
Towards Automatic Code Generation for

EAI Solutions using DSL Tools

Hassan A. Sleiman , Abdul W. Sultán , Rafael Z. Frantz , Rafael Corchuelo

Universidad de Sevilla, ETSI Informática

Avda. Reina Mercedes, s/n. Sevilla 41012

Sytia Informática S.L.

Avda San Sebastián, no10, Local 1, Entreplanta. Huelva 21004

Universidade Regional do Noroeste do Estado do Rio Grande do Sul (Unijuı́)

Departamento de Tecnologia, São Francisco, 501. Ijuı́ 98700-000 RS Brasil

Abstract. Current companies count on heterogeneous information technology

applications to perform their activities. More often than not, they need to be

integrated so that the data they manage is kept in sync or to implement new

functionality. According to a recent report by IBM, companies spend from $5

to $20 on integration per dollar spent on developing new functionality. This ratio

argues for engineering solutions. The Model-Driven Architecture initiative pro-

motes the development of software systems at different levels of abstraction, and

Domain Specific Languages (DSLs) play a prominent role to reduce development

costs. By means of an appropriate DSL, software engineers can design a software

system that can later be deployed to a variety of specific platforms using auto-

matic transformations. Our proposal to reduce integration costs is a DSL called

Guaraná and a software tool to design and automatically deploy integration so-

lutions. Compared to the Enterprise Application Integration UML-profiles, DSLs

are more suitable to address problems in a particular domain and are a better

approach towards MDA.

Key words: Enterprise Application Integration, Domain Specific Language.

1 Introduction

We define an integration solution as a piece of software that co-ordinates a number of

applications exogenously. An integration solution may focus on: Enterprise Application

Integration (EAI); Business to Business Integration (B2BI); Enterprise Information In-

tegration (EII); Extract, Transform and Load (ETL) and Mashup. Our research focuses

on EAI.

EAI always happens inside the same company, in its own software ecosystem, and

the goal is to keep applications synchronized or to create new functionalities on the top

Partially funded by the Spanish National R&D&I Plan under grant TIN2007-64119, and the

Andalusian Local Government under grants P07-TIC-02602, and P08-TIC-4100. The work by

R.Z. Frantz was also funded by the Evangelischer Entwicklungsdienst e.V. (EED).

Actas JISBD 2009, pp.134-145, ISBN: 978-84-692-4211-7 c 2009 Los autores

XIV Jornadas de Ingenierı́a del Software y Bases de Datos 135

of them. Furthermore, when considering Business to Business Integration, the solution

necessarily involves applications that belong to different companies, so different soft-

ware ecosystems must be considered. This type of solution has the same aim of EAI,

but other aspects when building the integration solutionmust be considered, e.g. authen-

tication, external network communication failures, service availability, confidentiality,

non repudiation or accountability must be taken into account. In addition, standards like

Open Buying on the Internet (OBI), Electronic Document Interchange (EDI) and Com-

merce XML (cXML) are usually adopted for the communication amongst companies.

Also, it is very important to point here that those pieces of the integration solution de-

ployed inside a software ecosystem (or in case we deploy it as a whole, so the whole

solution) will have unlimited access to the application’s layers that are part of the same

ecosystem; to communicate with external applications that take part of the integration

solution, but belong to other companies’ software ecosystems, it must be done only by

means of the exposed public interfaces of those external applications.

According to a recent report, for each dollar spent on developing an application,

companies usually spend from 5 to 20 dollars to integrate it [11]. This claims for solu-

tions that can contribute to reduce this high cost of integration. Guaraná is a domain spe-

cific language to design integration solutions that aims to simplify the designing process

of solutions and produces platform independentmodels which can programmatically be

transformed into code of a specific technology [6]. In this paper, a realistic integration

problem was taken as motivation and validation to generate an application integration

solution using Guaraná’s language andWindowsWorkflow Foundation (WF) [4] as tar-

get deployment technology. In order to meet this goal we have created a software tool

prototype that implements domain specific concepts defined in Guaraná and thus allow

the visual design of integration solutions. The platform-independent model designed

with this software can be transformed into several integration technologies; however, in

this paper, we focus on Windows Workflow Foundation.

