = NextTask[task][i]
19: Queue Add(nexttask) . Adds the task to next queue
20: end for
21: end if
22: end if

Activity 8 Operation

Input: Task : task
Input: Vector for execution time tasks : TimeExec[]

1: time← random TimeExec[task][] . Randomly selects one from the execution
time to the task

2: Waits time . Simulates the execution of the task

17

Activity 9 Queue Add

Input: Task : task
Input: Vector for parallel tasks : ParallelTask[]

1: if policy = FIFO then
2: queues[0]← add(task) . Adds tasks to FIFO queue
3: else . Checks if tasks are parallel
4: if ParallelTask[task] 6= 0 then
5: parallel = ParallelTask[task]
6: queues[parallel]← add(task) . Adds tasks to the queue of the parallel

task
7: else
8: queues[task]← add(task) . Adds tasks to the respective queue
9: end if

10: end if

5.1.10. Queue Input Add

Queue Input Add adds the first tasks to the queue, cf. Activity 10. It receives the
number of input tasks as a parameter, then, it checks the heuristic and if the heuristic
is FIFO, it then adds the tasks to the FIFO queue. Otherwise, it adds the task to the
queue of the first task.

Activity 10 Queue Input Add

Input: Number of input tasks : numinputtask

1: for [i] = 1 to numinputtask do . Creates first tasks in the queue
2: starttime[]← current.T ime
3: if policy = FIFO then
4: queues[0]← add(1)
5: else
6: queues[1]← add(1)
7: end if
8: end for

6. Validation

This section uses the IPS simulator to compare the performance of FIFO, MqRR
and qPrior (Freire et al., 2021), when it comes to the execution of integration
processes under high workloads (over 1,000,000 messages). Performance metrics such
as throughput, the number of processed messages and the number of remained
messages were used. The integration processes employed in the simulations were
Processing Order (IP1), Huelva’s County Council (IP2), and Real Estate (IP3). Their
profiles are described in Appendices A.1. Introduced by Hohpe (2005), the Processing
Order problem is a classic example of an integration process, which conceptual
model is depicted in Figure 1. The Huelva’s County Council problem is a real-world
integration process (Frantz et al., 2016), consisting of the automatisation of the user
registration into a central repository (Huelva, Spain). The Real State problem is a

18

real-world integration process (Freire, Frantz, & Roos-Frantz, 2019) consisting of the
automatisation of the real state tax management system in the city of Ijúı (Brazil).

The simulation is classified as termination simulation because the output is a
function of the initial conditions, for which a protocol based on Jedlitschka and Pfahl
(2005), Wohlin et al. (2012) and Basili, Rombach, Kitchenham, Selby, and Pfahl
(2007) was followed, with procedures for controlled experiments in the field of software
engineering. The literature suggests that a statistical analysis of performance data
from simulations must be carried out (Georges, Buytaert, & Eeckhout, 2007), since
this type of simulation deals with non-determinism in computational systems (Frantz,
Corchuelo, & Arjona, 2011). The ANOVA test was used to verify the influence of
random factors (called errors) in the measurements of the dependent variables. The
comparison of means, according to the test of Scott & Knott, groups the average
values of the dependent variables to check if there is a statistical difference between
the results from the heuristics. The source code and data sets used in the simulations
is publicly available for download 1.

These are the independent variables:

Heuristic. The heuristic used for task scheduling. The values tested for this variable
were FIFO, MqRR, and qPrior.

Integration process. The conceptual model of the integration process. The values
tested for this variable were IP1, IP2, and IP3.

Duration. The time interval during which the algorithm keeps running. The value
tested for this variable was 60 seconds.

Total workload. The total number of inbound messages. The value tested for this
variable was 2,000,000 messages.

Initial workload. The initial number of inbound messages. The value tested for
this variable was 1,000 messages.

Rate of inbound messages. The number of inbound messages added periodically
to the integration process. The value tested for this variable was 1,000 messages.

And these are the dependent variables:

Throughput. This variable corresponds to the average of processed messages per
millisecond, cf. Equation 1.

Processed messages. This variable corresponds to the number of inbound messages
that were entirely processed by the integration process.

Remained messages. This variable corresponds to the number of inbound messages
that remained unprocessed by the integration process.

6.1. Environment and Supporting Tools

The simulations were carried out on a machine equipped with 16 processors Intel
Xeon CPU E5-4610 V4, 1.8 GHz, 32GB of RAM, with a Windows Server 2016
Datacenter 64-bits operating system. The programming language Java, version 8.0
update 152, was used to implement and execute the IPS simulator. The Genes (Cruz,
2006) software, version 2015.5.0, was used to process the descriptive statistic, ANOVA
and Scott & Knoot tests were used to calculate the performance metrics in this study.

1https://github.com/gca-research-group/simulation-qprior

19

6.2. Execution and Data Collection

The experiment was conducted using the IPS simulator, which simulates the
execution of the IP1, IP2, IP3 integration processes. Table 3 describes the main
differences between the integration processes tested.

