
On using high-level structured queries for

integrating deep-web information sources

Carlos R. Rivero

University of Sevilla, Spain

carlosrivero@us.es

Rafael Z. Frantz

Uniju, Brasil

rzfrantz@unijui.edu.br

David Ruiz

University of Sevilla, Spain

druiz@us.es

Rafael Corchuelo

University of Sevilla, Spain

corchu@us.es

Abstract—The actual value of the Deep Web comes from
integrating the data its applications provide. Such applications
offer human-oriented search forms as their entry points, and
there exists a number of tools that are used to fill them
in and retrieve the resulting pages programmatically. Solution
that rely on these tools are usually costly, which motivated
a number of researchers to work on virtual integration, also
known as metasearch. Virtual integration abstracts away from
actual search forms by providing a unified search form, i.e.,
a programmer fills it in and the virtual integration system
translates it into the application search forms. We argue that
virtual integration costs might be reduced further if another
abstraction level is provided by issuing structured queries in
high-level languages such as SQL, XQuery or SPARQL; this
helps abstract away from search forms. As far as we know, there
is not a proposal in the literature that addresses this problem. In
this paper, we propose a reference framework called IntegraWeb
to solve the problems of using high-level structured queries to
perform deep-web data integration. Furthermore, we provide a
comprehensive report on existing proposals from the database
integration and the Deep Web research fields, which can be
used in combination to address our problem within the previous
reference framework.

Index Terms—Internet and emerging technologies; Semantic
Web.

I. INTRODUCTION

The Deep Web is composed of millions of applications that

provide valuable data, which is usually served by querying

search forms coded in HTML [4], [15], [52]. There are a

number of studies in the bibliography about the Deep Web,

which state a growth in the number of deep-web applications.

Bergman’s report [4] estimated 200 000 applications in 2001,

Chang et al. [15] estimated 307 000 applications in 2004 and,

finally, Madhavan et al. [52] estimated 25 million of deep-web

applications in 2007.

Our research focus on the usage of high-level structured

queries to integrate the deep-web data, which may help reduce

the cost of a deep-web data integration solution.

To integrate the deep-web data is crucial but challenging

since its data is behind search forms [50], which are designed

by and for users and they do not have formally-defined

semantics. Virtual integration (also known as metasearch [16],

[37]) is a technique to perform deep-web data integration [52].

Supported by the European Commission (FEDER), the Spanish and the An-
dalusian R&D&I programmes (grants TIN2007-64119, P07-TIC-2602, P08-
TIC-4100, TIN2008-04718-E, TIN2010-21744, TIN2010-09809-E, TIN2010-
10811-E, and TIN2010-09988-E).

Virtual integration approaches provide a unified search form

for a specific domain, e.g., travels, hotels or flights. This search

form is built by merging search forms of the same or related

domains [35], [37]; the user fills it in, and the system translates

the unified search form to fill the application search forms in.

Virtual integration approaches issue queries through search

forms by means of the field values of the unified search

form, which has proved to reduce integration costs [16], [37].

Increasing the abstraction level using high-level structured

query languages may indeed help reduce integration costs.

In the virtual integration approaches, the unified search form

abstracts away from the actual applications, dealing with the

query capabilities of the application search forms. High-level

structured queries abstract away even from the unified search

form, which has also its own query capabilities and do not have

formally-defined semantics: the developer of a integration so-

lution is only concerned with developing appropriate queries,

which are posed over the solution. Note that the unified search

form allows more specific queries than keyword-based query

interfaces, and high-level structured languages allow even

more specific and complex queries.

In this paper, we propose to use high-level structured

queries to perform deep-web data integration, and report on a

reference framework called IntegraWeb that combines results

from the database integration and the Deep Web research

fields. Specifically, database integration techniques provide

the architecture of the solution. Deep-web virtual integration

approaches are used to deal with the search forms of the deep-

web applications. Finally, both deep-web surfacing and virtual

integration approaches retrieve data pages and, in combination

with information extraction and ontologising techniques, ex-

tract structured data from these pages.

This paper is organised as follows: Section II presents the

research efforts made on the database integration and the Deep

Web research fields. In Section III, we present IntegraWeb and

we survey the state of the art in deep-web data integration. We

conclude with Section IV, which presents our conclusions.

II. RESEARCH ON DATA INTEGRATION

In the last 10-15 years, data integration has been a very

active research field [33]. The first approaches to data in-

tegration were related to database and, in next years, these

approaches have been converging to the Web. Note that high-

level structured queries can be specified in a number of

630 Int'l Conf. Software Eng. Research and Practice | SERP'11 |

languages, e.g., SQL or XQuery [7] are used in the context of

database, and SPARQL [61] in the Semantic Web arena.