Actually, [7] describes patterns for EAI but no integration solution language is de-

fined, while Camel and Biztalk provide languages to describe integration solutions. In

the case of Camel, this language is textual whereas Biztalk, although it is a graphical

language, its not based on MDA. We understand that a DSL is a well focused language

developed to address problems in a particular domain providing a set of dedicated ab-

stractions, elements and notations with formalisation to assist the designer in expressing

its solution in the idiom and at the level of abstraction of its DSL. We are aware of the

existence of an EAI UML-profile [9] proposed by OMG as an extension for their UML

to support some concepts of EAI. While DSL is usually a small and well focused lan-

guage, UML-profiles intend to wide the scope of UML to cover the modelling of those

specific aspects not covered by the native UML elements [1]. This extension has some

limitations, such as the impossibility to introduce new modeling concepts that cannot

be expressed by extending existing UML elements. These characteristics contributes to

make UML-profiles more complex and difficult to use in some domains. This profile

also seems to be discontinued.

The transformation of an integration solution designed using Guaraná intoWindows

Workflow Foundation (WF) is just one among many options, since there are many other

possible target integration technologies like those discussed by authors in [5]. These au-

136 XIV Jornadas de Ingenierı́a del Software y Bases de Datos

thors also have designed a framework that can be used to compare different integration

technologies and they provide a comparison of five technologies in [3]. In [6] authors

use 15 properties of this comparison framework to evaluate the Guaraná’s language

against some most common integration technologies’ language.

This paper is organised as follows. Section 2, introduces the domain specific lan-

guage tools concept and briefly highlights important concepts of Guaraná; Section 3,

presents an integration problem from the University of Ijui (UNIJU Í) used to validate

our software tool; Section 4, presents the software tool prototype; Section 5, introduces

how the transformation process to Windows Workflow Foundation is carried out; and,

finally, in Section 6, we draw our conclusions.

2 Guaraná, a DSL for EAI

Domain Specific Languages (DSLs) are modelling languages designed to be used in

special types of problems. They are restricted to a domain and are characterised by

a high-level of abstraction that allows to express the concepts in the language of the

problem domain. Some examples of traditionally used DSLs include: SQL (for database

access), HTML (to describe the structure and content of a document) and BNF (to

describe context-free grammars).

The DSLs listed above are textual languages that are specified by describing the

language syntax (eg. using BNF), which requires a parser for the language. There are

also graphical DSLs based on a set of graphic symbols. Such DSLs have a direct corre-

spondence with the conceptual model. Besides, the description of these languages can

be done graphically. Considering the benefits of graphical DSLs, we have relied on this

kind of DSL to perform this work.

The most important aspects of a graphical DSL are: domain model, notation and

code generation. The domain model is a model of concepts described by the language.

The basic constructors in graphical DSLs are domain classes and domain relationships.

Domain classes represent the concepts of the problem domain whereas domain rela-

tionships represent relationships between these concepts. In addition, each domain class

and domain relationship contains a set of properties. An important aspect of the domain

model is the definition of constraints that the model must satisfy. These constraints are

used to verify that the created diagrams are valid. The notation is a set of graphical sym-

bols used to represent the domain model. The basic elements are shapes and connectors

that are the graphical representation of the domain classes and the domain relationships.

There is a direct correspondence between domain classes and domain relations and its

graphical representation. This graphical notation is used to edit the model.

2.1 Guaraná

Guaraná provides a set of domain specific constructors to design integration solutions,

which are described in the language’s metamodel [6], where a part of them are inspired

from the patterns at [7]. This language provides a very expressive and needful graph-

ical notation for these constructors, which allow us to visually design an integration

solution. Below we introduce the main constructors that can be seen in Fig. 1.

XIV Jornadas de Ingenierı́a del Software y Bases de Datos 137

Building Block: This is one of the most important concepts in our language, since it

represents a general constructor block where most of an integration solution processing

takes place. Although some building blocks receive no entry messages, a typical build-

ing block receives an inbound message, executes one or more atomic tasks, and then

makes the resulting message available for the next element(s)in the flow. Apart from

being composed of tasks, building blocks have ports through which they receive and

send messages. Basically, there are two kinds of building blocks: Wrappers and Pro-

cesses. Wrappers are used to connect an application to an integration solution. There-

fore, necessarily, one of its ports are connected with a specific application. Its internal

tasks prepares messages to be sent to the application and/or to other processes of the

integration solution. On the other hand, processes represent internal blocks where a

well-defined set of tasks perform a clear integration service of the solution. A process

is connected to other processes or wrappers by means of ports and integration links.