Table 3. Integration process characterisation.

ID DAG
Nodes Starting Ending

number nodes nodes

IP1 17 1 2

IP2 19 2 2

IP3
17 3 2

The simulation starts with a workload of 1,000 inbound messages; it receives 1,000
inbound messages to every 100 tasks executions. The execution time of each task varies
within an interval (in seconds) according to the profile of the integration process.
For MqRR and qPrior heuristics, the preemption variable is set to 100 tasks.The
simulation time is configured to 60 seconds, after which, the simulation stops. Next,
the simulator collects the values from dependent variables and stores them in a text file.
Afterwards, data were handled and analysed, and then statistical tests were applied.

The literature suggests that 20 to 30 executions are sufficient to obtain a population
average (Sargent, 2013). In the experiment, each heuristic was simulated 25 times for
each integration process, resulting in 225 different scenarios summarised in Table 4.

6.3. Results

The scatter charts show average values of dependent variables obtained in 25
independent runs of the simulation, for every type of heuristic, cf. Figures: 3, 4,

20

Table 4. Scenarios of the simulations.

Heuristics FIFO, MqRR, qPrior 3
Integration Process IP1, IP2, IP3 1
Duration 60 seconds 1
Total workload 2,000,000 1
Initial workload 1000 1
Rate of inbound messages 1000 1
Repetitions 25
Scenarios 3 x 3 x 1 x 1 x 1 x 1 x 25 225

and 5. In these charts, the x-axis represents the heuristics and the y-axis represents
the average throughput, the average number of processed messages and the average
number of remained messages, respectively.

The throughput achieved in the simulation of IP1 (in messages per milliseconds)
was 8.44 msg/ms with FIFO; 9,455.17 msg/ms with MqRR; and 28,076.67 msg/ms
with qPrior. The average number of processed messages was 502.40 with FIFO; 22,607
messages with MqRR; and 199,800 messages with qPrior. Lastly, the average number
of remained messages was 1,999,498 with FIFO; 1,977,393 messages with MqRR; and
1,800,200 messages with qPrior. So, qPrior was the most efficient algorithm, while
FIFO was the least.

The throughput achieved in the simulation of IP2 (in messages per milliseconds) was
64.26 msg/ms with FIFO; 10,250.02 msg/ms with MqRR; and 27,001.52 msg/ms with
qPrior. The average number of processed messages was 3,821.52 with FIFO; 25,515
messages with MqRR; and 199,800 messages with qPrior. Lastly, the average number
of remained messages was 1,996,178 with FIFO; 1,974,485 messages with MqRR; and
1,800,200 messages with qPrior. So, qPrior was again the most efficient algorithm,
while FIFO was the least.

The throughput achieved in the simulation of IP3 (in messages per milliseconds)
was 8.49 msg/ms with FIFO; 9,381.09 msg/ms with MqRR; and 27,001.52 msg/ms
with qPrior. The average number of processed messages was 506.28 with FIFO; 22,607
messages with MqRR; and 199,800 messages with qPrior. Lastly, the average number
of remained messages was 1,999,494 with FIFO; 1,977,393 messages with MqRR; and
1,800,200 messages with qPrior. Yet again, qPrior was the most efficient algorithm,
while FIFO was the least .

Table 5 shows the analysis of variance for IP1, which is the mean square of the
throughput. The mean square was 509,9275,548 for the heuristics and 1,704,696 for
error. The overall mean was 12,513.42 and the coefficient of variation, 10.43%. In
the variance analysis of the number of processed messages, the mean square was
298,355,654,464 for the heuristics and 3,415 for error. The overall mean was equal
to 1,925,696.70 and the coefficient of variation was 3.03%. Lastly, in the variance
analysis of the number of remained messages, the mean square was 298,355,654,464
for the heuristics and 3,415 for error. The overall mean was equal to 74,303.29 and the
coefficient of variation was 0.07%. Thus, there was a relation between the treatments
(heuristics) and the result of an experiment (performance).

Table 6 shows the analysis of variance for IP2, which is the mean square from the
throughput. The mean square was 4,638,534,208 for the heuristics and 2,231,170.0
for error. The overall mean was 12,451 and the coefficient of variation, 11.99%. In
the analysis of variance of the number of processed messages, the mean square was
288,556,580,878 for the heuristics and 182,858 for error. The overall mean was equal

21

IP1 IP2 IP3

Fifo 8.44 64.26 8.49

RR 9455.17 10250.02 9381.09

qPrior 28076.67 27038.91 27001.52

0

7500

15000

22500

30000

Figure 3. Average throughput

IP1 IP2 IP3

Fifo 502.4 3821.52 506.28

RR 22607.48 25514.52 22607.48

qPrior 199800 199800 199800

0

8000

16000

24000

32000

Figure 4. Average number of processed messages

IP1 IP2 IP3

Fifo 1999497.6 1996178.48 1999493.72

RR 1977392.52 1974485.48 1977392.52

qPrior 1800200 1800200 1800200

0

600000

1200000

1800000

2400000

Figure 5. Average number of remained messages

22

to 1,923,621.32 and the coefficient of variation was 2.22%. Lastly, in the variance
analysis of the number of remained messages, the mean square was 288,556,580,878
for the heuristics and 182,858 for error. The overall mean was equal to 76,378.68, and
the coefficient of variation was 0.55%. So, there was a relation between the treatments
and the result of an experiment.