Database integration techniques focus on providing unified

access to a number of applications. Each application has

one or more models of its data, which is commonly called

schemes. Schemes are comprised of schema attributes, which

are the properties of the schema, e.g., the departure date of a

flight. Amongst the schemes there are a number of semantic

mappings (“semantic glue”), which are formulae that provide

the semantic relationships between the schema attributes [51],

[54].

The existing approaches in the database integration research

field are Mediators [26], [33], Peer Data Management Systems

(PDMS) [20] and PayGo systems [52], [68].

Mediators offer a mediated schema to the schemes of the

integrated applications (known as application schemes), and

they need wrappers to provide access to them. Mediators deal

with the translation of the user query by means of the semantic

mappings. The user query is posed over the mediated schema

and it is translated into some queries over the suitable appli-

cation schemes. Finally, the data of the different applications

is combined to give an answer to the user. TSIMMIS [26] is

an example of a Mediator.

Peer Data Management Systems (or PDMS) are the next

step in database integration systems after Mediators. The

mediated schema in Mediators is actually a bottleneck in

the process [31], [32]. Instead of having a unique mediated

schema, the applications in PDMS have their own schema and

there are mappings between these schemes. An example of a

PDMS is Piazza [30].

PayGo systems are the next step after PDMS and they have

a gradually increasing presence in the database integration

community [22], [50], [52], [68]. PayGo systems are inspired

in the concept of Dataspaces [22], [29] that do not require full

semantic integration of the applications to provide integration

services. These systems offer one schema for each application

(as in PDMS) or a mediated schema (as in Mediators) but there

is a key difference: the uncertainty. Instead of full semantic

mappings, PayGo systems use probabilistic mappings and

schemes. An example of PayGo systems is UDI [68].

The existing techniques that are used to have access to the

Deep Web are surfacing [2], [43], [53], [65], [71] and virtual

integration [16], [37].

Deep-web surfacing approaches (also known as crawling

[2], [43], [53], [65], [71]) provide automatic access to the Deep

Web. These approaches expose deep-web pages behind search

forms and index them in search engines. These techniques pre-

compute the most relevant form submissions for the selected

search forms. These systems do not have to cope with the

problem of building schemes, instead of this, the challenge

is to automatically generate relevant form submissions that

retrieve significant data pages. Google’s Deep Web Crawl is

an example of a deep-web surfacing system [53].

Virtual integration approaches work similarly to Mediators.

They offer a unified search form that is created by using the

search forms of the integrated applications, which are usually

of the same or related domains. The user fills the unified search

form in and it is used to fill the search forms of the different

deep-web applications in. After submitting a filled form, a

result page is obtained, and it is typically a list of links to data

pages, e.g., a list of books in Amazon. Finally, data pages have

to be retrieved. An example of a deep-web virtual integration

system is MetaQuerier [16].

III. INTEGRAWEB

IntegraWeb is our contribution to combine the database

integration and the Deep Web techniques. IntegraWeb is a

reference framework that allows to integrate deep-web data

using a high-level structured query language, such as SQL,

XQuery or SPARQL.

In Figure 1, we present an example of deep-web data

integration that consists of a unique entry point, which models

information about travels (virtual schema), and it integrates

two application schemes that models information about flights

and hotels (application schemes). The Query Processing task

takes the user query over the virtual schema as input and

translates it into a number of queries to the application

schemes, in the example, the user wishes to start the travel

on October, 5 and the price must not exceed 3500e. This

query is translated into a number of queries for flights and

hotels.

The Search Form Processing task takes one application

query as input and it calculates a number of search form

submissions that has to performed to answer the application

query. In our example, for flights, an origin and a destination

airport need to be filled in; note that if the application query

specifies the name of the city, it has to be transformed into

the airport(s) of this city. The Deep Web Accessing task deals

with the extraction of deep-web application instances by filling

the search forms in, navigating through the result pages and

extracting and giving semantics to the data pages. Finally, the

instances have to be filtered and compiled in both Search Form

Processing and Query Processing tasks.

In the next sections, we describe the processes performed

by each task in the IntregraWeb reference framework, and we

survey the most related literature.

A. Query processing

The Query Planner (cf. Figure 2) takes a high-level struc-

tured user query as input, this query has to be expressed

in terms of a virtual schema, and it generates an execution

plan by using the mappings involving other schemes. The

execution plan consists of a number of queries, each of which

is related to one application schema only. The execution of the

queries can be ordered (i.e., the results of a query are used by

another query) or parallel (i.e., independent queries). The Plan

Executor takes an execution plan as input and iterates until

it is finished. In each iteration, a query over an application

schema is processed. Finally, the Query Compiler combines

the intermediate instances retrieved from the applications using

the execution plan and returns the results to the user. These

intermediate instances may need filtering.

