

Carlos Molina's Research Interests

Introduction to University of Cambridge and its Department of Computer Science and Technology (the Computer Laboratory)

Carlos Molina-Jimenez

Carlos.Molina@cl.cam.ac.uk

http://www.cl.cam.ac.uk/~cm770/

Unijui 17 Oct 2019

We Live in a Centralised World

- Governments, banking services, health services, Internet services, and other services are centralised systems.
- A system is centralised if it includes a single authority that we must trust
 - · It controls and decides its operation and destiny.

UNIVERSITY OF CAMBRIDGE

1

The University of Cambridge and the City

UNIVERSITY OF CAMBRIDGE

University of Cambridge: how big is it? WIVERSITY OF CAMBRIDGE 19 955 students. 12 340 undergraduates. 7 610 postgraduates. Academic staff 3 615 (Vice-Chancellor Stephen Toope). It has 31 colleges: Trinity, Saint John's, King's, Queen's, etc. 117 Nobel Laureates.

The University of Cambridge: Trinity College

The University of Cambridge: Queen's College

The University of Cambridge: people (2)

UNIVERSITY OF CAMBRIDGE

The Department of Computer Science and Technology

• The Computer Laboratory consists of 41 academic staff, 29 support staff 5 research fellows, 81 post-doctoral research workers and 119 PhD students.

Research Directions in the Computer Lab

- Research groups: Artificial Intelligence (AI), Computer Architecture (CA), Digital Technology, Graphics and Interaction, Natural Language and Information Processing, Programming Logics and Semantics, Security and Systems Research (SR).
 - System Research Group: networks, operating systems, multimedia, mobile and sensor systems, unikernels, distributed systems, decentralised technologies.

Realistic examples where Centralised Systems Fail

- The newly elected Mexican president aims at delivering social money directly to 22 million people directly, i.e., through G2P (Government to People) transactions.
 - Elderly, disable, students, indigenous, etc, people, from neglected social classes.
- This is a technically challenging operation.
 - Most of the beneficiaries live in remote regions like Costa Chica of the Guerrero state.
 - I know the region and can tell you about it.

The Programme Needs to Reach Neglected People

We Need to Deliver Money to People with no Bank Accounts

We Need to Identify People with no Legal Identity

Do we have Technology for building Decentralised Systems?

- Yes, said Satoshi Nakamoto (the inventor of Bitcoin) in 2008.
- He has demonstrated it with a practical implementation.
- · How did they build the Bitcoin platform?
- There are several technologies for implementing decentralised systems:
 - edge-cloud,
 - · peer-to-peer networks
 - · community networks
 - blockchain.
 - etc.

Bitcoin– the Blockchain Platform that Shook the World in 2008

- Until 2008 the concept of decentralisation was meaningful only to computer scientist working on distributed systems.
- Satoshi Nakamoto shook the academic, industry and government sectors with his pioneering paper: *Bitcoin: A Peer-to-Peer Electronic Cash System.*
- · What is the novelty about Bitcoin?
 - Bitcoin is a creative aggregation of technologies developed in the 1980 including digital money, immutable file systems, cryptography, consensus algorithms.
- · What is all the fuzz about Bitcoin?
 - It is a decentralised platform that enable its user to send money to each other without the bank in the middle.
 - It inspired the development of decentralised systems in other application domains.

How does Bitcoin Keeps Track of Transactions?--textual explanation

- It relies on a decentralised (distributed) data structure called the Decentrealised Ledger (DL) or the blockchain.
 - · Indelible (append only).
 - · Decentralised (replicated at several nodes).
- It runs consensus algorithms to sychronised the replicas with each other: ensures that eventually, all of them have identical information about all transactions.
- It uses cryptographic techniques (eg. public key technology) to identify senders and receivers of money.
- It runs a **smart contract**: a piece of code that ensure (enforce) that only valid transactions take place: right amount of money and to the right receiver.

Medical Record on Blockchain with a Smart Contract

Univ Certificate on Blockchain with a Smart Contract

TODA-Q is Developing Technologies for the Digital Economy

- I have been collaborating with TODAQ (pronounced TODA Q).
- They are based in Toronto (<u>https://todaq.net/index.html</u>).
- · One of their central arguments
 - · In the past individual owned tangible objects only.
 - · Houses, cars, bikes, TVs, chairs, watches, horses, cats, ...
 - We had technology for trading them: buying, selling, re-selling, given as presents, renting, borrowing, etc.
 - The number of digital objects that an individual owns is already greater than the number of his tangible objects.
 - Photos, music, videos, emails, personal data, ...
 - We do not have technology for trading them.

Fair Exchange Assumptions

- Assumptions:
 - · Alice and Bob operate independently.
 - Their devices are logically and physically separated.
 - Docs are transferred by means of executing two complimentary operations *give* and *take* operations. Ex. % *give docA2B* and % *take docA2B*.

- The problem: it is hard to synchronise the states of the smart contract replicas.
 - This is the main issue that Bitcoin solved. It is called consensus.
- Main advantages:
 - Decentralised solution.
 - No need to trust or depend on a single trusted third party like a bank, and government.
 - Replicas can be deployed anywhere.
 - Anybody can verify the indelible historical logs.

Univ Certificate on Blockchain with a Smart Contract

Cheap Liquidity Cryptocurrency Cash in Supply Chain (see sweetbridge.com)

- 1. Alice (a member of a supply chain) can cook and sell pizzas.
- 2. Alice does not have cash to buy ingredients. Bank credits are unaffordable (interests too high).
- 3. Alice has assets (her car, house, etc.).
- 4. Alice deposits an asset (ex. car) in an asset vault and gets 100 sweetcoins (cryptocurrency).
- 5. Alice buys ingredients (cheese, tomato, ...) makes pizzas and sells them for 150 sweetcoins.
- 6. Alice pays her debt and recovers her car.

References

- "Bitcoin: A Peer-to-Peer Electronic Cash System", Satosh Nakamoto, 2008. 1.
- 2. "Mastering Bitcoin", Andreas M. Antonopoulos, O'Relilly, 2nd Edition 2017.
- "Feeding the Blockchain Beast", P. Fairley, Spectrum. IEEE Oct 2017 3.
- 4. "On and Off Blockchain Enforcement of Smart Contracts", Carlos Molina, ... Jon Crowcroft, arXiv, May 2018.
- 5. "A Model for Checking Contractual Compliance of Business Interactions", Carlos Molina-Jimenez, et. al. IEEE Tran on Services Computing, V.5 N.2 Apr-Jun 2012.
- 6. Distributed Ledger Technology: beyond block chain. A report by the UK Government Chief Scientific Adviser, 2015.
- "Trusting records: in Blockchain technology the answers?", Victoria Louise 7. Lemieux, Records Management Journal, V26, Issue 2016.

UNIVERSITY OF CAMBRIDGE

110

UNIVERSITY OF CAMBRIDGE