
An Algorithm for I/O Pins Partitioning Targeting 3D
VLSI Integrated Circuits

 Sandro Sawicki1, 2

 sawicki@inf.ufrgs.br
Renato Hentschke1
renato@inf.ufrgs.br

Marcelo Johann1
johann@inf.ufrgs.br

Ricardo Reis1
reis@inf.ufrgs.br

1UFRGS – Universidade Federal do Rio Grande do Sul

PPGC - Instituto de Informática
Porto Alegre, Brazil.

Abstract—This paper shows the impact of I/O pins partitioning
on 3D circuits. Previous works on 3D placement did not
focused on the I/Os partitioning and placement. This work
presents an algorithm based on the logic proximity of the pins,
which is used as weights to a min-cut partitioning. Our
method calculates the area of1 the tiers while placing the I/Os
on the boundaries. Initial whitespaces and aspect ratio as well
as the initial pins orientation and ordering are preserved. The
method is compared to two other simplistic methods for pins
partitioning. Our experimental results show that our method is
efficient since it can balance the I/O pins distribution in the
various tiers while leading to improvements in wire length and
number of 3D vias.

I. INTRODUCTION
It is common sense that interconnects optimization is a

huge issue for physical design algorithms. High delay, hard
manufacturability, power, noise and crosstalk are some of the
issues related to wires. As the technology advances, there is
an increasing need for research on interconnect optimization.
The coming technologies and designs will demand new
solutions and the use of 3D VLSI circuits is one possibility
to improve interconnects as a new paradigm for high
performance VLSI circuits. Major companies like IBM,
Intel, Samsung, Micron, Cadence and Infineon are investing
in solutions regarding 3D circuits [1].

The idea of partitioning a single random logic block into
two or more 3D tiers is starting to be explored [2-6]. In this
approach, the Placement stage has to partition the cells and
place them in separate tiers. Theoretically [7] and
empirically [3] it is shown that 3D circuits can potentially
reduce wire lengths. Additionally, the amount of reduction in
relation to 2D circuits grows as circuit sizes increases [5].

2 On live from UNIJUI, Northwest University of Rio Grande do Sul,
DETEC – Departamento de Tecnologia, Santa Rosa, Brazil.
* This research was partially supported by a grant from CNPq, Brazil.

This paper assumes that the I/O pins delimit the boundary
of a random logic block, in 2D circuits. We also assume that
the I/Os can be moved to any tier. In order to place circuits in
various tiers, some partitioning (and new placement) of the
I/O pins must be performed. Many cell placement algorithms
are guided by the fixed pins locations. The quadratic
placement algorithm [8], for instance, that is largely used in
the academia [9] and industry [10] requires a definition of
the position of I/O pins positions in order to compute a
solution.

This paper studies the I/O pins partitioning problem. It is
well known that I/O pins placement is more effective if
performed during floorplanning. On the other hand, almost
all of nowadays designs and tools target 2D technologies; an
automated technique to migrate from a 2D placement to 3D
placement can significantly reduce design cycle time
Although previous works [2-6] used some criteria to make
the partitioning of the I/O boundary, the details of how they
were actually performed were omitted in the papers. We
assume that simplistic solutions are being adopted. To the
authors’ knowledge, this work is the first to study the impact
of partitioning of I/O pins into two or more tiers in the final
solution.

This paper is organized as follows: section II present
some of the 3D ICs placement issues and published work on
the field. We highlight some of their drawbacks that we are
addressing in this paper. Section III formulates the I/O
partitioning and placement problem for 3D circuits. Section
IV presents an algorithm to solve the problem optimizing the
logic proximity between pins in the same tier. The last
sections present experimental results and the conclusions of
this work.

II. 3D CIRCUITS PLACEMENT
A 3D circuit is constructed by stacking two or more

separate 2D circuits [11]. The 3D placement problem,
besides placing cells in the 2D space, relies on the
partitioning of the cells into different layers as show in figure
1. Space for 3D vias should be properly allocated in order to

guarantee that there will be enough room for vertical
connections. The 3D placer should take advantage of the
extended placement space to improve wire length, timing,
area and power.