Int'l Conf. Software Eng. Research and Practice | SERP'11 | 631

 !!" #!$%&&!''()*+ ,-. /01234/5-6 789:;<= >? @A>@BC=&DEFGGG HIJKLM NOPLQRSTUM QINOPLQRS + ,-. /01234/5-VWX1Y -X3/1Z[6 789:;\CA] =̂ @_`ab`c €[&DEFGGG2dedf+ ghijk+ ,-. /01 234/5-lmdidn/o-,Y p1 j3Y qr s tuvo,p3/ w xsyy€ tuvqqq z{!|} "|~&!''()*�Z h/Y 34� �,� 0p�4Y 1 w xsyy€�Z h/Y 34� �, 4�Y /01 w xsyy€xZ f�5�pX/ -Xn� p0Y /,pXY /,5/np-Y / pX1Y -X3/1 '!%|&� �~|�"|~&!''()*�Z hp00Y 4/ 1/-,34� �,5 ��Y 4/� 0p�4Y -oo0p3-Y p�X�Z 2��5pY Y 4/ 1/-,34� �,5xZ ��pX� 0p�4Y pX1Y -X3/1�Z hp00Y 4/ 1/-,34� �,5 ��Y 4/ 4�Y /0 -oo0p3-Y p�XsZqqq m�Y /02/-,34 h�,5h0p�4Y2/-,34 h�,5
Fig. 1. An example of deep-web data integration

 !!" #!$ %&&!''()*

+,!-. /-0&!''()*
%""1(&23 (0)+,!-.
4'!- +,!-.56!&,3 (0)/12)+,!-. /12))!-/12) 56!&,3 0-7!2-&8 90-: /-0&!''()*7!2-&8 90-:/12) 56!&,3 0-90-: 9(11()*;21,!'7!2-&8 90-:/12)7!2-&8 90-:/12))!- <2= (*23 (0)9(13 !-9(11!- <2= (*23 0- 563 -2&3 0- !!" #!$%""1(&23 (0)>)'3 2)&!'7!2-&8 90-:?0:"(1!->)3 !-:!@(23 !>)'3 2)&!'

9()21>)'3 2)&!'+,!-.?0:"(1!-
9(13 !-
9(13 !-

A /-0&!''A 23 2
Fig. 2. The IntegraWeb reference framework

In the Query Processing task of our example (cf. Figure 1),

the execution plan could be parallel, if the applications do not

have any dependency between them, or could be ordered and it

retrieves firstly flight instances and then hotel instances, e.g.,

the departure flight departs at October, 5 and arrives at the

destination city at October, 6, the idea is to book the hotel

the same day we arrive at the destination city. Therefore,

in this example, the arrival date at the hotel needs to be

October, 6 but note that we start the journey on October, 5.

There exists a dependency between the flight application and

the hotel application. To the best of our knowledge, there is

not a proposal that takes this problem into account, i.e., the

dependency between two (or more) application schemes.

In this module, any database integration technique is suit-

able. When using Mediators, the system is configured having

a mediated schema and a number of application schemes. In

Mediators, mappings are defined mainly using two techniques:

Global-as-View (GaV) and Local-as-View (LaV) [33]. In GaV,

the mediated schema is defined in terms of views over applica-

tion schemes and, in LaV, application schemes are defined in

terms of views over the mediated schema [28], [45]. Another

technique is GLaV [24] that combines the advantages of LaV

and GaV. A query posed over a GaV system is answered by

query unfolding [9] and, in LaV systems, by query answering

[28]. Another technique to answer a query over a mediated

schema is to approximate it to the application schemes [14].

In other systems, such as PDMS or PayGo, the semantic

mappings are specified by using GaV, LaV, GLaV. Generating

those mappings is a labour-intensive and error prone task, so

it is needed tools that help user to build and maintain them or

tools that generate them automatically. The Clio system is an

example of a tool that helps users to specify their mappings

[27].

The Clio system requires a user to devise the mappings. The

process of inferring such mappings automatically is commonly

referred to as schema matching. Rahm and Bernstein [66]

surveyed the schema matching techniques in 2001, a more

recent survey is presented in [21]. Schema matching is a very

active research field, but it is still an open problem because of

an unavoidable consequence of ambiguity in the meaning of

the data to be integrated [5]. Therefore, the intervention of a

human is needed.

According to Bernstein and Melnik [5], the solution is to

raise the level of abstraction in which mappings are speci-

fied, and they propose the model management technique that

supports working with mappings between schemes in a high

abstraction level. Another challenge in the semantic mappings

field is to work with uncertainty, an approach is probabilistic

semantic mappings and PayGo systems support them [68].

Finally, the Semantic Web research field is facing up the

problem of querying distributed applications, and there are

some approaches that translate a user query into a number of

queries that are issued to multiple applications. Quilitz and

Leser [63] or Langegger et al. [44] divide a SPARQL user

query into a number of queries that are issued to multiple

SPARQL endpoints. User queries are issued to a global schema

that is comprised of multiple endpoints, which are defined as

views over the global schema. Note that in the Semantic Web

context, the recommendation of the W3C for the high-level

632 Int'l Conf. Software Eng. Research and Practice | SERP'11 |

structured query language is SPARQL [61].

