
Unbalacing the I/O Pins Partitioning for Minimizing
Inter-Tier Vias in 3D VLSI Circuits

Sandro Sawicki1,2

sawicki@inf.ufrgs.br
Renato Hentschke1
renato@inf.ufrgs.br

Marcelo Johann1
johann@inf.ufrgs.br

Ricardo Reis1
reis@inf.ufrgs.br

1 UFRGS – Universidade Federal do Rio Grande do Sul

PPGC - Instituto de Informática
Porto Alegre, Brazil

Abstract—The 3D Circuit technologies appear as a possible
solution for interconnect optimization. For most of the 3D
technologies, the 3D-Vias represent a very complex issue
because of large pitch requirements and heavy usage of routing
constraints. New algorithms and CAD methods must be
developed in order to take advantage of the high integration of
elements and potentially shorter wire lengths while keeping
track of the 3D-Vias. One of the CAD problems, addressed by
this paper, is the partition and placement of the I/O pins of a
block into sub-blocks that are partitioned into the circuit tiers.
In this paper, we extend our previous work in the field to
trade-off the I/O pins balance for improved cut. The new
version of our partitioning algorithm outperformed the widely
used hMetis algorithm in number of 3D-Vias from 2% to 10%
(depending on the I/O pins balance), while the standard
deviation of the number of I/Os increased. We also observed
that the maximum number of 3D-Vias between pairs of
adjacent tiers dropped by 14% (in the best case) with the I/O
pin unbalance.

I. INTRODUCTION
One of the recently proposed solutions for interconnect

optimization is 3D circuits design [4, 5]. There is a massive
interest from both industry and academia in 3D integration
issues. Major companies like IBM, Intel, Samsung, Micron,
Cadence and Infineon are some examples.

A 3D circuit is made of the stacking of regular circuits
forming active islands known as tiers [5]. Between the tiers
there are metal layers and insulator layers. The
communication between tiers is made with the so called 3D-
Via. Among the existing technologies for the fabrication of
the 3D-Vias there is a wide range of pitch requirements.
According to [5], the ones that provide the highest
integration are the face-to-face technologies and through
Vias in a face-to-back fashion. Although they are relatively
small, all of them consume routing resources on all metal
layers and particularly the face-to-back 3D-Vias occupy
active area. For all these reasons and for their possible high
resistance and capacitance, the 3D-Vias are one of the most

important issues to be considered by the 3D CAD
community.1

The research on CAD for 3D is still starting to appear.
The problem of 3D placement is different from its original
definition to account for three dimensions wirelength
optimization [8, 12], thermal improvement during placement
[1, 7] and 3D-Vias minimization using min-cut partitioning
[2, 5, 6]. The most usual placement flow in the literature is to
start partitioning the design into several sub-circuits
minimizing the total cut (number of 3D-Vias). According to
[9] and [5], the 3D-Vias in Bulk technologies highly
penalizes the active area of a 3D placement solution. This
experiment strongly motivates the 3D-Via minimization flow
when targeting this kind of technology.

The quadratic placement [3] algorithm is one of the most
successful approaches for 2D circuits placement, while for
3D circuits is starting to be studied [7, 8]. One of the
requirements of these algorithms is to have I/O pins in the
boundary of the chip. For this reason, an algorithm for the
I/O pins partitioning was recently proposed [9, 14]. Its main
usage is to distribute the I/Os in the various tiers of the
design in such a way that the I/Os are able to facilitate the
cells partitioning with the objective of minimizing the cut
(number of 3D-Vias). The previous experimental results
presented in [9,14] report an average 3D-Via minimization
improvement of 2-3% compared to hMetis that is largely
used for min-cut partitioning and have been used by many
researchers on 3D placement for minimizing the number of
3D-Vias. We observe that, for our application, reducing the
cut is mandatory in order to implement a 3D circuit with
Bulk technology for instance. Any improvement has an
important impact on the quality of the circuit. Additionally,
using hMetis for the whole netlist in a single step leads to
prohibitively unbalance of the I/Os [9,14].