Task: Is the element responsible for a building block’s internal processing and al-

lows to turn a process or wrapper into a more complex processing unit. A task reads a

message from a slot, processes it and writes the result to the next slot, making it avail-

able for the next element inside the block. This message processing usually consists of

executing an integration pattern, e.g. enriching, translating, filtering or routing.

Slot: They are used inside building blocks to allow exchanging messages between

ports and tasks, and also between tasks,ie., they are essentially buffers.

Port: These elements abstract away from the method used to communicate build-

ing blocks and/or applications. Guaraná provides four types of ports, divided into two

categories: one-way ports and two-way ports. The former are used for internal or ex-

ternal communication whereas the latter are used for external communication with an

application. One-way ports are divided into entry port and exit port; two-way ports are

divided into solicit-responde port (solicitor port) and request-response port (responder

port). An entry port reads information from an application by accessing one or more of

its layers. The possible layers we consider here are: data layer, business layer, controller

layer and graphical user interface layer. An exit port does the opposite of an entry port,

that is, it writes information to an application’s layer. A solicitor port enables the inte-

gration solution to solicit information from an application. A responder port provides a

request-response interface that an application can use to send requesting messages and

receiving responses from the integration solution.

Integration Link: Used internally in an integration solution as a mean to transport

messages from one building block to another. Because ports represent entry/exit points

at a building block, integration links are those elements that actually connect them.

3 Validation example

We have validated our proposal by designing and generating code for an integration

problem found at UNIJUÍ. The goal was to automate the invoicing of the calls not re-

lated to te employee’s work activities. At UNIJUÍ, five applications involved in a hand-

crafted process to invoice their employees of the private phone calls they make using

the University’s phones. Applications run on a different platform and were designed

without integration concerns in mind. There is a Call Center System (CCS) that records

138 XIV Jornadas de Ingenierı́a del Software y Bases de Datos

Fig. 1. UNIJUÍ’s integration solution.

every call every employee makes from one of the telephones this university provides to

them. Every month, an analysis is performed to find out the price of the private phone

calls; such calls are debited to the employees by using a Payroll System (PS). There

is also a Human Resources System (HRS) that provides personal information about

the employees, including their names, phone numbers, social security numbers, and

so forth. There are two additional systems, a Mail Server (MS) and an SMS Notifier.

Figure 1 depicts these applications and our integration solution.

The integration flow for the solution presented in this example begins with a timer

task (3) inside the wrapper (1) of application CCS (2). This task creates an activation

message every five minutes and writes it to the slot (4) that connects it to the solicitor

port (5), which then is accessing. This message activates the solicitor port that extracts

all those calls which were made in the last five minutes. The only way to communi-

cate with this application is by means of its user interface since no clean interface is

provided, so the solicitor port will have to use a scrapper [2] to perform its work. The

port will return a big message that contains, probably, many phone calls and then writes

it to the next slot (6) in the flow. At this point a splitter task (7) is used to break the

incoming message into new messages that contains just one phone call each. The exit

port (8) of this wrapper reads each message from its previous slot and then sends it to

the integration link (9), making it available for the entry port (10) of the central process

block (11). This process starts with a filtering task (12)which filters out messages that

do not have a cost for the university, and allow just toll calls to remain in the flow. Those

messages are written to the next slot, and will be read by the next task, a replicator (13).

The replicator makes copies of the original message. In this case one copy is sent to the

wrapper of the application HRS and the other to the next element in the current process.

In this integration solution we need to append missing information about the employee

to the message, like: name, department, e-mail and mobile phone, and for this purpose

the HRS, that contain this information, is also integrated into our solution. The message

XIV Jornadas de Ingenierı́a del Software y Bases de Datos 139

copy received by the wrapper of HRS, through the entry port (15), will be processed by

a custom task (16). This task produces an outbound message that represents a database

query to be executed against the database using the solicitor port (17) of this wrapper.