B. Search Form processing

The Search Form Planner (cf. Figure 2) takes an application

query as input, which is expressed in terms of one application

schema, and generates a search form plan that consists of a

number of search form submissions, i.e, a number of form

filling values which are taken from the query that is being

analysed, and a filter for each submission, this filter is applied

during navigation.

The Search Form Plan Executor takes a search form plan

and feeds the Filler with form filling values and the Navigator

with the appropriate filter. Note that query values could need

some transformations to perform form filling. There can exist

schema attributes that do not correspond to any fields in the

search form. The constraints in a query that refer to those

attributes must be grouped and applied as a post-filter to the

results the search form returns. This process is performed

by the Search Form Compiler, which is also responsible for

combining the result instances retrieved by the Extractor, using

the search form plan.

Existing approaches model a search form as a parameterised

view over the application schema [59]. In this context, to

have an answer for an application query, we can use the

techniques for answering queries using views [28] (cf. Section

III-A). A key concept in this module is query feasibility: it

analyses whether a query can be issued over a schema without

executing it. This analysis avoids a trial and error process in

which the system poses a query and executes it until reach a

suitable query. Petropoulos et al. [60] presented CLIDE, a user

interface for building SQL queries over a set of parameterised

views. CLIDE, besides query building, warns users when a

query over the selected views is not feasible.

Pan et al. report on [59] a generic framework for rep-

resenting query capabilities. This framework analyses the

feasibility of SQL queries over applications that include deep-

web applications. An implementation of this framework and a

recap on its main drawbacks is presented in [67].

In deep-web virtual integration, some approaches deal with

the possibility of filling more than one search form in, having

only one query. For example, if we have a search form of

flights in which we have to select a price range between 0-

1500e, 1500-5000e and >5000e, and a user query is of the

form “price < 3500e”, we need to fill two search forms in, one

with 0-1500e and another with 1500-5000e. In this last case,

a filter of flights whose price is less than 3500e is needed.

Zhang et al. [76] developed a translation technique, from the

unified search form to application search forms, that allows

multiple form submissions.

C. Deep Web accessing

The Filler (cf. Figure 2) takes a number of form filling

values as input and fills the application search form in. After

filling, this search form is submitted and the resulting page

is sent to the Navigator. The Navigator takes the result page

and classifies it into three categories: error, data or list.

An error page finishes the process, a data page is returned

immediately and, if the result page is a list page, the Navigator

navigates to the data pages by clicking on suitable links. Some

optimisations can be done in this process, for example, if we

are looking for flights whose cost is less than 3500e, we can

avoid clicking on flights whose price is higher. To perform

this optimisation, the Navigator uses the filters given as input

by the Search Form Plan Executor.

Finally, the resulting data pages are returned to the Extrac-

tor. The Extractor takes these data pages as input and produces

intermediate instances. This task is performed by extracting

information of the web page and giving semantics to this

information.

Regarding form filling, it is needed a search form model

to give semantics to search forms, which are designed by and

for users. Deep-web approaches use different types of search

form models [2], [36], [43], [55], [65], [75]. The first step to

generate a search form model is to identify labels, i.e., text

strings that give users an intuition about the semantics of a

form field [2], [36], [39], [43], [55], [58], [65], [75].

There are three different approaches to identify form field

labels automatically, and they rely on the idea that the label po-

sitions in a search form have significant semantic information.

In textual identification [36], [39], [43], the HTML code of a

search form is used to extract field labels. These techniques

rely on the idea that analysing HTML code approximately

captures the visual layout. In layout position techniques [2],

[55], [65], [75], besides the HTML code, physical layout is

used to extract field labels. In machine learning approaches,

a variety of algorithms are combined to identify field labels

[58].

The next step is to identify hidden database attributes.

Search forms issue queries to deep-web databases whose

structure is hidden partially, since a quick glance at the results

of submitting a search form can reveal some of their attributes.

These techniques extract hidden database attributes using only

a search form. Some approaches, after label extraction, identify

fields as attributes [2], [43], [65]. Other approaches allow

attributes comprised of form fields with their associated labels

[36], [55], [75], [76]. Kushmerick uses a machine learning

algorithm to perform attribute extraction [41]. Some form

models offer more information than labels and attributes, e.g.,

field order in form filling [25], mandatory fields [69], attribute

logic relationships or attribute units [36], and search form

query capabilities [69], [75].