Goplen and Sapatnekar present in [4] a force directed cell
placer for 3D ICs with thermal forces in order to improve
chip temperature. The thermal issue is a major concern on
3D circuits, since density is higher while insulator layers
harden the heat dissipation. The work uses the hMetis
algorithm [12] to make the partitioning of the cells into
several tiers while the number of 3D vias is minimized.

As the work of Sapatnekar [3][13], the approach in [5] is
also based on the force directed placement method, starting
from a random solution and improving it based on forces.
Both works do not mention how they extended the I/Os from
their original 2D arrangement to 3D. They used standard 2D
benchmarks in their experiments. Possibly, the I/O pins were
ignored since their force directed methods do not require
them.

Figure 1. General idea of 3D ICs with 2 tiers

The work in [6] presents a 3D cell placer based on the
Capo partitioning approach. The placement flow is very
straightforward: first the netlist is partitioned into several
tiers and then each tier is placed separately with information
of the placed tiers in order to reduce the length of 3D
connections.

Most of the previous works agree that the number of
connections between tiers must be minimized and most of
them use min-cut partitioning, such as hMetis, to accomplish
that. Since the 3D vias are very big, via congestion can be
improved with a minimization of the number of vias.
However, the I/O partitioning will indirectly influence the
quality (cut size) of the gate partitioning and so the number
of 3D Vias. For this reason, we expect improvements in the
number of vias and wire lengths with a good I/O partitioning
algorithm.

This paper proposes an algorithm that is based on the
logic distance of the I/Os as a criterion for their partitioning.
Summarizing our motivation, we want to find a good
partitioning method for the I/Os that is able to maintain a
good I/O pins balancing leading to area balance between the
tiers. At the same time, we indirectly address the
minimization of 3D Vias and a reduction of the wirelength.

III. PROBLEM DEFINITION
Before placement, a 2D circuit netlist NL composed by a

set of gates G = {g1, g2, g3, … , gn}, a set of I/O pins P = {p1,
p2, p3, … , pm} and a set of nets connecting them N = {n1, n2,
n3, … , no}. A hypergraph HG represents the netlist, where
G∪P is the set of nodes and N is the set of hyperedges. The
fixed position of each I/O pin pi is given by X[i] and Y[i]

(i≤m) and its orientation by OR(pi) ∈ {north, south, east,
west}. The area A (height H and width W having its bottom
left corner at coordinate (xini ,yini) position) inside the I/O
pins is assigned for cell placement. Usually, I/O pin positions
covers the entire boundary, leaving no room for additional
connections or area reduction. The whitespace ratio S on the
placement area is achieved by subtracting the total gate area
(GA) from the area available inside the I/Os normalized by
GA. The aspect ratio AR is computed by W divided by H.

Let Z be the set of tier numbers {1,2,…,z}. The problem
to be solved is defined as follows: given a 2D placement
netlist NL with fixed I/O pins, find a set of tiers T = {t1, t2, …
, tz} (z is the number of tiers) and their correspondent Ai, ARi,
GAi, Wi, Hi, Pi, Si, ORi, Xi and Yi (i≤z) such that:

 P1 U P2 U ...U Pt = P (1)

 ∀(a,b ∈ Z)(a ≠ b → Pa IPb = ∅) (2)

∀(i ∈ Z)Si ≈ S (3)
∀(i ∈ Z)∀(j ∈ Z)Wi = W j ∧ Hi = H j

 (4)

∀(i ∈ Z)ARi ≈ AR (5)
∀(i ∈ Z)(∀a ∈ Pi(ORi(a) = OR(a))) (6)
∀(t ∈ Z)(∀a,b∈ Pt(OR(a) =OR(b)∧Xi[a]< Xi[b]→X[a]< X[b])) (7)

∀(t ∈ Z)(∀a,b ∈ Pt (OR(a) = OR(b) ∧Yi[a] < Yi[b] → Y[a] < Y[b])) (8)

In other words, each tier will have its own set of I/O pins
and no tier will share an I/O (equations 1 and 2); the
whitespace and aspect ratio must be evenly allocated
(equations 3,4 and 5); the orientation and ordering of the
pins must be preserved (equations 6,7, and 8).

