Automated Analysis of Diverse Variability
Models with Tool Support

Fabricia Roos-Frantz, José A. Galindo, David Benavides, and
Antonio Ruiz Cortés

Department of Computer Languages and Systems
University of Seville
Avda. Reina Mercedes s/n, 41012, Seville, Spain
fabriciaroos, jagalindo,benavides,aruiz@Qus.es
http://www.isa.us.es

Abstract. Over the past twenty years, there have been many contribu-
tions in the area of automated analysis of variability models. However,
the majority of these researches are focused on feature models. We pro-
pose that the knowledge obtained during recent years on the analysis
of feature models can be applied to automatically analyse different vari-
ability models. In this paper we present FaMa OVM and FaMa DEB,
which are prototypical implementations for the automated analysis of
two distinct variability models, namely Orthogonal Variability Models
and Debian Variablity Models, respectively. In order to minimise efforts
and benefit from the feature model know—how, we use FaMa Framework
which allows the development of analysis tools for diverse variability
modelling languages. This framework provides a well tested system that
guides the tool development. Due to the structure provided by the frame-
work, FaMa OVM and FaMa DEB tools are easy to extend and integrate
with other tools. We report on the main points of both tools, such as the
analysis operations provided and the logical solvers used for the analysis.

1 Introduction

Variability modelling is an important task in software product line engineering
(SPLE). In the literature, there are many kinds of models used for modelling
variabilities [1]. The automated analysis of these models is a thriving research
area. Over the past twenty years, there have been numerous contributions in
this area including both, research papers and tools[2]. The automated analysis
of variability models is defined as the computer-aided extraction of informa-
tion from such models [2]. Some examples of analysis on models are: checking
whether a configuration is valid, checking whether a model is void, etc. Although
there are other variability modelling techniques, the majority of the research on
analysis has focused on feature models. In this paper, we show an example of
how to implement the automated analysis of other variability models, particu-
larly Orthogonal Variability Model (OVM) [3] and Debian Variability Model.
For implementing these analysis we used the FaMa framework (FaMa FW) [4],

which is an open source Java framework that simplifies the development of tools
for the analysis of variability models. It is worth highlighting that in this paper
we address OVMs and Debian variability models, however these are only two
possibilities, amongst others. The idea of automated analysis of variability mod-
els in general, and its implementation using FaMa FW in particular, could be
used to support other variability models in different scenarios. This is the main
point that our paper wants to report.

OVM is a modelling language for representing variability in SPLE, which
focuses on separating the representation of variability from the representation of
the various SPLE artefacts [3]. On the other hand, regarding Debian Variability
models, we found that Debian based Linux distributions use a language to man-
age their possible conflicts and dependencies between software packages [5]. We
found that this language can be interpreted and analysed as a variability model,
those variability models are what we call Debian variability models.

As reviewed by Benavides et al.[2], there are different proposals providing
automated support for the analysis of feature models, by using different logical
paradigm or formalism (e.g. Description logic, Propositional logic, Constraint
programming). Most of them use binary decision diagram (BDD), satisfiability
problem (SAT) or constraint satisfaction problems (CSP) off-the—shelf solvers to
automate the analysis. However, to the best of our knowledge, only Metzger et
al. explored the automated analysis of OVM [6]. They propose the usage of SAT
solver to automate this analysis. Furthermore, in the case of software packaging,
there have been various proposals for managing the dependencies of software
packages. Most of these proposals consider the satisfaction of dependencies be-
tween packages [7,8]. However, with FaMa DEB, we found that those models
can be automatically analysed in a software product line variability model-like
style. In [9] we provide a mapping from this variability model to propositional
formulas. This new view also allows us to extend the number of available anal-
ysis operations for Debian repositories since nowadays only few operations are
available into software packaging domain [8].

Although FaMa FW has been designed to analyse feature models and it has
already been extended to support different flavours of this model, it is easily
extendable to support the analysis of other variability models. Therefore, in this
paper we propose a way to automate the analysis of two kinds of variability
models arising from two different domains.