Table 7 shows the analysis of variance for IP3, which is the mean square of the
throughput. The mean square was 4,695,619,987 for the heuristics and 3,282,183 for
error. The overall mean was 12,130.36 and the coefficient of variation, 14.93%. In
the variance analysis of the number of processed messages, the mean square was
298,348,495,903 for the heuristics and 2,398 for error. The overall mean was equal
to 1,925,695.41 and the coefficient of variation was 2.54%. Lastly, in the variance
analysis of the number of remained messages, the mean square was 298,348,495,903
for the heuristics and 2,398 for error. The overall mean was equal to 74,304 and the
coefficient of variation was 6.59%. So, there was a relation between the treatments
and the result of an experiment.

Table 5. ANOVA test for IP1.
Sources of Degree of Mean square
variation freedom Throughput Processed messages Remained messages

Heuristics 2 5099275548 † 298355654464 † 298355654464 †

Error 72 1704696 3415 3415
Total 74

overall mean 12513.42 1925696.70 74303.29
Coefficient of variation (%) 10.43 3.03 0.07

† significant statistical by Fisher-Snedecor’s - Probability and error level of 5%.

Table 6. ANOVA test for IP2.
Sources of Degree of Mean square
variation freedom Throughput Processed messages Remained messages

Heuristics 2 4638534208 † 288556580878 † 288556580878 †

Error 72 2231170 182858 182858
Total 74

overall mean 12451 1923621.32 76378.68
Coefficient of variation (%) 11.99 2.22 0.55

† significant statistical by Fisher-Snedecor’s - Probability and error level of 5%.

Table 7. ANOVA test for IP3.
Sources of Degree of Mean square
variation freedom Throughput Processed messages Remained messages

Heuristics 2 4695619987 † 298348495903 † 298348495903 †

Error 72 3282183 2398 2398
Total 74

overall mean 12130.36 1925695.41 74304
Coefficient of variation (%) 14.93 2.54 6.59

† significant statistical by Fisher-Snedecor’s - Probability and error level of 5%.

The results of the Scott & Knoot test are shown in Tables 8, 9 and 10, for IP1,
IP2, and IP3, respectively. The heuristics are identified in the first column. For each
dependent variable, there is a column for the average value and another for the group
of Scott & Knott. There were three groups: «a», «b», and «c». Group «a» refers to
the heuristic with the highest average, while group «b» refers to the heuristic with the
second-highest average, and group «c» refers to the heuristic with the lowest average.

23

The results of the Scott & Knoot test for IP1 regarding throughput show that
FIFO was in group «c» with the lowest average rate, which was 8.44 msg/ms; MqRR
in «b» with an average of 9,455.17 msg/ms; and qPrior in «a» with the highest average,
which was 28,076,67 msg/ms. Regarding the number of processed messages, FIFO was
in group «c» with the lowest average: 502 messages. MqRR was in group «b» with
an average of 22,607 messages, and qPrior in «a» with the highest average: 199,800
messages. Regarding the number of remained messages, FIFO was in group «a» with
the highest average: 1,999,498 messages. MqRR was in group «b» with an average of
1,977,393 messages; and qPrior in «c», with the lowest average: 1,800,200 messages
cf. Table 8. Therefore, there was a statistical difference among the three treatments.

The results of the Scott & Knoot test for IP2 regarding throughput show that FIFO
was in group «c» with the lowest average: 64.26 msg/ms. MqRR was in group «b»
with and average of 10,250.02 msg/ms, and qPrior in «a» with the highest average:
27,038.91 msg/ms. Regarding the number of processed messages, FIFO was in group
«c» with the lowest average: 3,821 messages. MqRR was in «b» with an average of
25,515 messages, while qPrior was in «a» with the highest average: 199,800 messages.
Regarding the number of remained messages, FIFO was in group «a» with the highest
average: 1,996,178 messages. MqRR was in «b» with an average of 1,974,485, and
qPrior was in «c» with the lowest average: 1,800,200 messages cf. Table 9. Thus, there
was statistical difference among the three treatments.

