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Abstract—This paper shows the impact of I/O pins partitioning 
on 3D circuits. Previous works on 3D placement did not 
focused on the I/Os partitioning and placement. This work 
presents an algorithm based on the logic proximity of the pins, 
which is used as weights to a min-cut partitioning.  Our 
method calculates the area of1 the tiers while placing the I/Os 
on the boundaries. Initial whitespaces and aspect ratio as well 
as the initial pins orientation and ordering are preserved. The 
method is compared to two other simplistic methods for pins 
partitioning. Our experimental results show that our method is 
efficient since it can balance the I/O pins distribution in the 
various tiers while leading to improvements in wire length and 
number of 3D vias. 

I. INTRODUCTION 
It is common sense that interconnects optimization is a 

huge issue for physical design algorithms. High delay, hard 
manufacturability, power, noise and crosstalk are some of the 
issues related to wires. As the technology advances, there is 
an increasing need for research on interconnect optimization.   
The coming technologies and designs will demand new 
solutions and the use of 3D VLSI circuits is one possibility 
to improve interconnects as a new paradigm for high 
performance VLSI circuits. Major companies like IBM, 
Intel, Samsung, Micron, Cadence and Infineon are investing 
in solutions regarding 3D circuits [1]. 

The idea of partitioning a single random logic block into 
two or more 3D tiers is starting to be explored [2-6]. In this 
approach, the Placement stage has to partition the cells and 
place them in separate tiers. Theoretically [7] and 
empirically [3] it is shown that 3D circuits can potentially 
reduce wire lengths. Additionally, the amount of reduction in 
relation to 2D circuits grows as circuit sizes increases [5]. 
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This paper assumes that the I/O pins delimit the boundary 
of a random logic block, in 2D circuits. We also assume that 
the I/Os can be moved to any tier. In order to place circuits in 
various tiers, some partitioning (and new placement) of the 
I/O pins must be performed. Many cell placement algorithms 
are guided by the fixed pins locations. The quadratic 
placement algorithm [8], for instance, that is largely used in 
the academia [9] and industry [10] requires a definition of 
the position of  I/O pins positions in order to compute a 
solution.  

This paper studies the I/O pins partitioning problem. It is 
well known that I/O pins placement is more effective if 
performed during floorplanning. On the other hand, almost 
all of nowadays designs and tools target 2D technologies; an 
automated technique to migrate from a 2D placement to 3D 
placement can significantly reduce design cycle time 
Although previous works [2-6] used some criteria to make 
the partitioning of the I/O boundary, the details of how they 
were actually performed were omitted in the papers. We 
assume that simplistic solutions are being adopted. To the 
authors’ knowledge, this work is the first to study the impact 
of partitioning of I/O pins into two or more tiers in the final 
solution. 

This paper is organized as follows: section II present 
some of the 3D ICs placement issues and published work on 
the field. We highlight some of their drawbacks that we are 
addressing in this paper. Section III formulates the I/O 
partitioning and placement problem for 3D circuits. Section 
IV presents an algorithm to solve the problem optimizing the 
logic proximity between pins in the same tier. The last 
sections present experimental results and the conclusions of 
this work. 

II. 3D CIRCUITS PLACEMENT 
A 3D circuit is constructed by stacking two or more 

separate 2D circuits [11]. The 3D placement problem, 
besides placing cells in the 2D space, relies on the 
partitioning of the cells into different layers as show in figure 
1. Space for 3D vias should be properly allocated in order to 



guarantee that there will be enough room for vertical 
connections. The 3D placer should take advantage of the 
extended placement space to improve wire length, timing, 
area and power. 

Goplen and Sapatnekar present in [4] a force directed cell 
placer for 3D ICs with thermal forces in order to improve 
chip temperature. The thermal issue is a major concern on 
3D circuits, since density is higher while insulator layers 
harden the heat dissipation. The work uses the hMetis 
algorithm [12] to make the partitioning of the cells into 
several tiers while the number of 3D vias is minimized.  