After that when the correlation set task (18) receives the result from the HRS’s wrap-

per, it gives pass to the result and the original message that was waiting inside one of its

entry slots. The next task, a merger (19) reads the two correlated messages and writes

them to the single entry slot of the enricher task (20), so it enriches the original message

with the result from the HRS. Now the enriched message is sent to the next slot, the one

that connects with the exit port (21). This port is also connected to three integration

links that allow sending a message copy to PS, SMS and MS.

The first integration flow after the exit port (21) connects the process (11) to the

wrapper of the PS application. This wrapper receives the message through its entry

port and makes it available for the translator task (22). The translator is responsible for

translating the currentmessage format into a new format that the PS can understand, and

so the exit port (23) of the wrapper writes the message into the application’s database.

The second flow connects the same exit port (21) to the SMS’ wrapper. This wrapper

has a filter task (24) to filter out those messages that, for some reason, does not have

the employee’s phone number and then those messages that could pass are sent to a

slimmer task (25). A slimmer is responsible for removing some information from the

message in order to make it smaller before sending it to the SMS. The SMS is an

external application that allows sending messages to mobile phones. The last task in

this wrapper is a translator (26) that receives the inbound message and translates it into

a special format that the SMS can understand. Once the SMS offers a public gateway

the exit port (27) will interact with it through remote procedure calls to forward the

message.

The last copy of the message goes to the flow (28) that now connects the process

(11) with the wrapper of the MS. This wrapper integrates the application allowing the

solution to send e-mails with all the details about the employee’s call. The first task

in this wrapper is a filter (29), here again to filter out messages that for some reason

does not have the employee’s email address. As in the other wrappers it is important

to translate the inbound message into a message format that the MS can understand.

This is done using a translator (30) inside the wrapper, just before its exit port (31).

The translated message now goes, through a port that uses remote procedure call to

communicate with the application’s gateway.

4 A DSL tool for EAI

Microsoft DSL Tools (MS/DSL Tools) is a framework that eases the development of

DSLs and graphical editors for them. The framework consists of a project wizard to

create configured solutions, a graphical designer for defining and editing domain mod-

els, designer definitions in XML, a set of code generators that produce code that imple-

ments domain model definition, a designer definition and a framework for defining text

output generators [8].

Domain models in MS/DSL Tools are defined using class hierarchies and identify-

ing relationships between theses classes. Relationships can be either reference or com-

140 XIV Jornadas de Ingenierı́a del Software y Bases de Datos

position. First, we define Guaraná’s metamodel and once defined, we proceed to create

this metamodel in MS/DSL Tools. IntegrationSolution is the root class of integration

metamodel. This class represents the integration solution. An integration solution de-

signed with MS/DSL Tools is an instance of this class.

An Integration Solution is composed of IntegrationSolutionBlocks and Applica-

tions. A composition can be represented in MS/DSL Tools by an embedding relation-

ship. There are more composition relationships in the integrationmetamodel. A block in

an integration solution is composed of EntryPort and ExitPort that allow the connection

of IntegrationSolutionBlocks which are composed of a set of tasks whose functionali-

ties were described before.

Another kind of relationships is the inheritance. In our integrationmetamodel, Build-

ingBlock and Hub are classes that derive from IntegrationSolutionBlock, while Wrap-

per and Process derive from BuildingBlock. Further, all the kinds of tasks inherit from

Task. Unlike composition, reference relationships do not have any limitation on the

multiplicities of each of their roles. This allows us to connect any type of class to create

graphs with really complex models.

Entry ports and exit ports are always bound with one another through integration

link relationship. Applications are connected with their wrappers through application

link relationship. Other reference relationships in integration metamodel are slots that

interconnect tasks to each other. After creating the above metamodel, shortly explained

here, we obtain Guaraná’s Designer, cf. Figure 2.

Fig. 2. An integration solution created in Guarana’s DSL tools.

Guaraná’s Designer consists of a drawing area where integrations solutions can be

modelled and a toolbox that allows us to drag and drop elements of Guaraná’s DSL in

an integration solution. Guaraná’s DSL tool has also a properties window where we can

edit the properties of ports, tasks and building blocks.