This paper is structured as follows, in Section 2 we present our tools FaMaOVM
and FaMaDEB and the common parts they share. The concretes parts of each
tool are described in subsection 2.1 for FaMaOVM and in subsection 2.2 for
FaMaDEB. We present a small review of the related work that motivated the
needing of analysis tools for different variability models in section 3. Finally in
Section 4 we present our conclusions and future work.

(]
(Operations]

[Valid J[Products][Variability H Dead J‘
[]

ValidProd][#Prod][Commonality][

FaMa Core

m [textualOVM] [textualDEB J

Metamodel Readers/Writers
[Choco] l SAT4j J [JavaBDD ”]
Reasoners

FaMa extensions
FaMa OVM and FaMa DEB

Fig. 1. FaMa OVM and FaMa DEB, extensions of FaMa FW

2 The tools

FaMa OVM and FaMa DEB are tools for the automated analysis of OVMs and
Debian Variability Models, respectively. Both tools are extensions of the FaMa
FW. This framework provides a number of extension points to plug in new com-
ponents called metamodels, readers/writers and reasoners. Figure 1 shows the
extensions needed for implementing FaMa OVM and FaMa DEB. The meta-
model component represents the relationships and variability elements of each
specific model. A reader/writer implements loaders/savers to an specific meta-
model format, and a reasoner implements analysis operations using a specific
logic solver.

FaMa FW provides a set of analysis operations to observe the properties of a
model without modifying it. Each operation takes a model as input and provides
a response as result. More details about analysis operations can be found in [2].
Next we summarize some of the analysis operations implemented by FaMa OVM
and FaMa DEB:

— Void model: checks whether a model is void or not, i.e. if it represents at
least one valid product. A model may become void due to the wrong usage of
constraints.

— #Products: returns the total number of valid products represented by the
model received as input.

— Valid Product: takes a model and a product (set of variability elements) as
input and returns a value that determines whether the input product belongs
to the set of products represented by the model or not.

— All Products: takes as input a model and returns all the valid products repre-
sented by this model.

Mandatory Variation Point
(it must always be bound)

Optional Variation Point
(It may or may not be bound)

Variant

Mandatory variability dependency
(the variant must be bound whenever
its parent VP is bound)

Optional variability dependency
(the variant may or may not be bound
whenever its parent VP is bound)

Alternative variability dependency
- | (the cardinality determines

. . | how many variants of the group

- | can be bound)

Requires constraint dependency

oo Excludes constraint dependency

Fig. 2. OVM notation

— Valid Partial Configuration: takes a model and a partial configuration as input
and returns a value informing whether the partial configuration is valid or not,
i.e. a partial configuration is valid if it does not include any contradiction.

— Filter: takes as input a model and a configuration (potentially partial) and
returns the set of valid products including the input configuration that can be
derived from this model.

— Dead Node: returns a set of dead nodes (if any), i.e. those that cannot appear
in any of the valid products represented by the model. Dead nodes are caused
by the wrong usage of constraint dependencies.

— Commonality: takes a model and a configuration as inputs and returns the
percentage of valid products including the input configuration.

2.1 The FaMa OVM tool

OVM is a modelling language for defining the variability of a software product
line separately without change the base models (e.g. requirement model, design
model). The base models realise the variability defined by the variability elements
in the OVM model. In OVM the first-classes are: variation points (VP) and
variants. A variation point documents the aspects that can vary in the product
line, which must be chosen by the customer or engineer of the software product
line. A variant is related to a variation point and documents how this variation
point can vary. Figure 2 shows an example of an OVM diagram.

We have successfully used this tool to analyse OVM models using attributes
in an industrial case study in the automotive domain [10]. The main ideas behind
the mapping of OVM to constraint programming were presented in [11,10].