As the work of Sapatnekar [3][13], the approach in [5] is 
also based on the force directed placement method, starting 
from a random solution and improving it based on forces. 
Both works do not mention how they extended the I/Os from 
their original 2D arrangement to 3D. They used standard 2D 
benchmarks in their experiments. Possibly, the I/O pins were 
ignored since their force directed methods do not require 
them. 

 
Figure 1.  General idea of 3D ICs with 2 tiers 

The work in [6] presents a 3D cell placer based on the 
Capo partitioning approach. The placement flow is very 
straightforward: first the netlist is partitioned into several 
tiers and then each tier is placed separately with information 
of the placed tiers in order to reduce the length of 3D 
connections.  

Most of the previous works agree that the number of 
connections between tiers must be minimized and most of 
them use min-cut partitioning, such as hMetis, to accomplish 
that. Since the 3D vias are very big, via congestion can be 
improved with a minimization of the number of vias. 
However, the I/O partitioning will indirectly influence the 
quality (cut size) of the gate partitioning and so the number 
of 3D Vias. For this reason, we expect improvements in the 
number of vias and wire lengths with a good I/O partitioning 
algorithm. 

This paper proposes an algorithm that is based on the 
logic distance of the I/Os as a criterion for their partitioning. 
Summarizing our motivation, we want to find a good 
partitioning method for the I/Os that is able to maintain a 
good I/O pins balancing leading to area balance between the 
tiers. At the same time, we indirectly address the 
minimization of 3D Vias and a reduction of the wirelength. 

III. PROBLEM DEFINITION 
Before placement, a 2D circuit netlist NL composed by a 

set of gates G = {g1, g2, g3, … , gn}, a set of I/O pins P = {p1, 
p2, p3, … , pm} and a set of nets connecting them N = {n1, n2, 
n3, … , no}. A hypergraph HG represents the netlist, where 
G∪P is the set of nodes and N is the set of hyperedges. The 
fixed position of each I/O pin pi is given by X[i] and Y[i] 

(i≤m) and its orientation by OR(pi) ∈ {north, south, east, 
west}. The area A (height H and width W having its bottom 
left corner at coordinate (xini ,yini) position) inside the I/O 
pins is assigned for cell placement. Usually, I/O pin positions 
covers the entire boundary, leaving no room for additional 
connections or area reduction. The whitespace ratio S on the 
placement area is achieved by subtracting the total gate area 
(GA) from the area available inside the I/Os normalized by 
GA. The aspect ratio AR is computed by W divided by H. 

Let Z be the set of tier numbers {1,2,…,z}. The problem 
to be solved is defined as follows: given a 2D placement 
netlist NL with fixed I/O pins, find a set of tiers T = {t1, t2, … 
, tz} (z is the number of tiers) and their correspondent Ai, ARi, 
GAi, Wi, Hi, Pi, Si, ORi, Xi and Yi (i≤z) such that: 

 

 P1 U P2 U ...U Pt = P  (1) 

 ∀(a,b ∈ Z)(a ≠ b → Pa IPb = ∅) (2) 

∀(i ∈ Z)Si ≈ S  (3) 
∀(i ∈ Z)∀( j ∈ Z)Wi = W j ∧ Hi = H j

 (4) 

∀(i ∈ Z)ARi ≈ AR (5) 
∀(i ∈ Z)(∀a ∈ Pi(ORi(a) = OR(a))) (6) 
∀(t ∈ Z)(∀a,b∈ Pt(OR(a) =OR(b)∧Xi[a]< Xi[b]→X[a]< X[b])) (7) 

∀(t ∈ Z)(∀a,b ∈ Pt (OR(a) = OR(b) ∧Yi[a] < Yi[b] → Y[a] < Y[b])) (8) 
 

In other words, each tier will have its own set of I/O pins 
and no tier will share an I/O (equations 1 and 2); the 
whitespace and aspect ratio must be evenly allocated 
(equations 3,4  and 5); the orientation and ordering of the 
pins must be preserved (equations 6,7, and 8). 