In the toolbox, we can find Process, Application and Wrapper which are elements

that can be added directly to the model. Tasks are divided into four groups (Router,

Constructor, Interfacing and Transformer) represented by different colors (green, yel-

low, red and blue respectively). These tasks can only be created within a process or a

wrapper. Entry Ports and Exit Ports which also apply to the Processes and Wrappers.

We can find three types of connectors: Integration Links to connect with Entry Ports and

XIV Jornadas de Ingenierı́a del Software y Bases de Datos 141

Exit Ports, Slots for connecting Tasks and Ports within the Processes andWrappers, and

Application Links to connect applications and wrappers.

5 Automatic code generation

Our proposal is to transform our designed integration solutions into workflows using

Microsoft Windows Workflow Foundation (WF), and then make use of the WF’s run-

time to run the generated workflow. From our point of view, an integration process can

be seen as a business process where information flows between participants.

There is no doubt that the appearance of workflows has changed the way processes

are done. The partial or complete automating of a business process is called workflow,

where documents, information or tasks flow between the participants under some con-

straints and rules, and where the main goal is to achieve a business goal, such as client

satisfaction. We can define workflows as the movement of information through a busi-

ness process between resources [10]. First, we transform our integration solution into

a workflow, then we use WF as a workflowmanagement system in which the generated

workflow is executed and monitored.

5.1 Transformating our DSL into WF

Transformation is achieved by the creation of three files: a designing file where the

workflow is described (Xoml in this case), a code file where tasks’ functionalities are

described (C#), and a third file that will host and launch the created workflow (C#).

The basic unit in an integration solution is the task, while the basic unit in a workflow

is called activity. In this transformation, every task of the integration solution is trans-

formed into one or more workflow activities. The resulting activities represent the func-

tionality of the original task in our integrations solution, but some limitations might not

allow us to implement the complete functionality. We start explaining the implemented

transformations and then we describe the limitations we found.

System messages: To model system messages, we used XML. A message in our

system is an XML file, which we chose for the easiness of its management and the large

number of APIs that can be used to manipulate this type of files. It is an instance of the

class XmlDocument of the .Net API fromMicrosoft. Messages inside our system do not

have a predefined scheme since they are produced by the applicationswe are integrating.

It is user’s responsibility to transform the input messages of an application to another

format understandable by another application using a task from the transformers group.

Wrappers: Inside a wrapper, we can find tasks from the interfacing group that are

used to communicate with the applications we are integrating, but it can be seen as a

process too, where the first activity reads information from an application and then it is

processed and written to an exit port.

Processes: An integration process can be seen as a business process. Since WF is

oriented to business processes, we were able, although with some limitations, to trans-

form integration processes into workflows. To achieve this, entry and exit ports, tasks

and slots that interconnect these tasks were transformed into workflow elements.

142 XIV Jornadas de Ingenierı́a del Software y Bases de Datos

Fig. 3. Integration processes seen as workflows in WF.

Ports: Ports are simulated by activities that read from input directories and write to

output directories. An entry port is an activity that reads XML files from a directory to

inject them into the process so that they flow between processes’s tasks. Exit ports are

activities that write messages to an output directory. We used .Net features to monitor

directories so that a process can be activated only when one or more messages are

detected in the entry port (input directory).When a port reads a message, it is consumed

and disappears from the port.

Slots: In an integration solution, a slot is totally different from arrows and links

connecting workflow activities. In workflows, an arrow indicates that the origin task is

a predecessor and the target task is a successor. For this reason, the responsibility of

writing resulting messages in the target tasks were assigned to the task that produces

the messages due to this difference in concepts. A predecessor task has a reference to

the successor’s input list where it writes its output messages.

Tasks: Every task is mapped onto one ore more activities to ensure the compliment

of the maximum part of the task’s functionality. As we mentioned before, tasks are

classified into 4 groups:

Constructors: Custom Tasks are converted into custom activities where user can

insert custom code. For this purpose, the user can use some variables we predefined such

as input messages to read the incoming messages and the output messages where it can

write the resulting messages for the successors tasks. The splitter and its opposite task,

the aggregator, were transformed using XPath to implement these tasks’ functionalities.

