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Abstract—The 3D Circuit technologies appear as a possible 
solution for interconnect optimization. For most of the 3D 
technologies, the 3D-Vias represent a very complex issue 
because of large pitch requirements and heavy usage of routing 
constraints. New algorithms and CAD methods must be 
developed in order to take advantage of the high integration of 
elements and potentially shorter wire lengths while keeping 
track of the 3D-Vias. One of the CAD problems, addressed by 
this paper, is the partition and placement of the I/O pins of a 
block into sub-blocks that are partitioned into the circuit tiers. 
In this paper, we extend our previous work in the field to 
trade-off the I/O pins balance for improved cut. The new 
version of our partitioning algorithm outperformed the widely 
used hMetis algorithm in number of 3D-Vias from 2% to 10% 
(depending on the I/O pins balance), while the standard 
deviation of the number of I/Os increased. We also observed 
that the maximum number of 3D-Vias between pairs of 
adjacent tiers dropped by 14% (in the best case) with the I/O 
pin unbalance.  

I. INTRODUCTION 
One of the recently proposed solutions for interconnect 

optimization is 3D circuits design [4, 5]. There is a massive 
interest from both industry and academia in 3D integration 
issues. Major companies like IBM, Intel, Samsung, Micron, 
Cadence and Infineon are some examples. 

A 3D circuit is made of the stacking of regular circuits 
forming active islands known as tiers [5]. Between the tiers 
there are metal layers and insulator layers. The 
communication between tiers is made with the so called 3D-
Via. Among the existing technologies for the fabrication of 
the 3D-Vias there is a wide range of pitch requirements. 
According to [5], the ones that provide the highest 
integration are the face-to-face technologies and through 
Vias in a face-to-back fashion. Although they are relatively 
small, all of them consume routing resources on all metal 
layers and particularly the face-to-back 3D-Vias occupy 
active area. For all these reasons and for their possible high 
resistance and capacitance, the 3D-Vias are one of the most 

important issues to be considered by the 3D CAD 
community.1 

The research on CAD for 3D is still starting to appear. 
The problem of 3D placement is different from its original 
definition to account for three dimensions wirelength 
optimization [8, 12], thermal improvement during placement 
[1, 7] and 3D-Vias minimization using min-cut partitioning 
[2, 5, 6]. The most usual placement flow in the literature is to 
start partitioning the design into several sub-circuits 
minimizing the total cut (number of 3D-Vias). According to 
[9] and [5], the 3D-Vias in Bulk technologies highly 
penalizes the active area of a 3D placement solution. This 
experiment strongly motivates the 3D-Via minimization flow 
when targeting this kind of technology. 

The quadratic placement [3] algorithm is one of the most 
successful approaches for 2D circuits placement, while for 
3D circuits is starting to be studied [7, 8]. One of the 
requirements of these algorithms is to have I/O pins in the 
boundary of the chip. For this reason, an algorithm for the 
I/O pins partitioning was recently proposed [9, 14]. Its main 
usage is to distribute the I/Os in the various tiers of the 
design in such a way that the I/Os are able to facilitate the 
cells partitioning with the objective of minimizing the cut 
(number of 3D-Vias). The previous experimental results 
presented in [9,14] report an average 3D-Via minimization 
improvement of 2-3% compared to hMetis that is largely 
used for min-cut partitioning and have been used by many 
researchers on 3D placement for minimizing the number of 
3D-Vias. We observe that, for our application, reducing the 
cut is mandatory in order to implement a 3D circuit with 
Bulk technology for instance. Any improvement has an 
important impact on the quality of the circuit. Additionally, 
using hMetis for the whole netlist in a single step leads to 
prohibitively unbalance of the I/Os [9,14]. 

Our partitioning flow is based on the logic distance 
between I/Os pins in a two phase partitioning method: first 
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the I/Os are modeled as a complete graph using the logic 
distance as cost of the connections; the graph is then 
partitioned using min-cut partitioning. The second stage is to 
fix the I/Os and partition the rest of the netlist. The details of 
this partitioning method are reviewed in section II. 