IV. PROPOSED ALGORITHM 
Let LD(pi,pj) be the length of the shortest path in HG 

from pi to pj (i.e. the logic distance between pi and pj).  The 
algorithm for I/O partitioning is described as follows: 

1 Compute LD(i,j) ∀i, j ∈ P   

2 
Create a complete graph PG such that P is the 
set of nodes and LD(i,j) (i,j ∈ P) is the cost of 
the edge connecting nodes i and j. 

 

3 
Perform the partitioning of PG into P1, P2, …, 
Pz aiming at min-cut optimization and very 
good number of pins between partitions. 

 

4 ∀(i ∈ Z)GAi ≈
GA
z

 (9) 

5 ∀(i ∈ Z)Ai = GAi × (1+ Si) (10) 

6 ∀(i ∈ Z)Wi = Ai × ARi;Hi =
Ai

ARi

 (11) 

7 ∀(i ∈ Z)∀( p ∈ Pi)X i[ p] = xini +
(X[ p] − xini ) × Wi

W
 (12) 



8 ∀(i ∈ Z)∀( p ∈ Pi)Yi[ p] = yini +
(Y[ p] − yini ) × Hi

H
 (13) 

9 Legalize I/O positions. (14) 
 

The first step of our algorithm is illustrated in figure 2. 
Considering that in a real circuit net fanouts are limited, node 
degrees can be considered bounded or constant for the sake 
of complexity analysis. Thus, a single BFS search will have 
an O(n) complexity. Our algorithm be performed by m2 BFS 
searches in HG resulting in a O(m2n) complexity. Since the 
number of I/O pins do not exceed a few thousand, it is 
feasible to use BFS. By using a single search to compute the 
distance from a pin pi to every p ∈ P, the complexity can go 
down to O(mn). 

The values of LD are used to create a PG graph 
connecting all pairs of I/O pins, as shown in figure 2. For the 
third step, we used hMetis tool [14]. The tool accepts 
weights for the cells. We assigned the inverse of the edge 
costs as their weights. We imposed a very tight balance in 
order to keep a similar amount of I/Os in each tier.  

 

 

 

 
 

 

 

Figure 2.  Ilustration of the shortest path between two I/O pins and a 
portion of the correspondent complete graph of all boundary pins. 

The forth step can be accomplished by the division of the 
total gate area per number of tiers. So far, it is not possible to 
know whether such perfect cells partitioning will be 
achievable, but it is a reasonable assumption. Nevertheless, 
Si could be changed to compensate the GAi inaccuracy. 

The steps 5 and 6 compute the area of the tiers such that 
the aspect ratio and whitespace is preserved from the original 
2D circuit. At this point, a new aspect ratio or whitespace 
could be used. 

Finally, the steps 7 and 8 compute the X and Y 
coordinates of the I/Os to their target tiers. The original 
orientation and ordering is preserved, since the I/Os 
placement is a mapping from their original position to a 
smaller area. A legalization (step 9) is performed in the end 
to assure that the I/Os do not overlap. 

V. EXPERIMENTAL RESULTS 
Our goal is to study the impact of the I/O partitioning in 

the area, wirelength and number of vias. For that, we defined 
a simplistic 3D placement flow as follows: 

1. A min-cut partitioning of HG is performed. The I/O 
pins, that have already an assigned partition, are used as 
fixed nodes. We use hMetis for this step. The tool is 
configured to keep the area as balanced as possible. 

2. A separate set of benchmarks is generated and placed 
independently. The number of 3D vias is accounted for, 
but vertical connections are ignored by the placer at this 
time. Our cell placer uses Quadratic Placement for 
global placement and Simulated Annealing for detailed 
placement.  

 

We compared our I/O partitioning algorithm with two 
other simplistic algorithms that follow the same formulation 
described in section III. The first method is called 
unlocked_pins. In this method, we allow hMetis to partition 
the I/Os as free nodes, replacing the steps 1,2,3 and 4 of our 
algorithm. The following steps of our algorithm are done for 
the unlocked_pins as well. The second algorithm is called 
alternate_pins. This method is a pseudo-random partitioning 
that goes thought the boundary line of the chip picking nodes 
for each partition alternatively. The idea is to preserve the 
initial I/O balanced distribution. Just as for unlocked_pins, 
the alternate_pins replaces steps 1,2,3 and 4 of our flow, but 
steps 5,6,7,8 and 9 are done. 