IV. PROPOSED ALGORITHM
Let LD(pi,pj) be the length of the shortest path in HG

from pi to pj (i.e. the logic distance between pi and pj). The
algorithm for I/O partitioning is described as follows:

1 Compute LD(i,j) ∀i, j ∈ P

2
Create a complete graph PG such that P is the
set of nodes and LD(i,j) (i,j ∈ P) is the cost of
the edge connecting nodes i and j.

3
Perform the partitioning of PG into P1, P2, …,
Pz aiming at min-cut optimization and very
good number of pins between partitions.

4 ∀(i ∈ Z)GAi ≈
GA
z

 (9)

5 ∀(i ∈ Z)Ai = GAi × (1+ Si) (10)

6 ∀(i ∈ Z)Wi = Ai × ARi;Hi =
Ai

ARi

 (11)

7 ∀(i ∈ Z)∀(p ∈ Pi)X i[p] = xini +
(X[p] − xini) × Wi

W
 (12)

8 ∀(i ∈ Z)∀(p ∈ Pi)Yi[p] = yini +
(Y[p] − yini) × Hi

H
 (13)

9 Legalize I/O positions. (14)

The first step of our algorithm is illustrated in figure 2.
Considering that in a real circuit net fanouts are limited, node
degrees can be considered bounded or constant for the sake
of complexity analysis. Thus, a single BFS search will have
an O(n) complexity. Our algorithm be performed by m2 BFS
searches in HG resulting in a O(m2n) complexity. Since the
number of I/O pins do not exceed a few thousand, it is
feasible to use BFS. By using a single search to compute the
distance from a pin pi to every p ∈ P, the complexity can go
down to O(mn).

The values of LD are used to create a PG graph
connecting all pairs of I/O pins, as shown in figure 2. For the
third step, we used hMetis tool [14]. The tool accepts
weights for the cells. We assigned the inverse of the edge
costs as their weights. We imposed a very tight balance in
order to keep a similar amount of I/Os in each tier.

Figure 2. Ilustration of the shortest path between two I/O pins and a
portion of the correspondent complete graph of all boundary pins.

The forth step can be accomplished by the division of the
total gate area per number of tiers. So far, it is not possible to
know whether such perfect cells partitioning will be
achievable, but it is a reasonable assumption. Nevertheless,
Si could be changed to compensate the GAi inaccuracy.

The steps 5 and 6 compute the area of the tiers such that
the aspect ratio and whitespace is preserved from the original
2D circuit. At this point, a new aspect ratio or whitespace
could be used.

Finally, the steps 7 and 8 compute the X and Y
coordinates of the I/Os to their target tiers. The original
orientation and ordering is preserved, since the I/Os
placement is a mapping from their original position to a
smaller area. A legalization (step 9) is performed in the end
to assure that the I/Os do not overlap.

V. EXPERIMENTAL RESULTS
Our goal is to study the impact of the I/O partitioning in

the area, wirelength and number of vias. For that, we defined
a simplistic 3D placement flow as follows:

1. A min-cut partitioning of HG is performed. The I/O
pins, that have already an assigned partition, are used as
fixed nodes. We use hMetis for this step. The tool is
configured to keep the area as balanced as possible.

2. A separate set of benchmarks is generated and placed
independently. The number of 3D vias is accounted for,
but vertical connections are ignored by the placer at this
time. Our cell placer uses Quadratic Placement for
global placement and Simulated Annealing for detailed
placement.