The results of the Scott & Knoot test for IP3 regarding throughput show that
FIFO was in group «c» with the lowest average: 8.49 msg/ms. MqRR was in «b» with
an average of 9,381.09 msg/ms, while qPrior was in «a» with the highest average:
27,001,52 msg/ms. Regarding the number of processed messages, FIFO was in group
«c» with the lowest average: 506 messages. MqRR was in «b» with an average of 22,607
messages, and qPrior in «a» with the highest average: 199,800 messages. Regarding
the number of remained messages, FIFO was in group «a» with the highest average:
1,999,4948 messages. MqRR was in «b» with an average of 1,977,393 messages, and
qPrior was in «c» with the lowest average: 1,800,200 messages cf. Table 10. So, there
was statistical difference among the three treatments.

Table 8. Scott & Knott test for IP1.

Heuristic
Throughput Processed messages Remained messages

Average Group Average Group Average Group
FIFO 8.44 c 502 c 1999498 a
MqRR 9455.17 b 22607 b 1977393 b
qPrior 28076.67 a 199800 a 1800200 c

Error level of 5% by the Scott & Knoot model.

Table 9. Scott & Knott test for IP2.

Heuristic
Throughput Processed messages Remained messages

Average Group Average Group Average Group
FIFO 64.26 c 3821 c 1996178 a
MqRR 10250.02 b 25515 b 1974485 b
qPrior 27038.91 a 199800 a 1800200 c

Error level of 5% by the Scott & Knoot model.

24

Table 10. Scott & Knott test for IP3.

Heuristic
Throughput Processed messages Remained messages

Average Group Average Group Average Group
FIFO 8.49 c 506 c 1999494 a
MqRR 9381.09 b 22607 b 1977393 b
qPrior 27001.52 a 199800 a 1800200 c

Error level of 5% by the Scott & Knoot model.

6.4. Summary

In the execution simulation of IP1, the best average throughput was
28076.67 msg/ms with qPrior, whereas the worst-case scenario was with FIFO,
when it reached an average throughput of 8.44 msg/ms. The qPrior heuristic
managed to process more messages, reaching an average of 199,800 messages and
the number of 1,800,200 remained messages. The worst-case scenario for processed
messages occurred with FIFO, where only 502.40 messages managed to be processed,
and 1,999,498 remained unprocessed.

In the execution simulation of IP2, the best average throughput was
27,038.91 msg/ms with qPrior, whereas the worst-case scenario was with FIFO,
when it reached a throughput of 64.26 msg/ms. The qPrior heuristic managed to
process more messages, reaching an average of 199,800 messages and the number
of 1,800,200 remained messages. The worst-case scenario for processed messages
happened with FIFO, where only 3,821.52 messages were processed, and 1,996,178
remained unprocessed.

In the execution simulation of IP3, the best average throughput was
27,001.52 msg/ms with qPrior, whereas the worst-case scenario was with FIFO,
when it reached a throughput of 8.49 msg/ms. The qPrior heuristic managed to
process more messages, reaching an average of 199,800 messages and the number
of 1,800,200 remained messages. The worst-case scenario for processed messages
occurred with FIFO, where only 506.28 messages were processed, and 1,999,494
remained unprocessed.

The MqRR and qPrior heuristics provided a stable scenario considering the average
number of processed messages for all three integration processes evaluated in this
study. This stability is an indication that these heuristics display a predictable number
of processed messages, independently of the integration process executed. For all
integration processes, the qPrior heuristic provided the best average throughput,
whereas FIFO provided the worst.

The use of different heuristics generates a significant difference in the average
throughput values, in the number of processed and remained messages, cf. Table 5. Low
coefficients of variation indicate the adequacy and reliability of the simulations. The
results obtained in the test of Scott & Knott applied for comparison of means, show
that there were three different groups for throughput, for the number of processed
and remained messages, cf. Table 8. The statistical differences among the three
heuristics resulting from the experiment with simulations provided support to answer
the research question (RQ) and confirm the hypothesis (H). Thus, it is possible to
simulate heuristics from task scheduling in an integration process with a simulator, and
to find the throughput, the number of processed messages, and performance metrics
in the execution of an integration process under high workloads.

25

6.5. Threats to Validity

Threats to validity can be found in any empirical research (Cruzes & ben Othman,
2017). There are some of them specific to optimisation studies (Wohlin et al., 2012).
Factors that could influence the results of the experiments were evaluated and ways
to mitigate them were suggested.

6.5.1. Constructor Validity

Constructor validity discusses whether the planning and execution of the study
is adequate and able to answer the research question. The experiment was planned
according to procedures from empirical software engineering (Basili et al., 2007; Jedl-
itschka & Pfahl, 2005; Wohlin et al., 2012). Firstly, the research question was defined,
the hypothesis was formulated, and the dependent and the independent variables
were defined. Next, it was provided information about the execution environment,
supporting tools, execution algorithms and data collection. Then, the simulation was
carried out in seventy-five different scenarios, and statistical techniques were applied
to evaluate the results.

6.5.2. Conclusion Validity

As reported by Wohlin et al. (2012), conclusion validity “is concerned with issues
that affect the ability to draw the correct conclusion about relations between the
treatment and the outcome of an experiment”. Statistical techniques were used to
assure that the actual outcome observed in the experiment would be related to the
heuristics employed and that there was a significant difference amongst them.

