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Abstract

The automated analysis of variability models is a chal-
lenge to be reached in SPLE (Software Product Line En-
gineering). Only recently researchers have devoted their
attention to the reasoning on these models. However, their
work has focused on Feature Models. Orthogonal Variabil-
ity Modeling (OVM) is one of the approaches for modeling
variability in software product line. Hence, an automated
support is needed to reasoning on orthogonal variability
models (OVMs). Although the automated analysis of OVMs
has been proposed, it only deals with a small number of
analysis operations, which are implemented using a specific
logical representation and solver. In this position paper,we
present the proposal that we will carry out to achieve an ad-
equate tool to the analysis on OVMs. As part of this paper,
we informally define some analysis operations on OVMs.
In addition, we propose to study the possibility of extend-
ing FAMA framework for supporting analysis on OVMs. We
consider that FAMA (FeAture Model Analyzer) could be a
suitable option to automate this analysis since it providesa
formal basis, integrate multiple solvers and already provide
tools.

1. Introduction and Preliminaries

The automated analysis of variability models is a chal-
lenge to be reached in SPLE (Software Product Line En-
gineering). Although there are several kinds of variability
models, the majority of the research works on analysis of
these models has focused on Feature Models. In the lit-
erature, there are different proposals providing automated
support for the analysis of feature models [3, 4, 8, 9, 10,
11, 13, 18, 22]. Each one of them use different logical
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paradigm or formalism to provide the automated support
(e.g. description logic, propositional logic, constraintpro-
gramming). Most of them use SAT, BDD or CSP off-the-
shelf solvers to automate various analysis operations, e.g. ,
checking if a product is valid, checking if a model is void,
detecting dead features, etc.

To the best of our knowledge only Metzger et al. [13]
provide a automated support for the analysis of OVM. They
introduce a formalization of OVMs and propose using SAT1

solvers to automate analysis operations on OVMs. This
proposal only deal with five operations and whose seman-
tics is based on feature models. Besides, they use just
one type of solver to automate the analysis. The various
solvers (SAT, BDD and CSP solvers) have varying degrees
of performance and coverage with regard to analysis opera-
tions [2, 5].

Benavides [4] proposes a formal framework FAMA-F
for the automated analysis of software product lines in gen-
eral and feature models in particular. The framework is in-
dependent of the variability model (VM) used for the anal-
ysis. FAMA-F integrate some of the most commonly used
logic representations and solvers proposed in the literature
(BDD2, SAT3 and CSP4 solvers are implemented). It inte-
grates different solvers in order to combine the best of all of
them in terms of performance. We wonder if is possible to
extend this framework to automate various reasoning tasks
on OVMs, e.g., verifying if a product is valid, checking if
a model is void, detecting “dead” nodes, etc. (see Sect. 3).
We consider that FAMA-F could be a suitable option to au-
tomate the analysis of OVM since it provides a formal basis,
integrate multiple solvers and has available tools.

To achieve a suitable automated support for the analysis
of OVMs, we identify three issues to be addressed, namely:
i) specification of operations,ii) formal representation of

1They use SAT4j solver http://www.sat4j.org
2JavaBDD solver, http://javabdd.sourceforge.net
3SAT4j solver http://www.sat4j.org
4Constraint Satisfaction Problem www.4c.ucc.ie/



model and operations, andiii) implementation of opera-
tions. These aspects motivated some of the main research
questions to be addresses in our future work.

1.1. OVM (Orthogonal Variability Model)

OVM is a proposal for documenting software product
line variability [14]. In an OVM only the variability of the
product line is documented. In this model avariation point
(VP) documents a variable item and avariant (V) docu-
ments the possible instances of a variable item. All VPs
are related to at least one V and each V is related to one VP.
Both VPs and Vs can be either optional or mandatory (see
Figure 1). A mandatory VP must always be bound, i.e, all
the product of the product line must have this VP and its Vs
must always be chosen. An optional VP does not have to
be bound, it may be chosen to a specific product. Always
that a VP, mandatory or optional, is bound, its mandatory
Vs must be chosen and its optional Vs can, but do not have
to be chosen. In OVM, optional variants may be grouped in
alternative choices. This group is associated to a cardinal-
ity [min...max](see Figure 1). Cardinality determines how
many Vs may be chosen in an alternative choice, at least
min and at mostmaxVs of the group. Figure 1 depicts the
graphical notation for OVMs [14, 13].

