
A Preliminary Comparison of Formal Properties on Orthogonal Variability

Model and Feature Models

Fabricia Roos-Frantz

Universidade Regional do Noroeste

do Estado do Rio grande do Sul (UNIJUÍ)

São Francisco, 501.

Ijuı́ 98700-000 RS (Brazil)

frfrantz@unijui.edu.br

Abstract

Nowadays, Feature Models (FMs) are one of the most

employed modelling language by managing variability in

Software Product Lines (SPLs). Another proposed language

also in order to managing variability in SPLs is the Or-

thogonal Variability Model (OVM). Currently, the differ-

ences between both languages, FMs and OVM, are not so

clear. By considering that a formal language should have

a well defined syntax and semantics, some authors had de-

fined syntax and semantics of FMs explicitly. However, in

in the definition of OVM, its semantic domain and semantic

function are not well discussed. Without this clear defini-

tion, we could have a misinterpretation when using OVM

diagrams. Our aim in this paper is to clarify and better ex-

plore the abstract syntax, the semantic domain and the se-

mantic function of OVM, and to emphasize the differences

between FMs and OVM concerning such aspects.

1. Introduction and Motivation

Documenting and managing variability is one of the two

key properties characterising Software Product Line Engi-

neering (SPLE) [7]. Over the past few years, several vari-

ability modeling techniques have been developed aiming to

support variability management [10]. In this paper we take

into account two modelling languages: FMs, that are one of

the most popular, and OVM. We want to discuss about the

differences between both languages.

FM was proposed for the first time in 1990 and currently

it is the mostly used language to model the variability in

SPL. This model capture features commonalities and vari-

abilities, represents dependencies between features, and de-

PhD student at the University of Sevilla

termines combinations of features that are allowed and for-

bidden in the SPL [4].

OVM is a variability model proposed by Klaus Pohl et

al. [7] for managing the variability in the applications in

terms of requirements, architecture, components and test ar-

tifacts. In an OVM only the variability of the product line

is documented. In this model a variation point (VP) docu-

ments a variable item, i.e a system functionality which can

vary and a variant (V) documents the possible instances of a

variable item. Its main purpose are: (1) to capture the VPs,

i.e. those items that vary in an SPL, and (2) to represent Vs,

i.e. how the variable items can vary and (3) to determine

constraints between Vs, between Vs and VPs and between

VPs and VPs.

A fundamental concern, when we want to do a reasoning

about a language, is to make it a formal language [4]. In

the words of Schobbens et al. [9], “formal semantics is the

best way to avoid ambiguities and to start building safe au-

tomated reasoning tools for a variety of purposes including

verification, transformation, and code generation”. Accord-

ing to Harel and Rumpe [3], a language is formal when it

has a well defined syntax (the notation) and a well defined

semantics (the meaning).

Nowadays we have a well defined syntax and semantics

to FM languages [9], i.e. we can construct FMs without

misinterpretation, because we know what is a correct model

and what it means exactly. However, if we are working with

OVM we are not sure about the correct meaning of these

models and also about the real differences between FMs and

OVM. This paper focus on doing a review about OVM’s

syntax and semantics, which were proposed in the literature,

and discuss about the differences between FMs and OVM in

order to avoid misunderstanding.

The remainder is organized as follows: Section 2 dis-

cusses about the abstract syntax of OVM and compares

some of its properties with FMs; Section 3 we comment

VaMoS'09

121

about the OVM’s semantic domain and FM’s semantic do-

main, and we suggest another semantic domain to OVM;

Section 4 we discuss about the OVM’s semantic function

and FM’s semantic function; Section 5 presents our conclu-

sions.

The first feature model was proposed in 1990 [5] as part

of the method Feature-Oriented Domain Analysis (FODA).

Since then, several extensions of FODA have been pro-

posed. A FM represents graphically a product line by means

of combinations of features. A FM is composed of two main

elements: features and relationships between them. Fea-

tures are structured in a tree where one of these features is

the root. A common graphical notations is depicted in Fig-

ure 1.

Figure 1: Graphical notation for FM

Figure 2 is an example of feature model inspired by

the mobile phone industry. It defines a product line where

each product contains two features: Call and Connectivity.

Where Call is a mandatory feature and Connectivity is an

optional feature. It means that all application that belongs

to this SPL must have the feature Call and can have the fea-

ture Connectivity. Each product must have at least one of

the two types of call, voice or data, because of the relation-

ship OR. If the product has the feature Connectivity, then it

must have at least one of the two features, USB or Wifi.

Figure 2: Example of FM

OVM is a proposal for documenting software product

line variability [7]. In an OVM only the variability of the

product line is documented. In this model a variation point

(VP) documents a variable item and a variant (V) docu-

ments the possible instances of a variable item. All VPs

are related to at least one V and each V is related to one VP.