Tables 1, 2 and 3 report our experimental results. We 
used ISPD 2004 benchmarks [15]. In this paper we focus on 
experiments with two tiers, but our algorithm could be 
applied for any number of tiers. The column “tier area” is 
calculated after the actual partitioning of the gates. We got 
numbers very close to the ones suggested by the step 4 of the 
algorithm. The worst tier area is used as the area of all tiers. 
The total area is simply twice the tier area. The total WL 
column is simply the sum of the wirelength found by our 
placer in each of the separate tiers (not considering vertical 
connections). The number of I/Os and vias are also reported 
in the table. The table also shows the standard deviation of 
the number of I/Os in order to evaluate how good their 
balance is. 

Analyzing the tables 1, 2 and 3 the following topics can 
be observed: 

• The number of I/Os is very well balanced on the 
alternate_pins method (average standard deviation is 
less than 1 pin). The balancing of our algorithm with an 
average standard deviation of 5 pins. However, the 
unlocked_pins algorithm led to very unbalanced 
number of pins that completely invalidates the 
method (average standard deviation of 150 pins). 

• The alternate_pins method derive a slightly better area 
(1% improvement) compared to both of the other 
algorithms. Possibly, the good I/O helps hMetis to 
achieve a better balancing of the gate area. 

• The number of vias found by the alternate_pins method 
is always worse than the others (by an average of 30 
vias), showing that a simplistic I/O pin partitioning 
will deteriorate the min-cut algorithm.  

E F G H
A
B
C
D

1

2
4

5

3

BFS(A,G) = 1

BFS(A,H) = 5

-----------
Start: p296
Stop : p426
Score: 32
-----------
Start: p296
Stop : p427
Score: 32
-----------
Start: p296
Stop : p428
Score: 32
-----------
Start: p296
Stop : p429
Score: 31

A

H

G

P
(23)

(3)
(5)

(4)

(34)

(1)



• The number of vias obtained with our algorithm is 
always better than in the other methods. This is a very 
important result showing that our I/O partitioning 
method aids the gate partitioning to achieve a better 
cut while effectively balancing the I/O pins. 

• The wirelength resulted from our partitioning followed 
by 2D placement is smaller in average than the 

alternate_pins method while the unlocked_pins method 
led to the best wirelength. 

It is important to point-out that the wirelength is not an 
accurate metric since vertical connections are not accounted 
for. For this reason, the advantage got by our method will 
increase since the amount of vertical connections resulted by 
our partitioning is smaller.  

 

TABLE I.  EXPERIMENTAL RESULTS USING OUR I/O PARTITIONING ALGORITHM TARGETING 2 TIERS. 

Circuit Data Partitioning Data 

Bench #cells #I/Os #nets 2D 
area 

Tier  
Area 

Total  
WL 

#I/Os  
tier 0 

#I/Os 
tier 1 

σ 
 #I/Os #Vias 

ibm01 12,506 246 14,111 2,380,800 1,209,856  2.11E+06 120 126  4 393 
ibm02 19,342 259 19,584 3,064,208 1,517,568 4.50E+06  126 133 5 477 
ibm03 22,853 283 27,401 3,751,968 1,896,128  6.48E+06 138 145 5 1,103 
ibm04 27,220 287 31,970 4,782,848 2,417,664 7.02E+06  147 140 5 733 
ibm06 32,332 166 34,826 4,106,592 2,038,784 7.51E+06  81 85 3 1,059 
ibm07 45,639 287 48,117 7,136,672 3,612,960 1.23E+07  140 147 5 1,032 
ibm08 51,023 286 50,513 7,403,840 3,699,840  1.07E+07 140 146 4 1,297 
ibm09 53,110 285 60,902 8,617,104 4,328,208 1.41E+07  139 146 5 778 
Avg. 33,002 264 35,928 5,155,504 2,590,126 8.08E+06 129 134 5 859 

TABLE II.  EXPERIMENTAL RESULTS USING UNLOCKED_PINS PARTITIONING ALGORITHM TARGETING 2 TIERS. 