Our partitioning flow is based on the logic distance
between I/Os pins in a two phase partitioning method: first

2 On live from UNIJUI, Northwest University of Rio Grande do Sul,
DETEC – Departamento de Tecnologia, Santa Rosa, Brazil.
* This research was partially supported by a grant from CNPq, Brazil.

the I/Os are modeled as a complete graph using the logic
distance as cost of the connections; the graph is then
partitioned using min-cut partitioning. The second stage is to
fix the I/Os and partition the rest of the netlist. The details of
this partitioning method are reviewed in section II.

In this paper we study the proposed netlist partitioning
method targeting a deeper minimization of the 3D-Vias. We
focus our study on methods for partitioning the I/Os in a
more flexible way in order to provide a better starting point
for the subsequent I/O partitioning problem. We do not
change the cells partitioning method. Section II reviews the
I/O partitioning approach while pointing out the room for
improvement that is explored in this paper. Section III
presents the experimental results and conclusions are given
in section IV.

II. THE I/O PARTITIONING PROBLEM AND THE PROPOSED
MODIFICATIONS IN THE ALGORITHM

The I/O partitioning problem can be summarized as
follows. The set of I/O pins P of a regular (2D) netlist must
be partitioned into t tiers to the subsets P1, P2, … Pt. After
that, the partitions must be mapped to a tier. We call this as
tier assignment problem. Finally, the I/O pins must be placed
into their assigned tier. We constraint the problem in order to
preserve the ordering and orientation of the original I/O pins
placement. Figure 1 illustrates the I/O partitioning problem,
that we call netlist migration.

Figure 1. Migration from 2D ICs to 3D ICs

Our I/O partitioning algorithm is a heuristic to be
combined with existing min-cut partitioning approaches. We
perform the I/O partition in two steps: first, a complete graph
of the I/O pins is created with costs associated to each edge;
second, a min-cut partitioning is performed considering the
calculated costs. The following steps of the algorithm will
calculate the area of each tier and the consequent I/O
placement.

After I/O partitioning and placement, we perform a min-
cut partitioning of the cells fixing the I/Os. At this point, a
good partitioning of the I/Os could facilitate the cells
partitioning since the I/Os are the beginning and end points
of paths in the netlist. Our logic distance metric in the first
phase provides an insight of the netlist structure for the
partitioning algorithm since it contains information of the
whole netlist synthesized in cost numbers.

In previous work, we compared the algorithm with two
other approaches. The first, called unlocked_pins, is
preformed by hMetis [10,13] partitioning the whole netlist

(pins + cells). This is the solution adopted by most of the 3D
placers in the literature, such as [1, 2, 6]. This approach was
used by us as a good in terms of cut (number of 3D-Vias) but
not in terms of I/O balanced distribution. The second
approach is called alternate_pins. It consists of partitioning
the I/Os using their placement information and assigning one
by one alternatively to a partition. It was used as good for
I/O balance but not for number of 3D-Vias. The
experimental results presented in [9,14] show that the
proposed approach achieves a very good balance that is close
to the one obtained by the alternate_pins method along with
a number of 3D-Vias minimization that outperformed both
algorithms. This fact can be explained by our pre-processing
stage that computes the logic distance between I/Os requiring
intensive CPU usage. The distances are stored in a file so
that the I/O partitioning runtimes are not harmed.

In summary, our method turned out to be good for both
balance and number of 3D-Vias. Targeting technology in
which the 3D-Vias costs too much (as detailed in [5,9]), the
3D-Via minimization is mandatory and our method is able to
further minimize the 3D-Vias compared to existing
approaches in the literature [1, 2, 5,6].