We compared our I/O partitioning algorithm with two
other simplistic algorithms that follow the same formulation
described in section III. The first method is called
unlocked_pins. In this method, we allow hMetis to partition
the I/Os as free nodes, replacing the steps 1,2,3 and 4 of our
algorithm. The following steps of our algorithm are done for
the unlocked_pins as well. The second algorithm is called
alternate_pins. This method is a pseudo-random partitioning
that goes thought the boundary line of the chip picking nodes
for each partition alternatively. The idea is to preserve the
initial I/O balanced distribution. Just as for unlocked_pins,
the alternate_pins replaces steps 1,2,3 and 4 of our flow, but
steps 5,6,7,8 and 9 are done.

Tables 1, 2 and 3 report our experimental results. We
used ISPD 2004 benchmarks [15]. In this paper we focus on
experiments with two tiers, but our algorithm could be
applied for any number of tiers. The column “tier area” is
calculated after the actual partitioning of the gates. We got
numbers very close to the ones suggested by the step 4 of the
algorithm. The worst tier area is used as the area of all tiers.
The total area is simply twice the tier area. The total WL
column is simply the sum of the wirelength found by our
placer in each of the separate tiers (not considering vertical
connections). The number of I/Os and vias are also reported
in the table. The table also shows the standard deviation of
the number of I/Os in order to evaluate how good their
balance is.

Analyzing the tables 1, 2 and 3 the following topics can
be observed:

• The number of I/Os is very well balanced on the
alternate_pins method (average standard deviation is
less than 1 pin). The balancing of our algorithm with an
average standard deviation of 5 pins. However, the
unlocked_pins algorithm led to very unbalanced
number of pins that completely invalidates the
method (average standard deviation of 150 pins).

• The alternate_pins method derive a slightly better area
(1% improvement) compared to both of the other
algorithms. Possibly, the good I/O helps hMetis to
achieve a better balancing of the gate area.

• The number of vias found by the alternate_pins method
is always worse than the others (by an average of 30
vias), showing that a simplistic I/O pin partitioning
will deteriorate the min-cut algorithm.

E F G H
A
B
C
D

1

2
4

5

3

BFS(A,G) = 1

BFS(A,H) = 5

Start: p296
Stop : p426
Score: 32

Start: p296
Stop : p427
Score: 32

Start: p296
Stop : p428
Score: 32

Start: p296
Stop : p429
Score: 31

A

H

G

P
(23)

(3)
(5)

(4)

(34)

(1)

• The number of vias obtained with our algorithm is
always better than in the other methods. This is a very
important result showing that our I/O partitioning
method aids the gate partitioning to achieve a better
cut while effectively balancing the I/O pins.

• The wirelength resulted from our partitioning followed
by 2D placement is smaller in average than the

alternate_pins method while the unlocked_pins method
led to the best wirelength.

It is important to point-out that the wirelength is not an
accurate metric since vertical connections are not accounted
for. For this reason, the advantage got by our method will
increase since the amount of vertical connections resulted by
our partitioning is smaller.

TABLE I. EXPERIMENTAL RESULTS USING OUR I/O PARTITIONING ALGORITHM TARGETING 2 TIERS.

Circuit Data Partitioning Data

Bench #cells #I/Os #nets 2D
area

Tier
Area

Total
WL

#I/Os
tier 0

#I/Os
tier 1

σ
 #I/Os #Vias

ibm01 12,506 246 14,111 2,380,800 1,209,856 2.11E+06 120 126 4 393
ibm02 19,342 259 19,584 3,064,208 1,517,568 4.50E+06 126 133 5 477
ibm03 22,853 283 27,401 3,751,968 1,896,128 6.48E+06 138 145 5 1,103
ibm04 27,220 287 31,970 4,782,848 2,417,664 7.02E+06 147 140 5 733
ibm06 32,332 166 34,826 4,106,592 2,038,784 7.51E+06 81 85 3 1,059
ibm07 45,639 287 48,117 7,136,672 3,612,960 1.23E+07 140 147 5 1,032
ibm08 51,023 286 50,513 7,403,840 3,699,840 1.07E+07 140 146 4 1,297
ibm09 53,110 285 60,902 8,617,104 4,328,208 1.41E+07 139 146 5 778
Avg. 33,002 264 35,928 5,155,504 2,590,126 8.08E+06 129 134 5 859

TABLE II. EXPERIMENTAL RESULTS USING UNLOCKED_PINS PARTITIONING ALGORITHM TARGETING 2 TIERS.