The OVM metamodel In the context of automated analysis, an OVM is
interpreted as a set of possible products that can be derived from the product

& Plug-in Development - FaMa-OVM_tool_demo/example.ovm - Eclipse SDK
File Edit Source Refactor Navigate Search Project Run Window Help

Cd - EHEFGCGY @S &> - L == v -
[# Package Explorer 3 H 5% ¥ T 8|[E exampleovm 2
4 k& FaMa-0OVM_tool_demo [trunk/FalMaOVMprototype] $Relationships

[src VPl : [1,3]1{V1 V2 V3} ;

=, JRE System Library [JavaSE-1.6] [VB2] : [V4] V5 ;

= Referenced Libraries

& lib $Constraints

V2 REQUIRES V4;

|l example.ovm
V3 EXCLUDES V4 ;

¥} FAMAconfigxml 44 18/05/10 16:43 fabricia
|7y mobilePhone.ovm 44 19/05/10 16:43 f
C] FaMaOVMprototype
17 FaMaOVMTest
L] FaMaSDK

Fig. 3. OVM textual format

line. Thus, the OVM metamodel describes the different variability elements and
the rules that constraint the combination of these elements in a product line. In
[12] you can find a detailed description of those rules.

FaMa OVM textual format FaMa OVM uses as standard a textual format
input file that describes the OVM model. Figure 3 shows a screenshot of the
textual editor, in which the example of Figure 2 is represented using the OVM
textual format. The %Relationships section of the “ovm” file describes the rela-
tionships (mandatory, optional and alternative) amongst the different variability
elements, and the %Constraints section describes the requires and excludes re-
latioships.

FaMa OVM solvers Due to the benefit offered by the FaMa FW, we have
the basis for implementing the analysis operations using multiple solvers. To
enable the automated analysis of OVM we must define the mapping from OVM
to constraints for an specific off-the—shelf solver. All the analysis operations
previously described are currently implemented using Choco [13] and Sat4j [14]
solvers.

2.2 The FaMa DEB tool

We found that Debian—based Linux distributions use a language to describe
dependencies in software packages repositories. Software packages repositories
are used in Debian individual installations in order to add, remove or update
packages and manage their possible conflicts and dependencies [5]. We realised
that this language can be interpreted as a variability language similar to those
of feature models, OVMs and other variability description languages. Thus, if

© o N O w oA W N e

[
o

we consider a software package as a feature of a distribution, a Debian—based
Linux distribution could be interpreted as a product line and the individual
installations could be therefore considered the products of the product line. In
this context, a product is a set of installed packages, i.e. a Debian installation.
Similarly, we assume that a set of repositories define an SPL of Debian-based
distributions. We may remark that this could also be applied to other dependency
languages such as RPM [7, 15] (previously called Red-Hat Package Manager) but
for simplicity FaMa DEB does not cover it at the moment.

The DEB Metamodel The FaMa DEB metamodel is needed to represent
and store the information present into Debian repositories. It is composed by
packages (varibility elements) and the set of relationships with the meaning de-
scribed in [5]. Note that not all information stored in the Debian repository
describes the variability of the linux distribution (i.e. the homepage of the soft-
ware maintainer). In [9] you can find a detailed description of those relations
and the required mapping.

FaMa DEB textual format FaMa DEB uses as standard input the file which
describes a Debian Repository. This file is usually called Debian Description
Language in the literature [8]. Figure 4 shows a fragment of a repository con-
figuration file. For each package in the file, a set of properties are presented. A
property is composed of a name and one or more values associated with it. Prop-
erties may be divided into those providing basic information about the package
(e.g. name, version) and those describing the relationships with other packages.

Package: openoffice.org-gnome

Essential: No

Version: 1:2.4.0-3ubuntub

Replaces: openoffice.org-common (<< 2.0.47rc1-0),
Provides: openoffice.org-gtk-gnome, openoffice.org2-gnome
Depends: gconf2, libc6 (>= 2.1.3)

Pre-Depends: dpkg (>= 1.14.12ubuntu3)

Suggests: openoffice.org-evolution

Conflicts: openoffice.org2-gnome (<< 1:2.4.0-3ubuntu6)
Task: ubuntu-desktop, edubuntu-desktop, gobuntu-desktop

Fig. 4. Snippet of the fileformat

FaMa DEB solvers To enable the automated analysis of DebianVML we must
define the mapping from DebianVML to constraints into an specific off—-the—shelf
solver such as Choco [13], Sat4j [14] or JaCoP [16]. Note that these solvers are
widely used for the automated analysis of feature models [2]. At the moment

we provide ChocoSolver because it allows the use of non boolean variables those
variables are required in the mapping of the complex constraints that are used to
resolve packages with different versions (similar to attributes in a SPL context).