Circuit Data Partitioning Data 

Bench #cells #I/Os #nets 
2D 

area 
Tier 
Area 

Total 
WL 

#I/Os 
tier 0 

#I/Os 
tier 1 

σ 
#I/Os #Vias 

ibm01 12,506 246 14,111 2,380,800 1,209,856 2.14E+06 0 246 174 539 
ibm02 19,342 259 19,584 3,064,208 1,518,784 4.39E+06 259 0 183 477 
ibm03 22,853 283 27,401 3,751,968 1,867,280 6.22E+06 283 0 200 1,109 
ibm04 27,220 287 31,970 4,782,848 2,414,592 7.30E+06 287 0 203 748 
ibm06 32,332 166 34,826 4,106,592 2,038,784 7.73E+06 75 91 11 1,062 
ibm07 45,639 287 48,117 7,136,672 3,596,112 1.13E+07 0 287 203 1,037 
ibm08 51,023 286 50,513 7,403,840 3,697,920 1.03E+07 127 159 23 1,303 
ibm09 53,110 285 60,902 8,617,104 4,326,144 1.40E+07 0 285 202 778 
Avg. 33,002 264 35,928 5,155,504 2,583,684 7.91E+06 129 134 150 882 

 

TABLE III.  EXPERIMENTAL RESULTS USING ALTERNATE_PINS PARTITIONING ALGORITHM TARGETING 2 TIERS. 

Circuit Data Partitioning Data 

Name #cells #I/Os #nets 
2D 

 area 
Tier 

 Area 
Total  
WL 

#I/Os  
tier 0 

#I/Os 
 tier 1 

σ 
 #I/Os  #Vias 

ibm01 12,506 246 14,111 2,380,800 1,182,416 2.35E+06 123 123 0 429 
ibm02 19,342 259 19,584 3,064,208 1,517,568 4.30E+06 130 129 1 477 
ibm03 22,853 283 27,401 3,751,968 1,865,920 6.13E+06 142 141 1 1,117 
ibm04 27,220 287 31,970 4,782,848 2,375,760 7.54E+06 144 143 1 751 
ibm06 32,332 166 34,826 4,106,592 2,080,464 7.37E+06 83 83 0 1,132 
ibm07 45,639 287 48,117 7,136,672 3,588,624 1.18E+07  144 143 1 1,065 
ibm08 51,023 286 50,513 7,403,840 3,697,920 1.11E+07  143 143 0 1,301 
ibm09 53,110 285 60,902 8,617,104 4,307,568 1.43E+07 143 142 1 787 
Avg. 33,002 264 35,928 5,155,504 2,577,030 8.10E+06 132 131 0,63 882 
 



VI. CONCLUSIONS 
This paper presented a method for the partitioning and 

placement of the I/O pins of a 2D block to a 3D circuit. To 
the authors’ knowledge, this is the first paper to address this 
problem and to study its impact on the circuit area, pin 
balancing and wirelength. We propose that the I/O 
partitioning and placement is done upfront, while 3D 
placement will start from fixed I/O pins. In the paper, we 
showed empirically that doing the partitioning of I/O 
together with the cells leads to unbalanced number of pins, 
which invalidates the method.  

Our method is based on the idea of keeping the pins with 
logic proximity together in the same tier. The experimental 
results show that the method is efficient since it can balance 
the I/O pins distribution in the various tiers while leading to 
improvements in wirelength and number of 3D vias 
compared to a simplistic approach.  

VII. FUTURE WORK 
In future work we first will address balancing of I/O pins 

and cells. In this paper, the balancing was considered as a 
constraint to the partitioning algorithm, while a small 
relaxation could lead to better results. 

Also, in future work we will report experiments with an 
improved 3D placer that will consider vertical connections 
and their feasibility in terms of 3D via congestion. 