Both VPs and Vs can be either optional or mandatory (see

Figure 3). A mandatory VP must always be bound, i.e, all

the product of the product line must have this VP and its Vs

must always be chosen. An optional VP does not have to

be bound, it may be chosen to a specific product. Always

that a VP, mandatory or optional, is bound, its mandatory

Vs must be chosen and its optional Vs can, but do not have

to be chosen. In OVM, optional variants may be grouped in

alternative choices. This group is associated to a cardinal-

ity [min...max] (see Figure 3). Cardinality determines how

many Vs may be chosen in an alternative choice, at least

min and at most max Vs of the group. Figure 3 depicts the

graphical notation for OVMs [7, 6].

Figure 3: Graphical notation for OVM

In OVM, constraints between nodes are defined graph-

ically. A constrain may be defined between Vs, VPs and

Vs and VPs and may be an excludes constraint or a re-

quires constraint. The excludes constraint specifies a mu-

tual exclusion, for instance, a variant excludes a optional

VP means that if the variant is chosen to a specific prod-

uct the VP must not be bound, and vice versa. A requires

constraint specifies an implication, for instance, a variant

requires a optional VP means that always the variant is part

of a product, the optional VP must be also part of that prod-

uct. Figure 4 depicts a example of an OVM inspired by the

mobile phone industry.

2. Syntax: abstract and concrete syntax

In graphical languages, such as FMs and OVM, the phys-

ical representation of the data is known as concrete syntax.

In other words, what the user see, like arrows and squares,

is only the concrete syntax. Defining rigid syntactics rules

VaMoS'09

122

Hierarchical Multiple Variation Complex

Nodes structure inheritance Points constraints

FM (Batory [1]) Features yes no not explicit yes

OVM-KP (Klaus Pohl et al. [7]) VPs and Vs no yes Mandatory no

OVM-M (Metzger et al. [6]) VPs and Vs no no Mandatory / Optional no

Table 1: Summary of abstract syntax properties.

Figure 4: OVM example: mobile phone product line

in visual languages is a difficult task, for this reason, a com-

mon practice is to define a formal semantics of the language

based on its abstract syntax. The abstract syntax is a repre-

sentation of data that is independent of its physical repre-

sentation and of the machine-internal structures and encod-

ings [4].

The first OVM’s abstract syntax was proposed by Klaus

Pohl et al. [7]. The authors proposed a metamodel, which

describes what is a well-formed diagram. Later, Metzger

et al. [6] proposed an OVM’s abstract syntax which use a

mathematical notation to describe a well-formed diagram.

In this section we will compare both abstract syntax, un-

derlining the main differences between them. At the same

time, we will compare the properties of OVM language with

FMs languages according to the abstract syntax. In order to

compare both languages we will use the FM proposed by

Batory [1], and we will refer to FMs as the proposed in [1].

Table 1 compares some properties about different ab-

stract syntaxes. Each row of this table represents an ab-

stract syntax proposed in the literature. The first one is FM-

Batory, which was proposed in [1]. The second is OVM-

KP, which was proposed in [7] and the third is OVM-M,

proposed in [6]. Each column represents a property of the

language. Bellow we describe and comment each one of

these properties.

Nodes. We use the term “nodes” to say what a node

represents in a graph. For example, in a FM the nodes

of the graph are features. It means that each node rep-

resents an increment in system functionality. On the

other hand, either in OVM-KP or OVM-M, the nodes

are VPs (variation points) and Vs (variants), i.e. each

functionality of the system that vary is represented by

a VP, and each V represents how the VP can vary.

Hierarchical structure. This property states if a graph

has a hierarchical structure or not. The FM is repre-

sented by a tree and there is one node that is a root.

Each node of the tree, with the exception of the root,

have one parent. On the other hand, OVM diagrams

do not have a hierarchical structure. This diagrams

are composed for variation points, which always have

child variants. In this diagram there is no a root node,

the diagram is composed of a set of VPs with its pos-

sible variants.

Multiple inheritance. Happens when a well formed di-

agram allows a node to have two different parents. The

FM does not allow a feature to have more than one par-

ent. When dealing with OVM, this property is defined

in two different ways. In Pohl’s abstract syntax the

diagram can have variants with different VP parents;

however, in the second proposal, a variant can have

only one VP parent.

Variation Points. Here we consider if graph nodes rep-

resent variation points explicitly. In FM all nodes are

features, there is no explicit way to represent varia-

tion points. The way that FMs represent the variation

points, identified in requirements, is through optional

or alternative feature. On the other hand, in OVM, all

variable item in an SPL is represented by a specific

node called VP. In OVM-KP a VP only can be manda-

tory, i.e. all products of an SPL share this VP. How-

ever, in OVM-M, a VP can be mandatory or optional,

i.e. if it is mandatory it will be in all products of the

SPL; otherwise if it is optional, it will be only in those

products which such VP was bound.