Search form query capabilities are the different modes of

querying a search form, e.g., a search form of books ac-

cepts queries by title, which is mandatory, author, publication

year or any combination of them. The proposals that rely

on an advanced search form model extract the search form

query capabilities [69], [75], [76]. Shu et al. [69] extracts

them by issuing predefined queries through search forms

that help detect mandatory fields. Zhang et al. [75], [76]

extract hidden database attributes, operators that are applied

to these attributes, and their ranges. Attributes are combined

by conjunctive queries because this is enough to capture the

Int'l Conf. Software Eng. Research and Practice | SERP'11 | 633

query capabilities of most deep-web applications.

Regarding navigation, an important task is to classify the

page that results from a search form submission. This result

page can be an error page, a data page or a list page; in the

last case, it is necessary to navigate through the page links

to access to the data pages, which have to be also classified.

Classifiers of web pages use a number of features that can

be from the textual content, structural content or the visual

layout [62], [71]. Note that the classifiers usually work with

the significant portion of a web page that is the piece that

results from removing miscellaneous headers and footers.

Textual content techniques study features such as predefined

text patterns [47], [64], [69], e.g., “No matches” for error pages

or “Showing 1 - 20 of 50 000” for list pages. Structural content

approaches use the HTML tag tree to extract the features [6],

[10], [71], e.g., the position of a label in the tag tree have

significant meaning, if the label is present in the significant

portion of the web page it has to be considered. Visual layout

techniques use the features from the visual representation

rendered by a web browser [2], [39], [64], [75], e.g., a web

page with a number of images and some text at the right side

of each image can be a list page that shows title pages of

books and their corresponding information.

Caverlee and Liu [10] combines textual and structural

techniques to perform web page classification. This approach

fetches for areas in web pages that can be used to answer a

user query. At the beginning, they cluster web pages according

to their structural layout and, after this process, they filter each

cluster using textual features such as the size of the web page.

A web page can contain some features that are missing,

misleading, or unrecognisable for various reasons, e.g., the

web page contains a number of large images or Flash objects

but too little textual content. In these cases, the neighbours of

the web page are used to supply supplementary information

for the classification process [62]. A neighbour of a web page

A is another web page B that has a link of the form A → B or

A ← B whose distance is one. Distances greater than one can

be used to perform the neighbour analysis [62]. Besides the

links between web pages, there are a number of approaches

that use artificial links such as textual similarities between the

pages or the pages that co-occur in top query results [62].

Navigation patterns are used to navigate through links [43],

[56], [57], they define common navigation paths that are

repeated in several deep-web applications. Another technique

that can also be applied to navigate through links is focused

crawling [11]. Focused crawling techniques or those proposals

that use navigation patterns to optimise navigation processes

rely on a blind search, which results in unnecessary clicks that

lead to uninteresting pages. This argues for a more intelligent

method to navigate through deep-web applications.

One challenge is to avoid these excessive clicks by iden-

tifying summary information of interest in list pages, and

extracting this information so that uninteresting links are

not clicked. Summary information has to be detected using

record extraction techniques [1], [40], [46], [74], [77], and

data extraction can be performed by information extractors.

Montoto et al. [56], [57] presented a workflow language that

allows to define a task to not perform a blind search.

Regarding extracting, there are four types of information

extraction: hand-crafted, supervised, little supervised and un-

supervised. Hand-crafted extractors rely on the user to provide

the extraction rules [17], [34], [48]. Supervised extractors

use a set of labeled documents to learn extraction rules

using induction procedures [8], [23], [42]. Little supervised

extractors work the same as supervised ones but with just one

labeled document [13], [38]. Unsupervised extractors learn the

extraction rules without requiring a set of labeled documents

[18], [49], [72], [74]. Turmo et al. [70] survey information

extractors that work on natural language data pages and Chia-

Hui Chang et al. [12] survey information extractors that work

on structured and semi-structured data pages. Information

extraction techniques extract pieces of text from data pages;

later they must be endowed with semantics by means of

ontologisers [3], [19], [73].

IV. CONCLUSIONS

Deep-web virtual integration approaches reduce the integra-

tion costs by providing a unified search form, which abstracts

away from the actual search forms. We argue that increasing

the abstraction level may help reduce the cost of a deep-web

data integration solution even further. This new abstraction

consists of working with high-level structured queries that

are posed over the integration solution: high-level structured

queries allow to abstract away from the deep-web application

search forms, and even from the unified search forms. Also,

high-level structured languages allows more specific and com-

plex queries than the unified search forms or keyword-based

query interfaces.

We believe that this new abstraction level avoids the de-

veloper to be concerned with the details of the integration

process, such as the execution plan that has to be used to

retrieve and integrate the data, or the search form submissions

that have to be performed to answer a query. The key problem

when dealing with (application or unified) search forms is that

they have some query capabilities, which have to be taken into

account when posing queries over it. Furthermore, the search

forms are human-oriented and they have not formally-defined

semantics.