6.5.3. Internal Validity

Internal validity aims to ensure that the treatment leading to the outcome mitigate
the effects of other uncertain or not measured factors (Feldt & Magazinius, 2010).
In this case, treatments are the heuristics. All experiments were performed in the
same machine, on security mode, with minimal features and disconnected from the
Internet, in order to minimise any influence on the execution time of the algorithms.
The algorithms were implemented in Java and a few executions were run before
starting the experiments, letting the virtual machine stabilise and eventually perform
code optimisation (Pinto, Castor, & Liu, 2014). Additionally, the procedures were
accurately inspected and statistical tests were used to validate the performance metrics
employed.

6.5.4. External Validity

External validity focuses on the generalisation of results outside the scope of the
study (Feldt & Magazinius, 2010). This study is generalised for integration platforms
that adopt the integration patterns by Hohpe and Woolf (2004), the Pipes-and-
Filters style and task-based model. This study was reported following a practical
guideline (Wohlin et al., 2012), in order to make possible its exact reproduction. The
experiment is valid to test other parameters, such as integration processes, message
arrival rate, and the duration of the simulation. For future works other integration
processes shall be experimented, in order to further evaluate the generalisation of
results.

26

7. Conclusion

There are many business possibilities for enterprises in the era of Big Data, but
dealing with a large volume of data and extracting exact information on the business
is still a challenge (Shoukry et al., 2019). Enterprise Application Integration (EAI) is
a field of study that faces the complex task of integrating such data, providing new
methodologies, techniques, and tools for the design and implementation of integration
processes (Frantz et al., 2016; Ritter et al., 2021). In this article, a tool for simulating
task scheduling algorithms was proposed: the Integration Process Simulator (IPS).
Three heuristics were evaluated by the use of IPS: First-In-Fist-Out (FIFO), Multi-
queue Round Robin (MqRR) and Queue Priority (qPrior), although other scheduling
algorithms might be easily implemented in IPS. Performance metrics, such as through-
put, the number of processed messages, and the number of remained messages can be
obtained from IPS. It also allows to configure the time of the simulation, the initial
and the total workload of messages, the rate of inbound messages and the integration
process. The simulator was tested with three benchmark integration processes. The
results of the simulations proved that qPrior was the best heuristic, providing the
highest throughput in high workloads. On the other hand, FIFO was the worst
heuristic for it provided the lowest throughput. The statistical analysis confirmed
the above and showed that there is a significant difference in performance metrics
when task scheduling is performed with FIFO, MqRR, and qPrior. In the future,
more metrics and more heuristics shall be included into the simulator, in order to
extend the simulations, test other integration processes and compare other workload
parameters. Regarding the research questions of the experiment: the simulator is able
to evaluate heuristics used in task scheduling of integration processes. For the three
integration processes tested, the qPrior heuristic was the one which was able to process
more messages per time unit.

In the literature review, a single domain-specific tool developed to execute simula-
tions of integration processes in enterprise application integration was found. The
simulator found was proposed by Haugg et al. (2019), and is limited to a single
heuristic, besides allowing the monitoring of only one metric: the number of threads.
Despite other commercial tools which allow simulating task scheduling, which are
either concerned with the simulation of tasks in the cloud computing environment and
switch network distribution, or they are tools that provide a set of general-purpose
building blocks to model practically any kind of system. In this way, to be useful in
the field of application integration, software engineers first would have to spend some
effort building a model that represents the task-based execution model (a theoretical
execution model implemented by some runtime system of integration platforms) and
endow it with the capacity to incorporate different heuristics and monitor the required
metrics. Only after developing this simulation model, they would be ready to simulate
a given integration process. Note that this very tool already provides this simulation
model with the support for different heuristics, ready to be used. For this reason,
this proposal can be considered a “domain-specific simulato”. Besides, the majority of
commercial tools have prohibitive costs for small and even mid-size companies and,
more often, infeasible for scientific research. Such commercial simulators served as
inspiration for the development of this simulator. The simulator has the possibility of
monitoring metrics that are unique in this context, such as the number of messages
processed, the number of messages that entered the integration process and were not
processed, makespan, and throughput. Yet, the simulator is adapted to receive the
specific parameters of integration processes, such as the number of inputs, outputs,

27

communications channels, tasks (and their specific operations), threads, etc. It is worth
noting that this simulator has no intention of competing commercially, considering
that current commercial tools have great potential in simulating task scheduling.

Acknowledgements

This work was supported by the Coordination for the Improvement of Higher
Education Personnel (CAPES), under grant numbers 88881.119518/2016-01 and
88881.136207/2017-01; the Research Support Foundation of the State of Rio Grande
do Sul (FAPERGS) under grant number 17/2551-0001206-2; and, the National
Council for Scientific and Technological (CNPq) under grant number 309315/2020-4.
We would like to thank Dra. Maria do Rosário Laureano and Dr. Sancho M.
Oliveira from the Instituto Universitário de Lisboa (ISCTE-IUL) ISTAR-IUL,
Lisboa, Portugal and Dra. Iryna Yevseyeva from the De Montfort University, United
Kingdom, for their helpful comments in earlier versions of this article.