XIV Jornadas de Ingenierı́a del Software y Bases de Datos 143

An aggregator or splitter in our integration solution needs Xpath expressions, provided

by user, to fragment an input message creating various output messages, or to aggregate

the input messages creating a new one. When it is transformed into WF, a WF activity

executes this XPath expression over the input messages and generates a unique output

message.

Transformers: This type of tasks was implemented using XSL files that transform

XMLmessages from one scheme to another. In the case of the translator, the user should

indicate the XSL transformation that must be applied to get the new type of messages.

In WF, this is an activity that reads the input message, uses the .Net API to apply

XSL transformation over it, and writes the resulting message in the input buffer of

the following activities. XSL transformations were also used for the Enricher and the

Slimmer, whose functionalities are opposite to each other. In the case of the enricher,

the XSL should query a database or some files, creating a new message with the old

one and the new information, whereas the slimmer’s XSL file creates a new message

eliminating unnecessary data from the original message. Transformation of this group

of tasks was simple using of the .Net API for XML transformation.

Routers: Filters seem like WF’s If-Else activity, but implementing the conditions

for this type of activity in WF is not so simple since they should be expressed in a

complex XML structure. Another way to see this activity is as any other WF activity

that before writing any message to the successor’s input buffer, the activity checks if

it satisfies the condition entered by user in the Filter task. Some variables are provided

to the user so that conditions may be defined over input messages giving conditions

more expressiveness. Another task in this group is the replicator, which was simple

to implement using the XML API in the .Net to clone messages and place a copy for

each successor. The Resequencer was not implemented because the message’s model in

our implementation doesn’t have any identifier that can be used to order the incoming

messages. The other two tasks of this group are the Distributor and the Merger. Due

to some limitations that we discuss in the next section, the user must write his or her

custom code in the case of the distributor, but he can make use of lists of messages

where successor’s messages are saved. This way, a user can introduce and check the

conditions that should be satisfied before passing the messages to a successor task. In

the case of the merger, the WF activity reads the XML messages from its input and

creates an output message by gathering the input messages under a unique root. A

replicator may have more than one output whereas a merger has more than one input.

We simulated these tasks making use of the parallel activities of WF.

Interfacing: Neither does WF provide predefined activities, nor facilitates imple-

menting the tasks in this group. These tasks were transformed into activities that call

C# code where data bases, files and web services are accessed and information is read.

Some scrappers were also implemented to be used inside our designed integration so-

lutions.

5.2 Limitations

Similarities exist between workflows and integration solutions, but depending on the

implementation, some features may be used, while other features are not available. In

144 XIV Jornadas de Ingenierı́a del Software y Bases de Datos

our case, some of the characteristics of WF helped us, such as the XML language to de-

fine workflows, the workflows designer and the ability to execute our C# code inside our

activities. Other functionalities were not implemented or were partially implemented.

In the case of the constructors, although WF provides an activity similar to the

Timer called Delay Activity, this activity has a different purpose, since a Timer is a task

that reads messages at regular time intervals, whereas the delay activity in WF causes a

delay in execution of the workflow. Timers were not implemented due to the lack of a

similar activity in WF and other limitations we mention in the next section.

In the routers group, a Distributor has a condition for every successor slot, and only

writes the message in this slot if the condition is satisfied. Here slots can have condi-

tions, buffer, and other properties. In a workflow, there exists a slight similar concept

which is the arrow that interconnects activities. It is used to indicate that the activity

connected to the origin is the predecessor of the task connected to the end of this arrow

(target activity). This limitation made us implement slots in a different manner, so now

it is the predecessor’s responsibility to pass messages and to write them in the input

buffer of the successors.

More serious limitations are the slot cardinalities. In our integration solution, a slot

may have more than one input and more than one output, but for a workflow in WF,

an activity has only one input, and a unique output. Tasks with more than one output

(Replicator, Distributor, etc.) and tasks with more than one input like Merger, are imple-

mented using parallel activities. In the first case, tasks with multiple outputs are always

followed by a parallel activity where each successor activity occupies a branch of this

parallel activity, while in the second case, this type of tasks always comes after a par-

allel activity where each branch of this parallel activity contains a preceding activity of

the merger in our integration solution. An example can be seen in the second process of

Figure 3, where a replicator is followed by a parallel activity while a merger is put just

after a parallel activity.