In this paper, we propose IntegraWeb as a reference frame-

work to perform deep-web data integration by means of high-

level structured queries. IntegraWeb emerges as the synergy

between the research efforts made on database integration and

the Deep Web, and it uses the advances of both research fields

in combination. To the best of our knowledge, there is not a

proposal that uses high-level structured query languages to

integrate deep-web data. Furthermore, we survey the state of

the art in both research fields and how the existing techniques

have to be used in our reference framework.

Database integration research field has focused on the

integration of data stored in different applications. The existing

techniques go from a unique entry point by which the user

query the system (Mediators), to a totally distributed system

634 Int'l Conf. Software Eng. Research and Practice | SERP'11 |

in which each application has its data model and the user query

any of them (PDMS and PayGo systems). Also, the mappings

between the different data models can be totally exact at the

beginning of the integration process (Mediators and PDMS),

or they can be basic and evolve during this process (PayGo

systems).

The research on the Deep Web has focused on accessing

and integrating web data. The main challenge on developing

these techniques is to have into account the search forms, i.e.,

deep-web applications deliver their data by means of a search

form that have to be filled in by the user. In this research

field, there are two main approaches: retrieving and indexing

data pages to allow search engines to have access to them

(surfacing), or retrieving data pages, extracting data from these

pages and aggregating the results, to deliver the data to the user

as if only one deep-web application had been queried (virtual

integration).

REFERENCES

[1] M. Álvarez, A. Pan, J. Raposo, F. Bellas, and F. Cacheda. Extracting
lists of data records from semi-structured web pages. Data Knowl. Eng.,
64(2):491–509, 2008.

[2] M. Álvarez, J. Raposo, A. Pan, F. Cacheda, F. Bellas, and V. Carneiro.
Crawling the Content Hidden Behind Web Forms. In ICCSA, pages
322–333, 2007.

[3] J. L. Arjona, R. Corchuelo, D. Ruiz, and M. Toro. From Wrapping to
Knowledge. IEEE Trans. Knowl. Data Eng., 19(2):310–323, 2007.

[4] M. K. Bergman. The Deep Web: Surfacing Hidden Value. Journal of

Electronic Publishing, 7(1), 2001.
[5] P. A. Bernstein and S. Melnik. Model management 2.0: manipulating

richer mappings. In SIGMOD Conference, pages 1–12, 2007.
[6] L. Blanco, V. Crescenzi, and P. Merialdo. Structure and Semantics of

Data-IntensiveWeb Pages: An Experimental Study on their Relation-
ships. J. UCS, 14(11):1877–1892, 2008.

[7] S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu, J. Robie, and
J. Siméon. XQuery 1.0: An XML Query Language. Technical report,
W3C, 2007.

[8] M. E. Califf and R. J. Mooney. Bottom-Up Relational Learning of
Pattern Matching Rules for Information Extraction. Journal of Machine

Learning Research, 4:177–210, 2003.
[9] D. Calvanese, D. Lembo, and M. Lenzerini. Survey on methods for

query rewriting and query answering using views. Technical Report
D1.R5, Universitá di Roma, 2001.

[10] J. Caverlee and L. Liu. QA-Pagelet: Data Preparation Techniques for
Large-Scale Data Analysis of the Deep Web. IEEE Trans. Knowl. Data

Eng., 17(9):1247–1262, 2005.
[11] S. Chakrabarti, M. van den Berg, and B. Dom. Focused Crawling: A

New Approach to Topic-Specific Web Resource Discovery. Computer

Networks, 31(11-16):1623–1640, 1999.
[12] C.-H. Chang, M. Kayed, M. R. Girgis, and K. F. Shaalan. A Survey of

Web Information Extraction Systems. IEEE Trans. Knowl. Data Eng.,
18(10):1411–1428, 2006.

[13] C.-H. Chang and S.-C. Kuo. OLERA: Semisupervised Web-Data
Extraction with Visual Support. IEEE Intelligent Systems, 19(6):56–64,
2004.

[14] K. C.-C. Chang and H. Garcia-Molina. Approximate query mapping:
Accounting for translation closeness. VLDB J., 10(2-3):155–181, 2001.

[15] K. C.-C. Chang, B. He, C. Li, M. Patel, and Z. Zhang. Structured
Databases on the Web: Observations and Implications. SIGMOD Record,
33(3):61–70, 2004.

[16] K. C.-C. Chang, B. He, and Z. Zhang. Toward Large Scale Integration:
Building a MetaQuerier over Databases on the Web. In CIDR, pages
44–55, 2005.

[17] V. Crescenzi and G. Mecca. Grammars Have Exceptions. Inf. Syst.,
23(8):539–565, 1998.

[18] V. Crescenzi, G. Mecca, and P. Merialdo. RoadRunner: automatic data
extraction from data-intensive web sites. In SIGMOD Conference, page
624, 2002.