Figure 2. An Illustration of Our Flow

The figure 2 summarizes the flow of the I/O partitioning
algorithm. We highlight the step of Pins Partitioning. This
step is performed by the hMetis algorithm [13]. At this point,
we can control the balance of the I/O pins. In the previous
work, we imposed a tight balance in order to achieve a
comparable I/O distribution with the alternate_pins method.
However, in this work, we are focusing on achieving an even
smaller cut (number of 3D-Vias) by relaxing the pin balance
constraint. It is well known that a tight balance constraint
over-constraints the partitioning process [13]. However, it is
really not clear whether an unbalanced I/O Pin solution
would be a better starting point for the cell partitioning. In
this paper we investigate this matter keeping the rest of the
flow with a tight constraint. The subsequent cell partitioning

Tier 0
Tier 1
Tier 2
Tier 3

Tier n

Aspect Ratio
Pins Orientation

Pins Partitioning

Balance
Parameters

Tiers Assignment

Complete Graph of
the I/Os
Edges cost by Logic
Distance

White Spaces

Cells Partitioning

Pins Placement

Netlist

Tiers

works with the I/Os as fixed pins and is constrained by a
very tight balance for the cells area.

In our algorithm the parameter used to specify the
unbalance between the partitions during recursive bisection
is an integer number between 1 and 49 (same as the hMetis
tool). For example, considering a hypergraph with n vertices,
each having a unit weight, let u be the unbalance parameter.
Then, suppose the number of desired partitions is two, the
number of vertices assigned to each one will be calculated
according to the following equation:

50 − u()× n

100
;

50 + u()× n

100

For example, let u = 10, then the bisection balance will
range from 40%-60% to 60%-40%. Now suppose that we
have four partitions, then an unbalancing factor 10 will result
in partitions that can contain between 0.402n = 0.15n and
0.602n = 0.35n vertices.

III. EXPERIMENTAL RESULTS
We have conducted experiments in order to verify the

effectiveness of our approach. The benchmark set used is the
ISPD 2004 placement benchmarks [11]. We started the
experiments be recovering the experimental results of our
algorithm from previous works [9,14] in which the balance
criteria u is maximum (in our case, u = 1) presented in table
1. We than modified the balance to u = 10 and u = 25.

TABLE I. COMPARISON OF THE #3D-VIAS CONSIDERING DIFFERENTS
ALGORITHMS (RECOVERED FROM [9,14])

Algorithms 2 tiers 3 tiers 4 tiers 5 tiers
unlocked_pins #vias 882 1,951 3,305 4,435
alternate_pins #vias 882 1,983 3,334 4,588
our_algorithm #vias 859 1,888 3,209 4,455

The results are reported on table 1. We report the effects
on the I/O balance measured by the standard deviation of the
number of pins. Suppose that a circuit is implemented with
three tiers; the number of 3D-Vias between the first pair of
adjacent tiers is 50 and the second pair has 60 vias. In this
case, the standard deviation is 7.07. In table 2 we also report
the total number of 3D-Vias and finally the worst case in
number of 3D-Vias between a pair of adjacent tiers. In
average, we can observe that the number improved from 3%
(4 tiers) to 14% (3 tiers). Figure 3 shows two graphs
reporting the average evolution on the number of Vias (total
(a) and worst case of adjacent tiers (b)). It can be observed
that the total number of 3D-Vias can reduce up to 7% while
the number of 3D-Vias between pairs of tiers can reduce up
to 14% with the unbalance of number of tiers. The standard
deviation of I/Os ranges from 1% to 35% of the total number
of I/Os. We highlight that the worst case obtained standard
deviation is still much better than the one obtained by
hMetis, as reported in [9, 13], that ranges from 39% to 57%
and some tiers have no I/Os.

IV. CONCLUSIONS
This paper presented an evolution of an I/O pin algorithm

targeting 3D circuits. We present an automated method for
the migration of a 2D netlist for 3D. The I/Os are partitioned

and placed in the boundary the new area planned for the 3D
placement space. In previous works, we studied the effect of
a smart I/O partitioning method and how it is able to improve
the number of 3D-Vias indirectly, since it is only the first
step of the actual cells partitioning. We reported average
gains in the order of 2-3% in the number of 3D-Vias
compared to hMetis partitioning for the whole netlist in a
single step. Additionally, we have shown in previous work
that such method is not feasible due to high unbalance of the
I/O distribution. It is important to notice that most of the
existing literature on 3D Placers that are based on hMetis for
minimizing the number of 3D-Vias such as [1, 2, 5, 6].