Circuit Data Partitioning Data

Bench #cells #I/Os #nets
2D

area
Tier
Area

Total
WL

#I/Os
tier 0

#I/Os
tier 1

σ
#I/Os #Vias

ibm01 12,506 246 14,111 2,380,800 1,209,856 2.14E+06 0 246 174 539
ibm02 19,342 259 19,584 3,064,208 1,518,784 4.39E+06 259 0 183 477
ibm03 22,853 283 27,401 3,751,968 1,867,280 6.22E+06 283 0 200 1,109
ibm04 27,220 287 31,970 4,782,848 2,414,592 7.30E+06 287 0 203 748
ibm06 32,332 166 34,826 4,106,592 2,038,784 7.73E+06 75 91 11 1,062
ibm07 45,639 287 48,117 7,136,672 3,596,112 1.13E+07 0 287 203 1,037
ibm08 51,023 286 50,513 7,403,840 3,697,920 1.03E+07 127 159 23 1,303
ibm09 53,110 285 60,902 8,617,104 4,326,144 1.40E+07 0 285 202 778
Avg. 33,002 264 35,928 5,155,504 2,583,684 7.91E+06 129 134 150 882

TABLE III. EXPERIMENTAL RESULTS USING ALTERNATE_PINS PARTITIONING ALGORITHM TARGETING 2 TIERS.

Circuit Data Partitioning Data

Name #cells #I/Os #nets
2D

 area
Tier

 Area
Total
WL

#I/Os
tier 0

#I/Os
 tier 1

σ
 #I/Os #Vias

ibm01 12,506 246 14,111 2,380,800 1,182,416 2.35E+06 123 123 0 429
ibm02 19,342 259 19,584 3,064,208 1,517,568 4.30E+06 130 129 1 477
ibm03 22,853 283 27,401 3,751,968 1,865,920 6.13E+06 142 141 1 1,117
ibm04 27,220 287 31,970 4,782,848 2,375,760 7.54E+06 144 143 1 751
ibm06 32,332 166 34,826 4,106,592 2,080,464 7.37E+06 83 83 0 1,132
ibm07 45,639 287 48,117 7,136,672 3,588,624 1.18E+07 144 143 1 1,065
ibm08 51,023 286 50,513 7,403,840 3,697,920 1.11E+07 143 143 0 1,301
ibm09 53,110 285 60,902 8,617,104 4,307,568 1.43E+07 143 142 1 787
Avg. 33,002 264 35,928 5,155,504 2,577,030 8.10E+06 132 131 0,63 882

VI. CONCLUSIONS
This paper presented a method for the partitioning and

placement of the I/O pins of a 2D block to a 3D circuit. To
the authors’ knowledge, this is the first paper to address this
problem and to study its impact on the circuit area, pin
balancing and wirelength. We propose that the I/O
partitioning and placement is done upfront, while 3D
placement will start from fixed I/O pins. In the paper, we
showed empirically that doing the partitioning of I/O
together with the cells leads to unbalanced number of pins,
which invalidates the method.

Our method is based on the idea of keeping the pins with
logic proximity together in the same tier. The experimental
results show that the method is efficient since it can balance
the I/O pins distribution in the various tiers while leading to
improvements in wirelength and number of 3D vias
compared to a simplistic approach.

VII. FUTURE WORK
In future work we first will address balancing of I/O pins

and cells. In this paper, the balancing was considered as a
constraint to the partitioning algorithm, while a small
relaxation could lead to better results.