VIII. REFERENCES 
[1] 3D ICs Industry Sumary at Tezzaron homepage: 

www.tezzaron.com/technology/3D%20IC%20Summary.htm . Access 
on Mar 2006. 

[2]  W. R. Davis, J. Wilson, S. Mick, J. Xu, H. Hua, C. Mineo, A. M. 
Sule, M. Steer and P. D. Franzon; Demystifying 3D ICs: The Pros 
and Cons of Going Vertical. IEEE Design and Test of Computers – 
special issue on 3D integration; pp 498-510, Nov.-Dec. 2005. 

[3] C. Ababei, Y. Feng, B. Goplen, H. Mogal, T. Zhang, K. Bazargan and 
S. Sapatnekar. Placement and Routing in 3D Integrated Circuits. 
IEEE Design and Test of Computers – special issue on 3D 
integration; pp 520-531, Nov.-Dec. 2005. 

[4] Brent Goplen; Sachin Sapatnekar; Efficient Thermal Placement of 
Standard Cells in 3D ICs usisng Forced Directed Approach. In: 
Internation Conference on Computer Aided Design, ICCAD’03, 
November, San Jose, California, USA, 2003. 

[5] S. Obenaus, T. Szymanski. Gravity: Fast Placement for 3D VLSI. 
ACM Transacions on Design Automation of Electronic Systems, New 
York, v.8, p.69–79, March 1999. 

[6] Y Deng; W. Maly. Interconnect Characteristics of 2.5-D System 
Integration Scheme. In: Proc. of the International Symposium on 
Physical Design, ISPD 2001, New York, NY, USA. Anais. . . ACM 
Press, 2001. p.171– 175. 

[7] K. Banerjee and S. Souri and P. Kapur and K. Saraswat. 3D-ICs: A 
Novel Chip Design for Improving Deep Submicrometer Interconnect 
Performance and Systems on-Chip Integration. Proceedings of IEEE, 
vol 89, issue 5, 2001. 

[8] C. J Alpert; T. Chan; D. J. Huang.; I. Markov; K. Yan. Quadratic 
Placement Revisited. In: Proc. of the 34th Annual Conference on 
Design Automation, DAC 1997, New York, NY, USA. Anais. . . 
ACM Press, 1997. p.752–757.  

[9] N. Viswanathan; C.C.-N Chu. FastPlace: Efficient Analytical 
Placement Using Cell Shifting, Iterative Local Refinement,and a 
Hybrid Net Model. IEEE Transactions on CAD, Volume 24,  Issue 5, 
pp 722-733, May 2005.  

[10] P. Villarrubia, “CPLACE: A Standard Cell Placement program” IBM 
Tech. Dis. Bull.,vol32 no. 10A, pp. 341-342, Mar. 1990. 

[11] P. Benkart, A. Heittmann, H. Huebner, U. Ramacher, A. Kaiser, A. 
Munding, M. Bschorr, H-J Pfleiderer, E. Kohn. 3D Chip Stack 
Technology Using Through-Chip Interconnects. IEEE Design and 
Test of Computers – special issue on 3D integration; pp 512-517, 
Nov.-Dec. 2005. 

[12] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multilevel 
hypergraph partitioning: Application in VLSI domain. In Proceedings 
of 34th Annual Conference on. Design Automation, DAC 1997, pages 
526–529, 1997. 

[13] S. Spatnekar and K. Nowka; New Dimensions in 3D Integration; In: 
IEEE Design & Test of Computers; – special issue on 3D integration; 
pp 496-497, Nov.-Dec. 2005. 

[14] Hypergraph & Circuit Partitioning at hMetis Home Page, 
http://glaros.dtc.umn.edu/gkhome/views/metis/hmetis/. Access on 
Mar 2006. 

[15] ISPD 2004 - IBM Standard Cell Benchmarks with Pads. http:// 
www.public.iastate.edu/~nataraj/ISPD04_Bench.html#Benchmark_D
escription. Access on Mar 2006. 

 

 