Figure 1. Graphical notation for OVM

In OVM, constraints between nodes are defined graph-
ically. A constrain may be defined between Vs, VPs and
Vs and VPs and may be anexcludesconstraint or are-
quiresconstraint. The excludes constraint specifies a mu-
tual exclusion, for instance, a variantexcludesa optional
VP means that if the variant is chosen to a specific prod-
uct the VP must not be bound, and vice versa. Arequires
constraint specifies an implication, for instance, a variant
requiresa optional VP means that always the variant is part
of a product, the optional VP must be also part of that prod-
uct. Figure 2 depicts a example of an OVM inspired by the
mobile phone industry.

Figure 2. OVM example: mobile phone prod-
uct line

1.2. Automated Analysis of OVM

To the best of our knowledge, there is only one proposal
dealing with the automated analysis of OVM [13]. Metzger
et al. are working in a tool support for variability manage-
ment, which offers support for the analysis of OVM. Their
prototype uses the off-the-shelf SAT solver library SAT4J.
This SAT solver request a Boolean formula in CNF (con-
junctive normal form) and delivers all variable assignment
that evaluate the input formula true. If no such assignment
exists, the formula is unsatisfiable. This proposal provides
analysing of only five operations and using one solver. Fur-
thermore, it makes the automated reasoning on OVM using
the VFD semantics.

VFD (Varied Feature Diagram) is based on FFD (Free
Feature Diagrams) which is a parametric construct designed
to define the syntax and semantics of FODA-inspired FD
(Feature Diagram) languages in a generic way [16, 17].
Metzger et al. propose reusing this formalization of feature
diagrams, in other words VFD, to introduce a formalization
of OVMs. They introduce a formal version of OVMs ab-
stract syntax and describe a translation from OVM to VFD,
thereby they give OVM a formal semantic.

1.3. FAMA framework

FeAture Model Analyzer (FAMA-F), proposed by Bena-
vides [4], is a formal framework for the automated analysis
of software product lines in general and feature models in
particular, in other words, this is a framework independent
of the variability model. This framework defines different
reasoning operations on feature models, like calculating the
number of products in a Software Product Line (SPL), get-
ting a list of its products, filtering products according to a
criterion or detecting and explaining errors. Thus, we pre-
sume it could be extended with OVM. It is defined with
a high abstraction level, provides support for the most ex-
tended feature model notations and can be extended with
new operations and solvers as needed.



The FAMA-F is defined in four layers from a higher (i.e.
abstract foundation layer) to a lower abstraction level (i.e.
implementation layer), see Figure 3.

Figure 3. The four-layers FAMA-F

The FAMA-F abstract foundation layer provides an ab-
stract and formal definition of software product lines and
the operations of analysis that can be performed on them.
The abstract foundation layer defines characteristic models
as those that describe the allowed products configurations
of the software product line. In the FAMA-F character-
istic model, a specific variability model must be formally
defined. Up to now feature models are the only variabil-
ity model considered. In this layer the semantics of a spe-
cific feature model (FAMA-FM) is formalized with a for-
mal language Z. The operational paradigm layer depends
on the variability model used and provides a logical rep-
resentation to the semantics of feature model and analysis
operations, it allows using different logical representation.
In the implementation layer, a translation from the logical
representation described in the operational paradigm layer
to the real solvers is provided. FAMA-F allows the usage
of multi solvers to resolve a logical representation, may be
used CSP, SAT and BDD solvers.

Additionally, Benavides et al. [7] presented an imple-
mentation of this framework, theFAMA Eclipse plug-in
(FAMA-EP)5. It is an extensible tool for the automated anal-
ysis of feature models that integrated three logic paradigms
and their respective solvers: Constraint Solver Program-
ming (CSP) by means of JaCoP, Propositional Satisfiabil-
ity (SAT) by means of SAT4j and Binary Decision Diagram
(BDD) by means of JavaBDD. FAMA-EP allows the inte-
gration of different logic representations and solvers in or-
der to optimize the analysis process.