In this paper, we investigated ways to further minimize
the cut. We studied how the unbalance of the number of I/Os
could help the subsequent cells partitioning process. We
relaxed the I/O pin balance constraint keeping the area
evenly distributed since the second partitioning process is
still highly constrained. Adding up the advantage reported in
previous works with the improvements achieved on this
paper, we can outperform hMetis from 2% to 10% in
average. This advantage can be explained by the fact that the
logic distance provides a good insight of the netlist structure,
facilitating the search.

REFERENCES
[1] C. Ababei, Y. Feng, B. Goplen, H. Mogal, T. Zhang, K. Bazargan and

S. Sapatnekar. Placement and Routing in 3D Integrated Circuits.
IEEE Design and Test of Computers – Special Issue on 3D
Integration; pp 520-531, Nov.-Dec. 2005.

[2] C. Ababei; H. Mogal; K. Bazargan; Three-Dimensional Place and
Route for FPGAs. In: Proceedings of the Design Automation
Conference - Asia and South Pacific, ASP-DAC 2005. Volume: 2
 18-21 Jan. 2005. Page(s): 773- 778 Vol. 2.

[3] C. Alpert; T. Chan; D. J. Huang.; I. Markov; K. Yan. Quadratic
Placement Revisited. In: Proc. of the 34th Annual Conference on
Design Automation, DAC 1997, New York, NY, USA. Anais. . .
ACM Press, 1997. p.752–757.

[4] K. Banerjee and S. Souri and P. Kapur and K. Saraswat. 3D-ICs: A
Novel Chip Design for Improving Deep Submicrometer Interconnect
Performance and Systems on-Chip Integration. Proceedings of IEEE,
vol 89, issue 5, 2001.

[5] W. R. Davis, J. Wilson, S. Mick, J. Xu, H. Hua, C. Mineo, A. M.
Sule, M. Steer and P. D. Franzon; Demystifying 3D ICs: The Pros
and Cons of Going Vertical. IEEE Design and Test of Computers –
Special Issue on 3D Integration; pp 498-510, Nov.-Dec. 2005.

[6] Y Deng; W. Maly. Interconnect Characteristics of 2.5-D System
Integration Scheme. In: Proceedings of the International Symposium
on Physical Design, ISPD 2001, New York, NY, USA. Anais. . .
ACM Press, 2001. p.171– 175.

[7] B. Goplen; S. Sapatnekar; Efficient Thermal Placement of Standard
Cells in 3D ICs usisng Forced Directed Approach. In:Proceedings of
the Internation Conference on Computer Aided Design, ICCAD 2003,
November, San Jose, California, USA, 2003.

[8] R. Hentschke, G. Flach, F. Pinto, R. Reis. Quadratic Placement for
3D Circuits Using Z-Cell Shifting, 3D Iterative Refinement and
Simulated Annealing. In 19th Symposium on Integrated Circuit and
System Design, (in Press) SBCCI 2006, Ouro Preto, Brazil.

[9] R. Hentschke, S. Sawicki, M. Johann, R. Reis. An Algorithm for I/O
Partitioning Targeting 3D Circuits and Its Impact on 3D-Vias, In IFIP
Internation Conference on Very Large Scale Integration,
(unpublished- submitted) VLSI-SOC 2006.

[10] Hypergraph & Circuit Partitioning at hMetis Home Page,
http://glaros.dtc.umn.edu/gkhome/views/metis/hmetis/. Access on
Mar 2006.

[11] ISPD 2004 - IBM Standard Cell Benchmarks with Pads. http://
www.public.iastate.edu/~nataraj/ISPD04_Bench.html#Benchmark_D
escription. Access on Mar 2006.

[12] S. Obenaus, T. Szymanski. Gravity: Fast Placement for 3D VLSI.
ACM Transactions on Design Automation of Electronic Systems,
New York, v.8, p.69–79, March 1999.

[13] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multilevel
hypergraph partitioning: Application in VLSI domain. In Proceedings

of 34th Annual Conference on. Design Automation, DAC 1997, pages
526–529, 1997.

