Towards a Software Toolkit for Specifying and Monitoring
Smart Contracts in the Application Integration Domain*

Mailson Teles-Borges'©, Eldair F. Dornelles'©, Fabricia Roos-Frantz'®,
Antonia M. Reina-Quintero’®, Sandro Sawicki!®, José Bocanegra®®, Rafael Z. Frantz'

1Unijui University — Ijui/RS — Brazil
mailson.borges@sou.unijui.edu.br
{eldair.dornelles, frfrantz, sawicki, rzfrantz}@unijui.edu.br
2University of Seville — Seville — Spain
reinaqu@us.es
3Universidad Distrital Francisco José de Caldas — Bogotd — Colombia

jjbocanegrag@udistrital.edu.co

1. Introduction

Domain-Specific Languages (DSLs) abstract problems through high-level con-
structs closely aligned with their domain. Tools such as a runtime for code execution or
editors that support the DSL syntax play a crucial role in facilitating or enabling DSL
adoption for domain users [Biinder and Kuchen 2020]. However, the DSL ecosystem of-
ten lacks the necessary attention. Conversely, Jabuti DSL [Dornelles et al. 2022]], a DSL
for the Enterprise Application Integration (EAI) domain, has been proposed to specify
integration constraints, such as the maximum number of requests allowed, and has been
enhanced by tools that enable the Jabuti DSL implementation in real scenarios.

The Jabuti DSL ecosystem uses a VSCode-based implementation instead of adopt-
ing Model-Driven Tools like the Eclipse Modelling Framework. On the one hand, these
tools facilitate the implementation process; on the other hand, they often cater to IT
professionals rather than domain experts. Our goal is to deliver a comprehensive envi-
ronment that enables the transformation of Jabuti DSL smart contracts into executable
smart contracts, automating the deployment, monitoring, and execution process within
the blockchain platform, and finally triggering events to compensate for potential clause
violations. In the next section, we outline the Software Toolkit, its components, and their
primary functionalities.

2. Software Toolkit

The software toolkit includes Jabuti CE, a Transformation Engine, and the Moni-
toring System.

— Jabuti CH|is an editor for writing contracts in Jabuti DSL. It includes the VSCode
Plug-in and the Language Server. The VSCode Plug-in connects to the VSCode Edi-
tor and integrates with both the Language Server and the Transformation Engine. The

*Research funded by the Co-ordination for the Brazilian Improvement of Higher Education Personnel
(CAPES) and the Brazilian National Council for Scientific and Technological Development (CNPq) under
grants 311011/2022-5, 309425/2023-9, 402915/2023-2. Thanks to Carlos Molina-Jimenez from Cambridge
University for his valuable feedback in early versions of this work.

Thttps://github.com/gca-research-group/jabuti-ce-vscode-plugin


https://orcid.org/0000-0001-7674-854X
https://orcid.org/0000-0001-6585-3432
https://orcid.org/0000-0001-9514-6560
https://orcid.org/0000-0003-3698-6302
https://orcid.org/0000-0002-7960-0775
https://orcid.org/0000-0002-8342-7346
https://orcid.org/0000-0003-3740-7560
https://github.com/gca-research-group/jabuti-ce-vscode-plugin

Language Server provides editor features such as code formatting, syntax and semantic
validation, auto-completion, colour highlighting, and code transformation.

— Transformation Engine?| transforms contracts written in Jabuti DSL into executable
smart contracts. It consists of five components: Grammar Parser, Validators, Canoni-
cal Parser, Code Generator, and Code Formatter. The Jabuti DSL grammarrf] is based
on ANTLR, so the Grammar Parser also uses ANTLR to generate the Abstract Syntax
Tree (AST) of the smart contract. The AST is a structured data format that links each
token value in a hierarchical sequence of relationships. Validators, also implemented us-
ing ANTLR, perform syntactic and semantic checks. The Canonical Parser converts the
generated AST into the format required by the Code Generator. The Code Generator
uses a template rendering library, currently ejs [EJS 2025], to transform the Jabuti DSL
smart contract into the format of target platform. Finally, the Code Formatter corrects
formatting errors.

— Monitoring Systenﬂ is as an intermediary layer between integrated applications and
blockchain platforms. It manages blockchain connections and smart contract execution.
It captures execution events and detects clause violations. The system forwards events
to integrated applications, which can use them for internal business processes. Designed
as an event-driven software, the Monitoring System triggers its services on demand. It
consists of three main components: Event Handler, Contract Invoker, and Event Updater.
The Event Handler polls and prepares events awaiting processing. The Contract Invoker
connects to the target blockchain, executes the smart contract, and captures execution
events. Lastly, the Event Updater evaluates the Contract Invoker’s response and makes
the results available to the integrated application.

3. Future Work

We plan to evaluate the adoption of artificial intelligence to automate the transfor-
mation process that runs within the Transformation Engine. Since we are working within
an enterprise context, we have chosen Hyperledger Fabric as the blockchain platform to
validate our tools. Managing and deploying a Hyperledger Fabric network can be cum-
bersome, even for testing purposes. Therefore, we propose developing a tool to automate
the deployment of local networks. As a middleware component, the Monitoring System
must endure high workloads. Thus, we intend to evaluate its performance under stressful
conditions.

References

Biinder, H. and Kuchen, H. (2020). Towards multi-editor support for domain-specific
languages utilizing the language server protocol. In Model-Driven Engineering and
Software Development (MODELSWARD ), pages 225-245.

Dornelles, E. F., Parahyba, F., Frantz, R. Z., Roos-Frantz, F., Reina-Quintero, A. M.,
Molina-Jiménez, C., Bocanegra, J., and Sawicki, S. (2022). Advances in a DSL to
specify smart contracts for application integration processes. In Ibero-American Con-
ference on Software Engineering (CIbSE), pages 46—60.

EJS (2025). EJS. https://ejs.co/. Accessed: January 20, 2025.

Zhttps://github.com/gca-research-group/jabuti-ce-transformation-engine
3https://github.com/gca-research- group/jabuti- ce-jabuti-dsl- grammar
“https://github.com/gca-research- group/smart-contract-execution-monitoring-system


https://ejs.co/
https://github.com/gca-research-group/jabuti-ce-transformation-engine
https://github.com/gca-research-group/jabuti-ce-jabuti-dsl-grammar
https://github.com/gca-research-group/smart-contract-execution-monitoring-system

	Introduction
	Software Toolkit
	Future Work