In this paper we study the proposed netlist partitioning 
method targeting a deeper minimization of the 3D-Vias. We 
focus our study on methods for partitioning the I/Os in a 
more flexible way in order to provide a better starting point 
for the subsequent I/O partitioning problem. We do not 
change the cells partitioning method. Section II reviews the 
I/O partitioning approach while pointing out the room for 
improvement that is explored in this paper. Section III 
presents the experimental results and conclusions are given 
in section IV. 

II. THE I/O PARTITIONING PROBLEM AND THE PROPOSED 
MODIFICATIONS IN THE ALGORITHM 

The I/O partitioning problem can be summarized as 
follows. The set of I/O pins P of a regular (2D) netlist must 
be partitioned into t tiers to the subsets P1, P2, … Pt. After 
that, the partitions must be mapped to a tier. We call this as 
tier assignment problem. Finally, the I/O pins must be placed 
into their assigned tier. We constraint the problem in order to 
preserve the ordering and orientation of the original I/O pins 
placement. Figure 1 illustrates the I/O partitioning problem, 
that we call netlist migration. 
 

 

 

 

 

Figure 1.  Migration from 2D ICs to 3D ICs 

Our I/O partitioning algorithm is a heuristic to be 
combined with existing min-cut partitioning approaches. We 
perform the I/O partition in two steps: first, a complete graph 
of the I/O pins is created with costs associated to each edge; 
second, a min-cut partitioning is performed considering the 
calculated costs. The following steps of the algorithm will 
calculate the area of each tier and the consequent I/O 
placement.  

After I/O partitioning and placement, we perform a min-
cut partitioning of the cells fixing the I/Os. At this point, a 
good partitioning of the I/Os could facilitate the cells 
partitioning since the I/Os are the beginning and end points 
of paths in the netlist. Our logic distance metric in the first 
phase provides an insight of the netlist structure for the 
partitioning algorithm since it contains information of the 
whole netlist synthesized in cost numbers. 

In previous work, we compared the algorithm with two 
other approaches. The first, called unlocked_pins, is 
preformed by hMetis [10,13] partitioning the whole netlist 

(pins + cells). This is the solution adopted by most of the 3D 
placers in the literature, such as [1, 2, 6]. This approach was 
used by us as a good in terms of cut (number of 3D-Vias) but 
not in terms of I/O balanced distribution.  The second 
approach is called alternate_pins. It consists of partitioning 
the I/Os using their placement information and assigning one 
by one alternatively to a partition. It was used as good for 
I/O balance but not for number of 3D-Vias. The 
experimental results presented in [9,14] show that the 
proposed approach achieves a very good balance that is close 
to the one obtained by the alternate_pins method along with 
a number of 3D-Vias minimization that outperformed both 
algorithms. This fact can be explained by our pre-processing 
stage that computes the logic distance between I/Os requiring 
intensive CPU usage. The distances are stored in a file so 
that the I/O partitioning runtimes are not harmed. 

In summary, our method turned out to be good for both 
balance and number of 3D-Vias. Targeting technology in 
which the 3D-Vias costs too much (as detailed in [5,9]), the 
3D-Via minimization is mandatory and our method is able to 
further minimize the 3D-Vias compared to existing 
approaches in the literature [1, 2, 5,6]. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 2.  An Illustration of Our Flow 

The figure 2 summarizes the flow of the I/O partitioning 
algorithm.  We highlight the step of Pins Partitioning. This 
step is performed by the hMetis algorithm [13]. At this point, 
we can control the balance of the I/O pins. In the previous 
work, we imposed a tight balance in order to achieve a 
comparable I/O distribution with the alternate_pins method. 
However, in this work, we are focusing on achieving an even 
smaller cut (number of 3D-Vias) by relaxing the pin balance 
constraint. It is well known that a tight balance constraint 
over-constraints the partitioning process [13]. However, it is 
really not clear whether an unbalanced I/O Pin solution 
would be a better starting point for the cell partitioning. In 
this paper we investigate this matter keeping the rest of the 
flow with a tight constraint. The subsequent cell partitioning 
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works with the I/Os as fixed pins and is constrained by a 
very tight balance for the cells area. 