References

Aazam, M., Huh, E.-N., St-Hilaire, M., Lung, C.-H., & Lambadaris, I. (2016). Cloud of Things:
Integration of IoT with Cloud computing. In Robots and sensor clouds (pp. 77–940).
Springer International Publishing.

Alexander, C., Ishikawa, S., & Silvertein, M. (1977). A pattern language: towns, buildings,
construction. Oxford University Press.

Alkhanak, E. N., Lee, S. P., Rezaei, R., & Parizi, R. M. (2016). Cost optimization approaches
for scientific workflow scheduling in cloud and grid computing: A review, classifications,
and open issues. Journal of Systems and Software, 113 , 1–26.

Appel, A. W. (n.d.). A runtime system. LISP and Symbolic Computation.
Basili, V. R., Rombach, D., Kitchenham, K. S. B., Selby, D., & Pfahl, R. W. (2007). Empirical

software engineering issues. Springer Berlin/Heidelberg.
Blythe, J., Jain, S., Deelman, E., Gil, Y., Vahi, K., Mandal, A., & Kennedy, K. (2005). Task

scheduling strategies for workflow-based applications in grids. In IEEE international
symposium on cluster computing and the grid (CCGrid) (Vol. 2, pp. 759–767).

Boehm, M., Habich, D., Preissler, S., Lehner, W., & Wloka, U. (2011). Cost-based vectorization
of instance-based integration processes. Information Systems, 36 (1), 3–29.

Buyya, R., & Murshed, M. (2002). Gridsim: A toolkit for the modeling and simulation
of distributed resource management and scheduling for grid computing. Concurrency
Computation Practice and Experience, 14 (13–15), 1175–1220.

Calheiros, R. N., Ranjan, R., Beloglazov, A., Rose, C. A. F. D., & Buyya, R. (2011). Cloudsim:
A toolkit for modeling and simulation of cloud computing environments and evaluation
of resource provisioning algorithms. Software: Practice and Experience, 41 (1), 23–50.

Canon, L.-C., & Jeannot, E. (2007). A comparison of robustness metrics for scheduling
DAGs on heterogeneous systems. In International conference on cluster computing (ieee
cluster) (pp. 558–567).

Cervin, A., & Årzén, K.-E. (2018). Truetime: Simulation tool for performance analysis of real-
time embedded systems. In Model-based design for embedded systems (pp. 169–200).
CRC Press.

Chirkin, A. M., Belloum, A. S. Z., Kovalchuk, S. V., Makkes, M. X., Melnik, M. A., Visheratin,
A. A., & Nasonov, D. A. (2017). Execution time estimation for workflow scheduling.
Future Generation Computer Systems, 75 , 376–387.

28

Cruz, C. D. (2006). Programa genes: estat́ıstica experimental e matrizes. Editora Universidade
Federal de Viçosa.

Cruzes, D. S., & ben Othman, L. (2017). Threats to validity in empirical software security
research. In Empirical research for sofware security (pp. 295–320).

Eker, J., & Cervin, A. (1999). A matlab toolbox for real-time and control systems co-
design. In Proceedings sixth international conference on real-time computing systems
and applications (RTCSA) (pp. 320–327).

Fan, K., Zhai, Y., Li, X., & Wang, M. (2018). Review and classification of hybrid shop
scheduling. Production Engineering , 12 (5), 597–609.

Feldt, R., & Magazinius, A. (2010). Validity threats in empirical software engineering research-
an initial survey. In International Conference on Software Engineering and Knowledge
Engineering (SEKE) (pp. 374–379).

Fernández-Cerero, D., Fernández-Montes, A., Jakóbik, A., Ko lodziej, J., & Toro, M. (2018).
Score: Simulator for cloud optimization of resources and energy consumption. Simulation
Modelling Practice and Theory , 82 , 160–173.

Fernández-Cerero, D., Fernández-Montes, A., Ortega, F. J., Jakóbik, A., & Widlak, A. (2019).
Sphere: Simulator of edge infrastructures for the optimization of performance and
resources energy consumption. Simulation Modelling Practice and Theory , 101 , 101966.

Fernández-Cerero, D., Jakóbik, A., Fernández-Montes, A., & Ko lodziej, J. (2019). GAME-
SCORE: Game-based energy-aware cloud scheduler and simulator for computational
clouds. Simulation Modelling Practice and Theory , 93 , 3–20.

Frantz, R. Z., Corchuelo, R., & Arjona, J. L. (2011). An efficient orchestration engine for
the cloud. In International Conference on Cloud Computing Technology and Science
(CloudCom) (pp. 711–716).