In addition to FAMA-EP, Benavides et al. [20] provide
the FAMA Framework (FAMA-FW)with the intention of
allowing third parties to integrate their automated reason-
ing techniques into a workspace where some basic features
are provided by default. FAMA-FW is a tool for the auto-
mated analysis of variability models (VM). Its main objec-
tive is providing an extensible framework where current re-
search on VM automated analysis might be developed and
easily integrated into a final product. It is built following

5http://www.isa.us.es/fama

the SPL paradigm supporting different variability metamod-
els, reasoners or solvers, analysis questions and reasoner
selectors, easing the production of customized VM analy-
sis tools. FAMA-FW is the result of research presented in
[8, 5, 2, 19].

1.4. Structure of this paper

The remainder of this paper is structured as follows: Sec-
tion 2 provides an overview about semantics OVM. Section
3 provides an informal specifications of some operations on
OVM. In Section 4 we propose the use of FAMA frame-
work as tooling to automated analysis of OVMs. Finally,
we summarize our future research in Section 5.

2. What specific formal semantics of OVM
should be used?

To carry out the automated reasoning on OVM, we need
a well defined semantics of these model. There are several
options to give formal semantics to OVM. One of them is
translating OVM to a feature model, since the semantic of
these has already been defined [16, 17]. Another way is
using a formal language, such as Z [21] or B [1].

To the best of our knowledge, there is only one for-
mal semantics OVM in the literature, proposed by Metzger
et al.[13], which has been obtained through a translation
from OVM to VFD. This way to give semantics to OVM
makes its semantics dependent of VFD. Such dependency
may result in an drawback, due to the increase in the model
size. When a OVM model is translated into a VFD model,
a larger number of non-primitive nodes are generated and
consequently the model becomes bigger, therefore it may
damage the performance of the operations. Besides, one
of the advantages that OVM offers is a significant reduc-
tion in the model size and complexity, because only the
variable aspects of a product line are documented in a first-
class model [15]. We wonder using VFD to give semantics
to OVM contradict the advantage of OVM concerning the
model size.

We will study other ways to give semantics to OVM
aiming to evaluate these alternatives and have more con-
clusions. The first work will be on translating OVM to the
feature model metamodel used in FAMA-F. This approach
would allow us to reuse the formal foundation and sup-
port multi solver [6] provided by FAMA-F for reasoning on
OVM. The other alternative is to study the usage of a for-
mal specification language Z or B, without the translation
to another language.



3. Operations on OVM

In the last years, different analysis operations over fea-
ture models have been identified [5, 4, 17, 3]. We select
some of them and informally describe these on OVM. These
operations observe the properties of a model without modi-
fying it, they take a OVM as an input and provide a response
as a result. Next, we define informally those operations,
namely:

Valid product. This operations checks whether a given
product belongs to the set of products represented by the
OVM or not. For instance, let us consider the products P1
and P2, described below, and the OVM of Figure 2.

P1 = {Connectivity, USB, Wifi}
P2 = {Calls, Data, Connectivity, USB, Wifi}
The product P1 is not a valid product for the OVM since

it does not include the mandatory variation pointCalls. On
the other hand, the product P2 is a valid product for the
OVM because it is included in the set of products repre-
sented by the model.

Void OVM. This operation checks whether a OVM is
void or not, i.e. if it represents at least one product. The
reasons that may make a OVM to be void are related with
a wrong usage of the constraint dependencies. As an ex-
ample, Figure 4 depicts a void OVM. The excludesVP VP
constraint makes not possible the selection of the mandatory
VP Functions, what adds a contradiction to the model.

Figure 4. Void OVM

Core nodes. This operation returns the set of nodes (vari-
ants or variation points) that appear in all products of the
software product line. For instance, the set of core nodes of
the OVM presented in Figure 2 is{Calls}.

Dead nodes. This operation returns a set of dead nodes
(if any), i.e. those that do not appear in any product. Dead
nodes are caused by a wrong usage of constraint dependen-
cies and are the responsible of making a OVM to be void.
The Figure 5 depicts some common cases of dead nodes on
OVMs. Dead nodes in the figure are labeled with D.