In our algorithm the parameter used to specify the 
unbalance between the partitions during recursive bisection 
is an integer number between 1 and 49 (same as the hMetis 
tool). For example, considering a hypergraph with n vertices, 
each having a unit weight, let u be the unbalance parameter. 
Then, suppose the number of desired partitions is two, the 
number of vertices assigned to each one will be calculated 
according to the following equation: 

50 − u( )× n

100
;

50 + u( )× n

100

   

   
   

   

   
   
 

For example, let u = 10, then the bisection balance will 
range from 40%-60% to 60%-40%. Now suppose that we 
have four partitions, then an unbalancing factor 10 will result 
in partitions that can contain between 0.402n = 0.15n and 
0.602n = 0.35n vertices. 

III. EXPERIMENTAL RESULTS 
We have conducted experiments in order to verify the 

effectiveness of our approach. The benchmark set used is the 
ISPD 2004 placement benchmarks [11]. We started the 
experiments be recovering the experimental results of our 
algorithm from previous works [9,14] in which the balance 
criteria u is maximum (in our case, u = 1) presented in table 
1. We than modified the balance to u = 10 and u = 25.  

TABLE I.  COMPARISON OF THE  #3D-VIAS CONSIDERING DIFFERENTS 
ALGORITHMS (RECOVERED FROM [9,14]) 

Algorithms 2 tiers 3 tiers 4 tiers 5 tiers 
unlocked_pins #vias 882 1,951 3,305 4,435 
alternate_pins #vias 882 1,983 3,334 4,588 
our_algorithm #vias 859 1,888 3,209 4,455 

 

The results are reported on table 1. We report the effects 
on the I/O balance measured by the standard deviation of the 
number of pins. Suppose that a circuit is implemented with 
three tiers; the number of 3D-Vias between the first pair of 
adjacent tiers is 50 and the second pair has 60 vias. In this 
case, the standard deviation is 7.07. In table 2 we also report 
the total number of 3D-Vias and finally the worst case in 
number of 3D-Vias between a pair of adjacent tiers. In 
average, we can observe that the number improved from 3% 
(4 tiers) to 14% (3 tiers). Figure 3 shows two graphs 
reporting the average evolution on the number of Vias (total 
(a) and worst case of adjacent tiers (b)). It can be observed 
that the total number of 3D-Vias can reduce up to 7% while 
the number of 3D-Vias between pairs of tiers can reduce up 
to 14% with the unbalance of number of tiers. The standard 
deviation of I/Os ranges from 1% to 35% of the total number 
of I/Os. We highlight that the worst case obtained standard 
deviation is still much better than the one obtained by 
hMetis, as reported in [9, 13], that ranges from 39% to 57% 
and some tiers have no I/Os. 

IV. CONCLUSIONS 
This paper presented an evolution of an I/O pin algorithm 

targeting 3D circuits. We present an automated method for 
the migration of a 2D netlist for 3D. The I/Os are partitioned 

and placed in the boundary the new area planned for the 3D 
placement space. In previous works, we studied the effect of 
a smart I/O partitioning method and how it is able to improve 
the number of 3D-Vias indirectly, since it is only the first 
step of the actual cells partitioning. We reported average 
gains in the order of 2-3% in the number of 3D-Vias 
compared to hMetis partitioning for the whole netlist in a 
single step. Additionally, we have shown in previous work 
that such method is not feasible due to high unbalance of the 
I/O distribution. It is important to notice that most of the 
existing literature on 3D Placers that are based on hMetis for 
minimizing the number of 3D-Vias such as [1, 2, 5, 6].  

In this paper, we investigated ways to further minimize 
the cut. We studied how the unbalance of the number of I/Os 
could help the subsequent cells partitioning process. We 
relaxed the I/O pin balance constraint keeping the area 
evenly distributed since the second partitioning process is 
still highly constrained. Adding up the advantage reported in 
previous works with the improvements achieved on this 
paper, we can outperform hMetis from 2% to 10% in 
average. This advantage can be explained by the fact that the 
logic distance provides a good insight of the netlist structure, 
facilitating the search. 
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Figure 3.  Evolution of the number of 3D-Vias obtained with the unbalance of the I/O paritioning process. 