Frantz, R. Z., Corchuelo, R., & Molina-Jiménez, C. (2012). A proposal to detect errors in
enterprise application integration solutions. Journal of Systems and Software, 85 (3),
480–497.

Frantz, R. Z., Corchuelo, R., & Roos-Frantz, F. (2016). On the design of a maintainable
software development kit to implement integration solutions. Journal of Systems and
Software, 111 , 89–104.

Freire, D. L., Frantz, R. Z., & Roos-Frantz, F. (2019). Towards optimal thread pool
configuration for run-time systems of integration platforms. International Journal of
Computer Applications in Technology , XX (in-press), 1–18.

Freire, D. L., Frantz, R. Z., Roos-Frantz, F., & Basto-Fernandes, V. (2021). Queue-
priority optimized algorithm: a novel task scheduling for runtime systems of application
integration platforms. The Journal of Supercomputing , 1–31.

Freire, D. L., Frantz, R. Z., Roos-Frantz, F., & Sawicki, S. (2019). Survey on the run-
time systems of enterprise application integration platforms focusing on performance.
Software: Practice and Experience, 49 (3), 341–360.

Georges, A., Buytaert, D., & Eeckhout, L. (2007). Statistically rigorous java performance
evaluation. ACM SIGPLAN Notices, 42 (10), 57–76.

Guo, F., Yu, L., Tian, S., & Yu, J. (2015). A workflow task scheduling algorithm based on
the resources’ fuzzy clustering in cloud computing environment. International Journal
of Communication Systems, 28 (6), 1053–1067.

Gupta, I., Gupta, S., Choudhary, A., & Jana, P. K. (2019). A hybrid meta-heuristic approach
for load balanced workflow scheduling in iaas cloud. In International conference on
distributed computing and internet technology (ICDCIT) (pp. 73–89).

Haugg, I. G., Frantz, R. Z., Roos-Frantz, F., Sawicki, S., & Zucolotto, B. (2019). Towards
optimisation of the number of threads in the integration platform engines using
simulation models based on queueing theory. Revista Brasileira de Computação
Aplicada, 11 (1), 48–58.

Hilman, M. H., Rodriguez, M. A., & Buyya, R. (2018). Multiple workflows scheduling in
multi-tenant distributed systems: A taxonomy and future directions. ACM Computing
Surveys, 1 (1), 1–33.

29

Hohpe, G. (2005). Your coffee shop doesn’t use two-phase commit [asynchronous messaging
architecture]. IEEE software, 22 (2), 64–66.

Hohpe, G., & Woolf, B. (2004). Enterprise integration patterns: Designing, building, and
deploying messaging solutions. Addison-Wesley Professional.

Howell, F., & McNab, R. (1998). Simjava: A discrete event simulation package for java
with applications in computer systems modelling. Proceedings of the First International
Conference on Web-based Modelling and Simulation, 51–56.

Jedlitschka, A., & Pfahl, D. (2005). Reporting guidelines for controlled experiments in software
engineering. In International Symposium on Empirical Software Engineering (ESEM)
(pp. 95–104).

Jeon, S., & Jung, I. (2018). Experimental evaluation of improved IoT middleware for flexible
performance and efficient connectivity. Ad Hoc Networks, 70 , 61–72.

Kanagaraj, K., & Swamynathan, S. (2016). A study on performance of dominant scheduling
algorithms on standard workflow systems in cloud. In International conference on
informatics and analytics (ICIA) (pp. 1–6).

Pinto, G., Castor, F., & Liu, Y. D. (2014). Understanding energy behaviors of thread
management constructs. In ACM SIGPLAN Notices (Vol. 49, pp. 345–360).

Qureshi, K., Shah, S. M. H., & Manuel, P. (2011). Empirical performance evaluation of
schedulers for cluster of workstations. Cluster computing , 14 (2), 101–113.

Riaz, R., Kazmi, S. H., Kazmi, Z. H., & Shah, S. A. (2018). Randomized dynamic quantum cpu
scheduling algorithm. Journal of Information Communication Technologies and Robotic
Applications, 19–27.

Ritter, D., May, N., & Rinderle-Ma, S. (2017). Patterns for emerging application integration
scenarios: A survey. Information Systems, 67 , 36–57.

Ritter, D., Rinderle-Ma, S., Montali, M., & Rivkin, A. (2021). Formal foundations for
responsible application integration. Information Systems, 101 , 101439.

Saifullah, A., Li, J., Agrawal, K., Lu, C., & Gill, C. (2013). Multi-core real-time scheduling
for generalized parallel task models. Real-Time Systems, 49 (4), 404–435.

Sargent, R. G. (2013). Verification and validation of simulation models. Journal of simulation,
7 (1), 12–24.

Schwarzkopf, M., Konwinski, A., Abd-El-Malek, M., & Wilkes, J. (2013). Omega: Flexible,
scalable schedulers for large compute clusters. Proceedings of the 8th ACM European
Conference on Computer Systems (EuroSys), 351–364.