[14] S. Sawicki, R. Hentschke, M. Johann, R. Reis. An Algorithm for I/O
Pins Partitioning Targeting 3D VLSI Integrated Circuits. In: 49th
IEEE International Midwest Symposium on Circuits and Systems, (in
Press) MWSCAS 2006, Puerto Rico.

Figure 3. Evolution of the number of 3D-Vias obtained with the unbalance of the I/O paritioning process.

TABLE II. COMPARISON OF THE 3D-VIAS AND #MAX 3DVIAS CONSIDERING DIFFERENTS BALANCE PARAMETERS

ibm01 2 Tiers 3Tiers 4 Tiers 5 Tiers

Balance #vias
Total σ I/O #max

Vias
#vias
Total σ I/O #max

Vias
#vias
Total σ I/O #max

Vias
#vias
Total σ I/O #max

Vias
1 393 4 393 577 6 323 945 4 394 1,278 4 472
10 386 35 386 544 29 339 862 25 369 1,298 27 465
25 383 88 383 536 78 379 926 56 393 1,271 57 428

ibm02 2 Tiers 3 Tiers 4 Tiers 5 Tiers
1 477 5 477 915 4 540 1,365 4 545 2,052 3 767
10 413 37 413 782 31 440 1,339 26 509 1,980 29 565
25 500 93 500 770 82 466 1,395 66 557 1,900 60 731

ibm03 2 Tiers 3 Tiers 4 Tiers 5 Tiers
1 1,103 5 1,103 2,473 4 1,365 3,391 4 1,423 5,257 5 1,683
10 1,051 40 1,051 2,495 47 1,301 3,215 24 1,360 5,143 31 1,663
25 997 101 997 2,360 90 1,249 3,355 64 1,451 5,098 65 1,592

ibm04 2 Tiers 3 Tiers 4 Tiers 5 Tiers
1 733 5 733 1,720 5 933 2,955 4 1,203 3,646 4 1,124
10 724 42 724 1,687 34 964 2,836 29 1,211 3,323 31 996
25 683 103 683 1,548 91 855 2,780 58 1,174 3,494 66 1,045

ibm06 2 Tiers 3 Tiers 4 Tiers 5 Tiers
1 1,059 3 1,059 2,100 3 1,065 4,544 3 1,725 6,031 3 1,732
10 1,054 24 1,054 2,057 20 1,033 4,131 17 1,695 5,764 19 1,678
25 1,051 57 1,051 2,037 41 1,048 4,416 38 1,646 5,676 36 1,650

ibm07 2 Tiers 3 Tiers 4 Tiers 5 Tiers
1 1,032 5 1,032 2,286 5 1,414 3,960 3 1,718 5,755 5 1,933
10 1,017 42 1,017 2,182 24 1,378 3,032 29 1,674 5,375 31 1,789
25 956 103 956 2,067 83 1,313 3,726 58 1,641 5,325 66 1,698

ibm08 2 Tiers 3 Tiers 4 Tiers 5 Tiers
1 1,297 4 1,297 3,241 4 1,745 5,407 3 1,907 6,849 3 2,103
10 1,274 24 1,274 3,044 34 1,593 5,361 26 1,873 6,800 34 2,155
25 1,242 86 1,242 3,103 78 1,660 4,792 57 1,680 6,675 56 1,949

ibm09 2 Tiers 3 Tiers 4 Tiers 5 Tiers
1 778 5 778 1,853 4 1,959 3,103 4 1,158 4,769 4 1,759
10 728 42 728 1,848 34 1,948 2,956 29 1,216 3,854 26 1,194
25 696 101 696 1,836 91 1,004 3,032 65 1,138 3,757 61 1,245

Average 2 Tiers 3 Tiers 4 Tiers 5 Tiers
1 859 5 859 1,896 4 1,168 3,209 4 1,259 4,455 4 1,447
10 831 36 831 1,830 32 1,125 2,967 26 1,238 4,192 29 1,313
25 814 92 814 1,782 79 997 3,053 58 1,210 4,150 58 1,292

 (a) (b)