TABLE II.  COMPARISON OF THE  3D-VIAS AND #MAX 3DVIAS CONSIDERING DIFFERENTS BALANCE  PARAMETERS 

ibm01 2 Tiers 3Tiers 4 Tiers 5 Tiers 

Balance #vias 
Total σ I/O #max 

Vias 
#vias 
Total σ I/O #max 

Vias 
#vias 
Total σ I/O #max 

Vias
#vias 
Total σ I/O #max 

Vias 
1 393 4 393 577 6 323 945 4 394 1,278 4 472 
10 386 35 386 544 29 339 862 25 369 1,298 27 465 
25 383 88 383 536 78 379 926 56 393 1,271 57 428 

ibm02 2 Tiers 3 Tiers 4 Tiers 5 Tiers 
1 477 5 477 915 4 540 1,365 4 545 2,052 3 767 
10 413 37 413 782 31 440 1,339 26 509 1,980 29 565 
25 500 93 500 770 82 466 1,395 66 557 1,900 60 731 

ibm03 2 Tiers 3 Tiers 4 Tiers 5 Tiers 
1 1,103 5 1,103 2,473 4 1,365 3,391 4 1,423 5,257 5 1,683 
10 1,051 40 1,051 2,495 47 1,301 3,215 24 1,360 5,143 31 1,663 
25 997 101 997 2,360 90 1,249 3,355 64 1,451 5,098 65 1,592 

ibm04 2 Tiers 3 Tiers 4 Tiers 5 Tiers 
1 733 5 733 1,720 5 933 2,955 4 1,203 3,646 4 1,124 
10 724 42 724 1,687 34 964 2,836 29 1,211 3,323 31 996 
25 683 103 683 1,548 91 855 2,780 58 1,174 3,494 66 1,045 

ibm06 2 Tiers 3 Tiers 4 Tiers 5 Tiers 
1 1,059 3 1,059 2,100 3 1,065 4,544 3 1,725 6,031 3 1,732 
10 1,054 24 1,054 2,057 20 1,033 4,131 17 1,695 5,764 19 1,678 
25 1,051 57 1,051 2,037 41 1,048 4,416 38 1,646 5,676 36 1,650 

ibm07 2 Tiers 3 Tiers 4 Tiers 5 Tiers 
1 1,032 5 1,032 2,286 5 1,414 3,960 3 1,718 5,755 5 1,933 
10 1,017 42 1,017 2,182 24 1,378 3,032 29 1,674 5,375 31 1,789 
25 956 103 956 2,067 83 1,313 3,726 58 1,641 5,325 66 1,698 

ibm08 2 Tiers 3 Tiers 4 Tiers 5 Tiers 
1 1,297 4 1,297 3,241 4 1,745 5,407 3 1,907 6,849 3 2,103 
10 1,274 24 1,274 3,044 34 1,593 5,361 26 1,873 6,800 34 2,155 
25 1,242 86 1,242 3,103 78 1,660 4,792 57 1,680 6,675 56 1,949 

ibm09 2 Tiers 3 Tiers 4 Tiers 5 Tiers 
1 778 5 778 1,853 4 1,959 3,103 4 1,158 4,769 4 1,759 
10 728 42 728 1,848 34 1,948 2,956 29 1,216 3,854 26 1,194 
25 696 101 696 1,836 91 1,004 3,032 65 1,138 3,757 61 1,245 

Average 2 Tiers 3 Tiers 4 Tiers 5 Tiers 
1 859 5 859 1,896 4 1,168 3,209 4 1,259 4,455 4 1,447 
10 831 36 831 1,830 32 1,125 2,967 26 1,238 4,192 29 1,313 
25 814 92 814 1,782 79 997 3,053 58 1,210 4,150 58 1,292 

  (a) (b) 



 