Shoukry, A., Khader, J., & Gani, S. (2019). Improving business process and functionality
using IoT based E3-value business model. Electronic Markets, 1 , 1–10.

Thakur, V., & Kumar., S. (2018). A pragmatic study and analysis of load balancing techniques
in parallel computing. In Information and decision sciences (pp. 447–454).

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., & Wesslén, A. (2012).
Experimentation in software engineering. Springer Science & Business Media.

Wood, D. C., & Forman, E. H. (1971). Throughput measurement using a synthetic job stream.
In Fall joint computer conference (pp. 51–56).

Zhang, T., Pota, H., Chu, C.-C., & Gadh, R. (2018). Real-time renewable energy incentive
system for electric vehicles using prioritization and cryptocurrency. Applied Energy ,
226 , 582–594.

Zhang, Y., Shen, Z.-J. M., & Song, S. (2018). Exact algorithms for distributionally β-robust
machine scheduling with uncertain processing times. INFORMS Journal on Computing ,
30 (4), 662–676.

30

Appendices

A. Profiles of the integration processes

A.1. Profiles of integration processes

A.1.1. Processing Order (IP1)

• Identification of the integration process tasks:
VectorIdTask = {1,2,3,4,5,6,4,8,9,10,11,12,13,14,15,16,17};

• Identification of the next task of each task of the integration process:
VetorNextTask = {{2}, {3}, {4,12,17}, {5,7}, {6}, {7}, {8}, {9}, {10}, {11},
{}, {13,15}, {14}, {15}, {16}, {9}, {}};

• Identification of the execution time range of each task of the integration process:
VetorTimeExec = {{1,2}, {2,3}, {2,3}, {2,3}, {1,2}, {1,2}, {3,4}, {1,2}, {3,4},
{1,2}, {1,2}, {2,3}, {1,2}, {1,2}, {3,4}, {1,2}, {1,2}};

• Identification of the logic operation type of each task of the integration process:
VetorOper= {{}, {}, {or}, {and}, {}, {}, {}, {}, {}, {}, {}, {and}, {}, {}, {},
{}, {}};

• Identification of the parallel tasks of the integration process:
VetorParallelTask = {0,0,0,0,0,0,0,0,0,0,0,4,5,6,7,8,4};

• Identification of the last tasks of the integration process:
LastTask = {11,17}.

A.1.2. Huelva’s County Council (IP2)

• Identification of the integration process tasks:
VectorIdTask = {1,2,3,4,5,6,4,8,9,10,11,12,13,14,15,16,17,18,19};

• Identification of the next task of each task of the integration process:
VetorNextTask = {{3}, {3}, {4}, {5,7}, {6}, {7}, {8}, {9}, {10,18}, {11},
{12,14}, {13}, {14}, {15}, {16}, {17}, {}, {19}, {}};

• Identification of the execution time range of each task of the integration process:
VetorTimeExec = {{1,2}, {1,2}, {3,4}, {2,3}, {1,2}, {1,2}, {3,4}, {1,2}, {2,3},
{1,2}, {2,3}, {1,2}, {1,2}, {3,4}, {1,2}, {1,2}, {1,2}, {1,2}, {1,2}};

• Identification of the logic operation type of each task of the integration process:
VetorOper= {{}, {}, {}, {and}, {}, {}, {}, {}, {or}, {}, {and}, {}, {}, {}, {},
{}, {}, {}, {}};

• Identification of the parallel tasks of the integration process:
VetorParallelTask = {0,1,0,0,0,0,5,0,0,0,0,0,0,12,0,0,0,16,17};

31

• Identification of the last tasks of the integration process:
LastTask = {17,19}.

A.1.3. Real Estate (IP3)

• Identification of the integration process tasks:
VectorIdTask = {1,2,3,4,5,6,4,8,9,10,11,12,13,14,15,16,17};

• Identification of the next task of each task of the integration process:
VetorNextTask = {{5}, {5}, {4}, {5}, {6}, {7,8}, {8}, {9}, {10,11}, {11}, {12},
{13,16}, {14}, {15}, {}, {17}, {}};

• Identification of the execution time range of each task of the integration process:
VetorTimeExec = {{1,2}, {1,2}, {1,2}, {1,2}, {3,4}, {2,3}, {1,2}, {3,4}, {2,3},
{1,2}, {3,4}, {2,3}, {1,2}, {1,2}, {1,2}, {1,2}, {1,2}};

• Identification of the logic operation type of each task of the integration process:
VetorOper= {{}, {}, {}, {}, {}, {and}, {}, {}, {and}, {}, {}, {or}, {}, {}, {},
{}, {}};

• Identification of the parallel tasks of the integration process:
VetorParallelTask = {0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,13,14};

• Identification of the last tasks of the integration process:
LastTask = {15,17}.

32

A.2. Flowchart of the simulator

Integra on Process Pro le

Figure 6. Flowchart of the IPS.

33