[19] H. Davulcu, S. Vadrevu, and S. Nagarajan. OntoMiner: automated
metadata and instance mining from news websites. IJWGS, 1(2):196–
221, 2005.

[20] A. Doan and A. Y. Halevy. Semantic Integration Research in the
Database Community: A Brief Survey. AI Magazine, 26(1):83–94, 2005.

[21] J. Euzenat and P. Shvaiko. Ontology matching. Springer, 2007.

[22] M. J. Franklin, A. Y. Halevy, and D. Maier. From databases to
dataspaces: a new abstraction for information management. SIGMOD

Record, 34(4):27–33, 2005.

[23] D. Freitag. Machine Learning for Information Extraction in Informal
Domains. Machine Learning, 39(2/3):169–202, 2000.

[24] M. Friedman, A. Y. Levy, and T. D. Millstein. Navigational Plans For
Data Integration. In AAAI/IAAI, pages 67–73, 1999.

[25] A. Gal, G. A. Modica, H. M. Jamil, and A. Eyal. Automatic Ontology
Matching Using Application Semantics. AI Magazine, 26(1):21–32,
2005.

[26] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman, Y. Sa-
giv, J. D. Ullman, V. Vassalos, and J. Widom. The TSIMMIS Approach
to Mediation: Data Models and Languages. J. Intell. Inf. Syst., 8(2):117–
132, 1997.

[27] L. M. Haas, M. A. Hernández, H. Ho, L. Popa, and M. Roth. Clio grows
up: from research prototype to industrial tool. In SIGMOD Conference,
pages 805–810, 2005.

[28] A. Y. Halevy. Answering queries using views: A survey. VLDB J.,
10(4):270–294, 2001.

[29] A. Y. Halevy, M. J. Franklin, and D. Maier. Principles of dataspace
systems. In PODS, pages 1–9, 2006.

[30] A. Y. Halevy, Z. G. Ives, J. Madhavan, P. Mork, D. Suciu, and
I. Tatarinov. The Piazza Peer Data Management System. IEEE Trans.

Knowl. Data Eng., 16(7):787–798, 2004.

[31] A. Y. Halevy, Z. G. Ives, D. Suciu, and I. Tatarinov. Schema Mediation
in Peer Data Management Systems. In ICDE, pages 505–516, 2003.

[32] A. Y. Halevy, Z. G. Ives, D. Suciu, and I. Tatarinov. Schema mediation
for large-scale semantic data sharing. VLDB J., 14(1):68–83, 2005.

[33] A. Y. Halevy, A. Rajaraman, and J. J. Ordille. Data Integration: The
Teenage Years. In VLDB, pages 9–16, 2006.

[34] J. Hammer, J. McHugh, and H. Garcia-Molina. Semistructured Data:
The Tsimmis Experience. In ADBIS, pages 1–8, 1997.

[35] B. He, T. Tao, and K. C.-C. Chang. Organizing structured Web sources
by query schemas: a clustering approach. In CIKM, pages 22–31, 2004.

[36] H. He, W. Meng, Y. Lu, C. T. Yu, and Z. Wu. Towards Deeper
Understanding of the Search Interfaces of the Deep Web. In World

Wide Web, pages 133–155, 2007.

[37] H. He, W. Meng, C. T. Yu, and Z. Wu. Automatic integration of Web
search interfaces with WISE-Integrator. VLDB J., 13(3):256–273, 2004.

[38] A. Hogue and D. R. Karger. Thresher: automating the unwrapping of
semantic content from the World Wide Web. In WWW, pages 86–95,
2005.

[39] O. Kaljuvee, O. Buyukkokten, H. Garcia-Molina, and A. Paepcke.
Efficient Web form entry on PDAs. In WWW, pages 663–672, 2001.

[40] J. Kang and J. Choi. Recognising Informative Web Page Blocks Using
Visual Segmentation for Efficient Information Extraction. Journal of

Universal Computer Science, 14(11):1893–1910, 2008.

[41] N. Kushmerick. Learning to Invoke Web Forms. In
CoopIS/DOA/ODBASE, pages 997–1013, 2003.

[42] A. H. F. Laender, B. A. Ribeiro-Neto, and A. S. da Silva. DEByE -
Data Extraction By Example. Data Knowl. Eng., 40(2):121–154, 2002.

[43] J. P. Lage, A. S. da Silva, P. B. Golgher, and A. H. F. Laender. Automatic
generation of agents for collecting hidden Web pages for data extraction.
Data Knowl. Eng., 49(2):177–196, 2004.

[44] A. Langegger, W. Wöß, and M. Blöchl. A Semantic Web Middleware
for Virtual Data Integration on the Web. In ESWC, pages 493–507,
2008.

[45] M. Lenzerini. Data Integration: A Theoretical Perspective. In PODS,
pages 233–246, 2002.