3 Related Work

In this section we briefly present some others contributions that focuses into the
managing different kinds of variability modelling approaches. In [17] Czarneky
et al, present a review of different modelling approaches from the industry and
the open—source community emphasizing in the characteristics that those models
shares or differs, our work shares the same interest into the fact that diferent
variability models are required to meet the requirements of each context, thus we
are providing tools that aim to help with the analysis of two different variability
models from contexts, one from the industry (OVM) and another from the open-
source community (FaMaDEB) reusing the knowledge from feature-modelling
research context and applying it into others. In [18] authors did a chronological
review of several variability models, they also provide a guideline of which of
those tools have tool support, our work provides new tools for some of the
paradigms that they mention that there not exists any tools.

Recently Amador Duran et al, presented FLAME!, A TestBased Validated
Formal Framework for the Automated Analysis of Software Product Lines using
Feature Models. They propose a formal framework where operations have an
explicit meaning. Their approach differs straight—way from ours but as that work
have been tested in front of FaMa indirectly benefits our work. That fact enforces
our hypothesis that the use of a framework for create tools for the automated
analysis of different variability models reduces costs and efforts benefiting the
sharing and reusing of knowledge in a research context.

4 Conclusion and Future Work

We provided a prototypical implementation for the automated analysis of OVMs
and Debian variability models. The development of these tools were based on a
framework for the analysis of feature models, which is a research area with more
know—how. We realised that the framework simplified the development of our
tools, we did not have to start from scratch and we reused most of the analysis
operations applied to feature models. Both tools offer a simple public interface,
by which the user just need to entry with the model (sometimes with some more
data, it depends on the operation) and to select the operation to be answered
by the tool.

Due to their simple front-end Java interface, FaMa OVM and FaMa DEB are
easy to integrate with other tools. They are also easy to configure, since their
configuration is done by means of a unique XML file. For example, FaMa DEB
can be easily integrated into Synaptics [19] into Debian distributions, to prevent

1 http://www.isa.us.es/fama/?FLAME_framework

users for unwanted situations. Besides, we believe that the Debian community
could benefit from this automation being able to perform several analysis oper-
ations, as for example the detection of inconsistencies in repositories, which is
currently done by hand (e.g. when an error is detected, it is manually corrected).

It is worth highlighting that, on the one hand, we used small-scale models
to test FaMa OVM and the analysis results were obtained in an acceptable time
for all analysis operations performed with both sat4j and Choco. On the other
hand, with FaMaDEB we were able to deal with realistic large-scale variability
models.

These are the main directions of our future work:

— Address new operations. We are looking for OVM analysis operations, as
for instance how to calculate the better configuration in terms of costs. New
support operations in FaMa OVM, such as equivalent models and merging
of models, are being developed [20,10]. With FaMa DEB, using our expe-
rience on feature models (e.g. development of analysis tools, benchmarking,
detection of errors) we look for new operations to detect anomalies in De-
bian models such as conditionally dead packages or redundancies, probably
the operations with more than one variability model can be very useful to
Debian community improving the usability of packaging systems. Also the
explanations of the errors to help this community on its daily work could
help to improve the end user experience.

— Benchmarking and optimisation. In our preliminary tests we detected that
the Debian based models automated analysis are computationally very ex-
pensive, more than 6 hours in a laptop machine with main, multiverse, re-
stricted and universe repositories of Ubuntu 8.04 enabled (24780 packages).
We will work on the optimisation of the codding to improve those results.

— Testing. We will use automated generated models for the analyses of OVMs
in order to evaluate our tool with larger scale models. These models will be
generated according to some desired properties, such as number of variants,
percentage of constraints, or percentage of a specific relationship.