Complex constraints. In both languages, FM and

OVM, in addition to diagrams there are constraints that

restrict the possible combinations of nodes. In FM we

can specify constraints more complex than only ex-

cludes and requires. For example, we can write con-

straints like: (F requires A or B or C), this means F

needs features A, B, or C or any combination thereof.

VaMoS'09

123

In OVM, only constraints of type excludes and requires

can be specified.

3. Semantics: semantic domain

According to Harel and Rumpe a language’s semantics

“must provide the meaning of each expression and that

meaning must be an element in some well defined and well-

understood domain” [3]. In this definition we have two im-

portant information about the definition of semantics. First

of all the semantics must give a meaning to each element

defined in the language’s syntax. Second, to define such

meaning we need a well defined and well-understood do-

main. This domain, called “semantic domain” is an ab-

straction of reality, in such a way that determine what the

language should express.

When we were reviewing the literature we realized that

the OVM models are treated like FMs, namely, they rep-

resent the same domain. But, what means to represent the

same domain? Have they the same semantic domain? Ac-

cording to Batory [1] a FM represents a set of products, and

each product is seen as a combination of features. Then, a

FM represents all the products of the SPL. By considering

this, the semantic domain of a FM is considered a prod-

uct line [9], i.e. the set of sets of combinations of features

.

The semantic domain of OVM is also considered a prod-

uct line [6]. Hence, product line is a set of products and

each product is a combination of VPs and Vs, then the se-

mantic domain of OVM is a set of sets of combinations of

VPs and Vs, i.e. the .

Until now, the semantic domain of OVM has been con-

sidered like in FM, the set of sets of combinations of nodes.

But, if in OVM we were interested only in variations, we

can consider that the semantic domain of OVM is a set of

sets of combinations of only variants. Then, the semantic

domain of OVM is a product line and each product is a set

of variants, i.e. the set of sets of combinations of variants

. In this way we consider that each product of the

product line has only variants and not variation points. For

example, for the model of the Figure 4 the semantic domain

is the , where V is the set Voice, Data, Wifi, USB .

4. Semantics: semantic function

The definition of semantics, proposed by Harel and

Rumpe, stated that it must provide a meaning of each ex-

pression and that meaning must be an element in some do-

main. The domain is the semantics domain () and the ex-

pressions are represented by the syntactic domain (). Ac-

cording to Heymans et al. [4], the set of all data that comply

with a given abstract syntax is called the syntactic domain.

The function that relates () and () by giving a meaning

to each expression is called semantic function (). Then,

. To every diagram of , the function

assigns a product line in .

Figure 5: Semantic function of FM

Figure 5 gives an illustration of the FM’s semantic func-

tion. In this figure we have two different FMs that com-

ply with a FM’s abstract syntax, and we have a seman-

tic function that assigns to each diagram a different prod-

uct line in the semantic domain where

, i.e the power set of set of features. For ex-

ample, if we have those two diagrams of the Figure 6 (a)

and (b), and we apply this semantic function, we will have

respectively the product line M (fm1) and M (fm2).

M (fm1)= f1,f2,f3,f4,f7 , f1,f2,f3,f4,f7,f6 ,

f1,f2,f3,f5,f7 , f1,f2,f3,f5,f7,f6

M (fm2)= f1,f2,f4 , f1,f2,f5 , f1,f2,f4,f3,f6 ,

f1,f2,f5,f3,f6 ,

Figure 7 depicts an illustration of the OVM’s seman-

tic function proposed by Metzger et al. [6]. In this figure,

each different OVM diagram that comply with the OVM’s

abstract syntax are assigned by the semantic function to

each product line in the semantic domain. The seman-

tic function is , where

. In this case, Metzger et al. define that

in OVM a product line is defined like a combination of VPs

and Vs. For example, if we have the two diagrams of the

Figure 8 (a) and (b), and we apply the semantic function, we

will have respectively the product line M (ovm1)

(a) (b)

Figure 6: Concrete syntax of fm1 (a) and fm2 (b)

VaMoS'09

124

and M (ovm2).

Figure 7: Semantic function of OVM-M

Figure 8: Concrete syntax of ovm1 (a) and ovm2 (b)

M (ovm1)= VP1,V1,VP2,V2 ,

VP1,V1,VP2,V2,VP3,V4 , VP1,V1,VP2,V3 ,

VP1,V1,VP2,V3,VP3,V4

M (ovm2)= VP1,V1 , VP1,V1,V2 ,

VP1,V1,V2,VP2 , VP1,V1,V2,VP2,V3 , VP1,V1,VP2 ,

VP1,V1,VP2,V3

If we consider that a semantic domain of OVM is

, we have another semantic function. But, as we

already have the semantic function to the semantic domain

, we can achieve the semantic domain

excluding all VPs of the products. For example, the product

line M (d2) would be

M (d2)= V1 , V1,V2 , V1,V2,V3 ,

V1,V3

We can notice that with this semantic domain ()

we have 4 products instead of 6, because two of them are

duplicated V1 and V1,V2 . This happens because of

the Optional VP2. When we consider that the VPs are part

of the products, and in the model we have a optional VP

with an optional child, we will have two products that are

the same when implemented. For example, the products

VP1,V1 and VP1,V1,VP2 . In fact the functionality that

will be implemented will be V1, both products are the same.