The limitation that most affected this implementation, was the number of threads.

In a workflow, it is supposed that a unique thread moves information and accomplishes

tasks, while in our integration solution each task could be a thread. For example, while

a task is reading from a database, another can be transforming the information read

so far. The simulation of this feature, was done by creating an input directory, while

a file system watcher monitors changes in this directory. When messages are created

in this directory, an instance of the workflow, result of the transformation, is created

and messages are injected to this workflow. The injected messages then flow inside the

generated workflowwhere activities perform tasks’ functionalities over these messages.

Using theWF implementation, some characteristics were lost, such as simultaneous

tasks execution, multiple inputs, multiple outputs and the interfacing group which was

not implemented at all, but other features and advantages were gained like WF services

and the simplicity of the definition of workflows inWF. A workflow inWF is thought to

implement the business logic inside a user application, helping the creation of Process-

driven applications. WF doesn’t offer activities to communicate with other applications

(only with web services).

XIV Jornadas de Ingenierı́a del Software y Bases de Datos 145

6 Conclusions and future work

During the last decades many monolithic, single-purpose applications were created for

supporting companies’ businesses. Part of these applications, nowadays called legacy

systems, are still running in a distributed environment and so with other software pack-

ages purchased from third parties and new specially tailored applications, represent the

software eco-system found in a large number of companies. The process of integrat-

ing applications inside or amongst different companies, known, respectively, as Enter-

prise Application Integration and Business to Business Integration, is still a very costly

task. We believe a domain specific language and appropriate software tools to design

platform independent models for integration solutions which can be programmatically

transformed into a specific deployment technology, could help to reduce this cost.

In this paper, we introduced Guaraná, its editor and a transformer. We used DSL

Tools technology provided by Microsoft to develop a software tool which implements

the domain specific language Guaraná, allowing to visually design integration solu-

tions using this language and also to deploy them to WF technology. In this first ap-

proximation to a programmatically transformation of platform independent models into

executable code, we have also used WF’s runtime environment to host and run the de-

ployed integration solution. This experience has provided us sufficiently information

to motivate us to improve our software tool by using the Model Driven Architecture

approach to perform the transformation process from the platform independent model

of an integration solution into executable code of a target technology.

References

1. A. Abouzahra, J. Bézivin, M. D. Del Fabro, and F. Jouault. A practical approach to bridging

domain specific languages with UML profiles. In Proceedings of the Best Practices for

Model Driven Software Development at OOPSLA, volume 5, 2005.

2. C. Chang, M. Kayed, M.R. Girgis, and K.F. Shaalan. Survey of web information extraction

systems. IEEE Transactions on Knowledge and Data Engineering, 18(10):1411–1428, 2006.

3. R. Corchuelo, R.Z. Frantz, and J. González. Una Comparación de ESBs desde la Perspectiva

de la Integración de Aplicaciones. In Jornadas de Ingenierı́a del Software y Bases de Datos

(JISBD), 2008.

4. Microsoft Corporation. Windows Workflow Foundation Home, 2009.

5. R.Z. Frantz and R. Corchuelo. Integración de aplicaciones: Un lenguaje especı́fico de do-

minio para el diseño de soluciones de integración. Technical report, Universidad de Sevilla,

2008.

6. R.Z. Frantz, R. Corchuelo, and J. González. Advances in a DSL for Application Integration.

In Proceedings of the Zoco08 Workshop, pages 54–66, Gijón (España), 2008.

7. Bobby Woolf Gregor Hohpe. Enterprise Integration Patterns: Designing, Building, and

Deploying Messaging Solutions. Addison-Wesley, 2003.

8. Microsoft. Overview of domain-specific language tools, 2009.

9. Object Management Group (OMG). OMG EAI Profile Home, 2004.

10. Charles Plesums. Introduction to workflow. Technical report, Computer Sciences Corpora-

tion, Financial Services Group, 2002.

11. J. Weiss. Aligning relationships: Optimizing the value of strategic outsourcing. Technical

report, IBM, 2005.