Material

The prototypes of FaMa OVM and FaMa DEB are available at http://www.
lsi.us.es/~dbc/material/jisbd14/

Acknowledgment

This work has been partially supported by the European Commission (FEDER)
and Spanish Government under CICYT project TAPAS (TIN2012-32273) and
the Andalusian Government projects THEOS (TIC-5906) and COPAS (P12-
TIC-1867).

References

1.

2.

®©

10.

11.

12.
13.
14.
15.
16.

17.

18.

19.

20.

L. Chen, M. A. Babar, and N. Ali, “Variability management in software product
lines: a systematic review,” in SPLC, 2009, pp. 81-90.

D. Benavides, S. Segura, and A. Ruiz-Corts, “Automated analysis of feature
models 20 years later: a literature review,” Information Systems, vol. 35, no. 6,
pp. 615-636, 2010. [Online]. Available: http://dx.doi.org/10.1016/j.is.2010.01.001
K. Pohl, G. Bockle, and F. J. van der Linden, Software Product Line Engineering:
Fundations, Principles and Techniques. Berlin, DE: Springer—Verlag, 2005.

P. Trinidad, D. Benavides, A. Ruiz-Cortés, S. Segura, and A.Jimenez, “Fama
framework,” in 12th Software Product Lines Conference (SPLC), Sep 2008, p. 359.
“Debian policy manual, http://www.debian.org/doc/debian-policy/
ch-relationships.html,” accessed February 2012.

A. Metzger, K. Pohl, P. Heymans, P. Schobbens, and G. Saval, “Disambiguating the
documentation of variability in software product lines: A separation of concerns,
formalization and automated analysis,” in Requirements Engineering Conference,
2007. RE °07. 15th IEEE International, 2007, pp. 243-253.

“Package management sat solver,” http://files.opensuse.org/opensuse/en/b/b9/
Fosdem2008-solver.pdf, accessed February 2012.

“EDOS project, http://www.edos-project.org,” accessed February 2012.

J. A. Galindo, D. Benavides, and S. Segura., “Debian packages repositories as soft-
ware product line models. towards automated analysis,” in Proceeding of the First
International Workshop on Automated Configuration and Tailoring of Applications
(ACOTA), 2010.

F. Roos-Frantz, D. Benavides, A. Ruiz-Corts, A. Heuer, and K. Lauenroth,
“Quality-aware analysis in product line engineering with the orthogonal
variability model,” Software Quality Journal, pp. 1-47. [Online]. Available:
http://dx.doi.org/10.1007/s11219-011-9156-5

F. Roos-Frantz, D. Benavides, and A. R. Cortés, “Automated analysis of orthog-
onal variability models using constraint programming,” in XV Jornadas de Inge-
nieria del Software y Bases de Datos (JISBD 2010), 2010, pp. 269-280.

F. Roos-Frantz, “A preliminary comparison of formal properties on orthogonal
variability model and feature models,” in VaMoS, 2009, pp. 121-126.

“CHOCO solver, http://choco.emn.fr/,” accessed February 2012.

D. L. Berre, “Sat4j. http://www.sat4j.org/,” accessed February 2012.

“Rpm package manager http://www.rpm.org,” accessed February 2012.

K. Kuchcinski and R. Szymanek, “Jacop. http://jacop.osolpro.com/,” accessed
February 2012.

K. Czarnecki, P. Griinbacher, R. Rabiser, K. Schmid, and A. Wasowski, “Cool
features and tough decisions: a comparison of variability modeling approaches,”
in Proceedings of the Sixth International Workshop on Variability Modeling of
Software-Intensive Systems. ACM, 2012, pp. 173-182.

L. Chen, M. Ali Babar, and N. Ali, “Variability management in software prod-
uct lines: a systematic review,” in Proceedings of the 13th International Software
Product Line Conference. Carnegie Mellon University, 2009, pp. 81-90.
“Synaptic package manager http://www.nongnu.org/synaptic/,” accessed Febru-
ary 2012.

F. Roos-Frantz and S. Segura, “Automated analysis of orthogonal variability mod-
els. a first step,” in First Workshop on Analyses of Software Product Lines (ASPL
2008). SPLC’08, S. Thiel and K. Pohl, Eds., Limerick, Ireland, September 2008,
pp. 243-248.