To discuss about the difference between both OVM’s se-

mantic domain, we will use as an example the equivalence

problem discussed in [8]. The equivalent models operation

checks whether two models are equivalent. Two models are

equivalent if they represent the same set of products [2].

According to OVM-M, if we observe the example depicted

in the Figure 9, we can say that both models are equivalent,

because they represent the same set of products. In the prod-

uct of the OVM , Media is a variation point and in OVM ,

Media is a variant. In this example we have considered that

the semantic domain of OVM was , then the

models seem to be equivalents because they represent the

same set of products: Media, MP3, MP4 = MP3, Me-

dia, MP4 .

Figure 9: Equivalent models?

But, if we consider that the semantic domain of OVM is

, then the models are not equivalents because they

represent different set of products, MP3, MP4 Media,

MP4 .

5. Conclusion and future work

The main contribution of this paper is to go forward in

the discussion about the proposal existent in the literature

regarding the formalization of OVM. We want to clarify

what are the main differences between FMs and OVM to

avoid future misinterpretation. There are differences be-

tween their abstract syntax like, the sort of nodes, the graph

structure, types of information that capture, and the con-

straint that can be specified. On the other hand, in spite of

VaMoS'09

125

their semantic domain is considered the same, i.e a set of

sets of combinations of nodes (), we consider

that should be possible define the semantic domain of OVM

as a set of sets of combinations of variants (). We

think that we need to find out what is the most adequate

semantic domain to deal with OVM in order to design a

reasoning tool.

We trust that a well understood formal language is the

starting point for our future work toward a safe automated

reasoning tool for analysis of OVM models. In order to

provide this tool, the next step of our work is to specify all

the analysis operations that may be applied to OVM and

formally define them.

6. Acknowledgement

We would like to thank David Benavides and Antonio

Ruiz Cortés for their constructive comments. This work

was partially supported by Spanish Government under CI-

CYT project Web-Factories (TIN2006-00472) and by the

Andalusian Government under project ISABEL (TIC-2533)

and Evangelischer Entwicklungsdienst e.V. (EED).

References

[1] D. S. Batory. Feature models, grammars, and propositional

formulas. In Software Product Lines Conference, volume

3714 of Lecture Notes in Computer Sciences, pages 7–20.

Springer–Verlag, 2005.
[2] D. Benavides. On the automated analysis of software prod-

uct lines using feature models. PhD thesis, University of

Sevilla, 2007.
[3] D. Harel and B. Rumpe. Meaningful modeling: What’s the

semantics of “semantics”? IEEE Computer, 37(10):64–72,

2004.
[4] P. Heymans, P.-Y. Schobbens, J.-C. Trigaux, Y. Bontemps,

R. Matulevicius, and A. Classen. Evaluating formal proper-

ties of feature diagram languages. IET Software, 2(3):281–

302, June 2008.
[5] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peter-

son. Feature–Oriented Domain Analysis (FODA) Feasibility

Study. Technical Report CMU/SEI-90-TR-21, Software En-

gineering Institute, Carnegie Mellon University, November

1990.
[6] A. Metzger, K. Pohl, P. Heymans, P.-Y. Schobbens, and

G. Saval. Disambiguating the documentation of variabil-

ity in software product lines: A separation of concerns, for-

malization and automated analysis. In Requirements Engi-

neering Conference, 2007. RE ’07. 15th IEEE International,

pages 243–253, 2007.
[7] K. Pohl, G. Böckle, and F. J. van der Linden. Software Prod-

uct Line Engineering: Fundations, Principles and Tech-

niques. Springer–Verlag, Berlin, DE, 2005.
[8] Roos-Frantz and S. Segura. Automated analysis of orthogo-

nal variability models. a first. In 1st Workshop on Analyses

of Software Product Lines (ASPL08), 2008.

[9] P.-Y. Schobbens, P. Heymans, J.-C. Trigaux, and Y. Bon-

temps. Generic semantics of feature diagrams. Computer

Networks, 51(2):456–479, Feb 2007.

[10] M. Sinnema and S. Deelstra. Classifying variability mod-

eling techniques. Information & Software Technology,

49(7):717–739, 2007.

VaMoS'09

126