Also, in future work we will report experiments with an
improved 3D placer that will consider vertical connections
and their feasibility in terms of 3D via congestion.

VIII. REFERENCES
[1] 3D ICs Industry Sumary at Tezzaron homepage:

www.tezzaron.com/technology/3D%20IC%20Summary.htm . Access
on Mar 2006.

[2] W. R. Davis, J. Wilson, S. Mick, J. Xu, H. Hua, C. Mineo, A. M.
Sule, M. Steer and P. D. Franzon; Demystifying 3D ICs: The Pros
and Cons of Going Vertical. IEEE Design and Test of Computers –
special issue on 3D integration; pp 498-510, Nov.-Dec. 2005.

[3] C. Ababei, Y. Feng, B. Goplen, H. Mogal, T. Zhang, K. Bazargan and
S. Sapatnekar. Placement and Routing in 3D Integrated Circuits.
IEEE Design and Test of Computers – special issue on 3D
integration; pp 520-531, Nov.-Dec. 2005.

[4] Brent Goplen; Sachin Sapatnekar; Efficient Thermal Placement of
Standard Cells in 3D ICs usisng Forced Directed Approach. In:
Internation Conference on Computer Aided Design, ICCAD’03,
November, San Jose, California, USA, 2003.

[5] S. Obenaus, T. Szymanski. Gravity: Fast Placement for 3D VLSI.
ACM Transacions on Design Automation of Electronic Systems, New
York, v.8, p.69–79, March 1999.

[6] Y Deng; W. Maly. Interconnect Characteristics of 2.5-D System
Integration Scheme. In: Proc. of the International Symposium on
Physical Design, ISPD 2001, New York, NY, USA. Anais. . . ACM
Press, 2001. p.171– 175.

[7] K. Banerjee and S. Souri and P. Kapur and K. Saraswat. 3D-ICs: A
Novel Chip Design for Improving Deep Submicrometer Interconnect
Performance and Systems on-Chip Integration. Proceedings of IEEE,
vol 89, issue 5, 2001.

[8] C. J Alpert; T. Chan; D. J. Huang.; I. Markov; K. Yan. Quadratic
Placement Revisited. In: Proc. of the 34th Annual Conference on
Design Automation, DAC 1997, New York, NY, USA. Anais. . .
ACM Press, 1997. p.752–757.

[9] N. Viswanathan; C.C.-N Chu. FastPlace: Efficient Analytical
Placement Using Cell Shifting, Iterative Local Refinement,and a
Hybrid Net Model. IEEE Transactions on CAD, Volume 24, Issue 5,
pp 722-733, May 2005.

[10] P. Villarrubia, “CPLACE: A Standard Cell Placement program” IBM
Tech. Dis. Bull.,vol32 no. 10A, pp. 341-342, Mar. 1990.

[11] P. Benkart, A. Heittmann, H. Huebner, U. Ramacher, A. Kaiser, A.
Munding, M. Bschorr, H-J Pfleiderer, E. Kohn. 3D Chip Stack
Technology Using Through-Chip Interconnects. IEEE Design and
Test of Computers – special issue on 3D integration; pp 512-517,
Nov.-Dec. 2005.

[12] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multilevel
hypergraph partitioning: Application in VLSI domain. In Proceedings
of 34th Annual Conference on. Design Automation, DAC 1997, pages
526–529, 1997.

[13] S. Spatnekar and K. Nowka; New Dimensions in 3D Integration; In:
IEEE Design & Test of Computers; – special issue on 3D integration;
pp 496-497, Nov.-Dec. 2005.

[14] Hypergraph & Circuit Partitioning at hMetis Home Page,
http://glaros.dtc.umn.edu/gkhome/views/metis/hmetis/. Access on
Mar 2006.

[15] ISPD 2004 - IBM Standard Cell Benchmarks with Pads. http://
www.public.iastate.edu/~nataraj/ISPD04_Bench.html#Benchmark_D
escription. Access on Mar 2006.