All products. This operation returns all the products rep-
resented by a model. As an example, the set of all the prod-
ucts of the OVM presented in Figure 2 is detailed below:

Figure 5. Common cases of dead nodes on
OVM

P1 = {Calls, Voice}
P2 = {Calls, Voice, Connectivity, Wifi, USB}
P3 = {Calls, Voice, Data, Connectivity, Wifi, USB}
P4 = {Calls, Data}
P5 = {Calls, Data, Connectivity, Wifi, USB}

To automate the computation of those operations iden-
tified we have to formally define them. The formalization
found in the literature for this operations were defined ac-
cording to VFD semantics [13]. Metzger et al. suggest for-
mal definition to the operations:void model, valid product,
core nodes, dead nodesandall products. We will study how
to formalize these and all the others operations identified in
relation to OVM.

3.1. How to specify the equivalent models
operation on OVM?

The equivalent models operation checks whether two
models are equivalent. Two models are equivalent if they
represent the same set of products [4]. If we observe the ex-
ample depicted in the Figure 6, we can say that both models
are equivalent, because they represent the same set of prod-
ucts. We believe that this operation is not correct to OVM
because avariant is different of avariation point. In the
product of the first model,Media is avariation pointand in
the second one,Media is a variant. Therefore, we believe
that these models represent different set of products, then
the equivalent operation should be redefined for OVM.



Figure 6. Equivalent models?

3.2. How to specify the merging operation
on OVM?

We conclude that a new concept of merging operation
can be applied to OVM, the merging into parts. This oper-
ation takes as input one part from one OVM model and an-
other part of another OVM model and returns a new OVM
model with the merging of those parts.

Three kinds of merging operations on feature models
were identified by Schobbens et al. [17], particularly: Inter-
section, Union and Reduced product. The former, returns
a feature model that encompasses the products included in
both inputs models. The second, returns a feature model
that encompasses all the products included in any of the in-
puts models. The later, returns a feature model including all
the products of the input models plus all the new possible
feature combinations. The merging of models may be help-
ful in a collaborative environment in which different people
modify the model concurrently [12].

The Figure 7 depicts a visual example of the merging
into parts operation on OVM, which is based on the merging
operations proposed in [17]. According to the example, the
Connectivity VPof the modelA allows configuring three
products: P1{Connectivity, Wifi}, P2{Connectivity, USB},
and P3{Connectivity, Wifi, USB}. TheConnectivity VPof
the modelB also allows configuring three others products:
P1{Connectivity, Wifi}, P2{Connectivity, Bluetooth}, and
P3{Connectivity, Wifi, Bluetooth}. Then, if we merge both
Connectivity VPs, we will have three new models as the
result of the merging operation.

4. Tooling

We will study how to extend FAMA-F [4] to support
the analysis of OVMs. FAMA-F is a framework supporting
the usage of different logics paradigms and solvers in order
to optimize the performance of the analysis process. This
framework is independent of the type of variability model,
e.g. it is possible to use feature models or OVM. The first
step to be done is to define the FAMA’s characteristic model
layer using OVM as variability model of SPL. At this layer
OVM must be formally defined using the specification lan-

Figure 7. Merging into parts on OVM

guage Z. Afterwards, OVM must be translated by a logical
representation. In particular, in the operational paradigm
layer of FAMA-F, a OVM will be translated into a generic
Constraint Satisfaction Problem (CSP). At last, we have to
translate from the abstract CSP to the real CSP solver. At
this framework multiples solver can be used: CSP, SAT and
BDD solvers. Additionally, we can use the tool FAMA-FW
as a support for implementing our tooling.

5. Future work

We will study a way to achieve a suitable tooling to anal-
ysis of OVMs. To do this, we intend to study what is the ad-
equate semantics OVM to be used. Besides, we will specify
all the operations that may be applied to OVM and to for-
mally define them. Additionally, as one of the main moti-



vations of our research, we will study a possible extension
of the FAMA framework for supporting analysis operations
on OVM.
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