[46] K. Lerman, L. Getoor, S. Minton, and C. A. Knoblock. Using the
Structure of Web Sites for Automatic Segmentation of Tables. In
SIGMOD Conference, pages 119–130, 2004.

[47] S. W. Liddle, D. W. Embley, D. T. Scott, and S. H. Yau. Extracting
Data behind Web Forms. In ER (Workshops), pages 402–413, 2002.

[48] L. Liu, C. Pu, and W. Han. XWRAP: An XML-Enabled Wrapper
Construction System for Web Information Sources. In ICDE, pages
611–621, 2000.

Int'l Conf. Software Eng. Research and Practice | SERP'11 | 635

[49] Y. Lu, H. He, H. Zhao, W. Meng, and C. T. Yu. Annotating Structured
Data of the Deep Web. In ICDE, pages 376–385, 2007.

[50] J. Madhavan, L. Afanasiev, L. Antova, and A. Y. Halevy. Harnessing
the Deep Web: Present and Future. In CIDR, page To be published,
2009.

[51] J. Madhavan, P. A. Bernstein, P. Domingos, and A. Y. Halevy. Rep-
resenting and Reasoning about Mappings between Domain Models. In
AAAI/IAAI, pages 80–86, 2002.

[52] J. Madhavan, S. Cohen, X. L. Dong, A. Y. Halevy, S. R. Jeffery, D. Ko,
and C. Yu. Web-Scale Data Integration: You can afford to Pay as You
Go. In CIDR, pages 342–350, 2007.

[53] J. Madhavan, D. Ko, L. Kot, V. Ganapathy, A. Rasmussen, and A. Y.
Halevy. Google’s Deep Web crawl. PVLDB, 1(2):1241–1252, 2008.

[54] R. McCann, B. K. AlShebli, Q. Le, H. Nguyen, L. Vu, and A. Doan.
Mapping Maintenance for Data Integration Systems. In VLDB, pages
1018–1030, 2005.

[55] G. A. Modica, A. Gal, and H. M. Jamil. The Use of Machine-Generated
Ontologies in Dynamic Information Seeking. In CoopIS, pages 433–448,
2001.

[56] P. Montoto, A. Pan, J. Raposo, J. Losada, F. Bellas, and V. Carneiro.
A Workflow Language for Web Automation. Journal of Universal

Computer Science, 14(11):1838–1856, 2008.
[57] P. Montoto, A. Pan, J. Raposo, J. Losada, F. Bellas, and J. López. A

Workflow-Based Approach for Creating Complex Web Wrappers. In
WISE, pages 396–409, 2008.

[58] H. Nguyen, T. Nguyen, and J. Freire. Learning to Extract Form Labels.
In VLDB, 2008.

[59] A. Pan, P. Montoto, A. Molano, M. Álvarez, J. Raposo, and Á. Viña. A
Model for Advanced Query Capability Description in Mediator Systems.
In ICEIS, pages 140–147, 2002.

[60] M. Petropoulos, A. Deutsch, and Y. Papakonstantinou. Interactive
query formulation over Web service-accessed sources. In SIGMOD

Conference, pages 253–264, 2006.
[61] E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for

RDF. Technical report, W3C, 2006.
[62] X. Qi and B. D. Davison. Web page classification: Features and

algorithms. ACM Comput. Surv., 41(2), 2009.
[63] B. Quilitz and U. Leser. Querying Distributed RDF Data Sources with

SPARQL. In ESWC, pages 524–538, 2008.
[64] S. Raghavan and H. Garcia-Molina. Crawling the Hidden Web. Tech-

nical Report 2000-36, Stanford University, 2000.
[65] S. Raghavan and H. Garcia-Molina. Crawling the Hidden Web. In

VLDB, pages 129–138, 2001.
[66] E. Rahm and P. A. Bernstein. A survey of approaches to automatic

schema matching. VLDB J., 10(4):334–350, 2001.
[67] C. Rivero. From queries to search forms: an implementation. IJCAT,

33(4):264–270, 2008.
[68] A. D. Sarma, X. Dong, and A. Y. Halevy. Bootstrapping pay-as-you-

go data integration systems. In SIGMOD Conference, pages 861–874,
2008.

[69] L. Shu, W. Meng, H. He, and C. T. Yu. Querying Capability Modeling
and Construction of Deep Web Sources. In WISE, pages 13–25, 2007.

[70] J. Turmo, A. Ageno, and N. Català. Adaptive information extraction.
ACM Comput. Surv., 38(2), 2006.

[71] M. Vidal, A. S. da Silva, E. S. de Moura, and J. M. Cavalcanti. Structure-
Based Crawling in the Hidden Web. Journal of Universal Computer

Science, 14(11):1857–1876, 2008.
[72] J. Wang and F. H. Lochovsky. Data extraction and label assignment for

web databases. In WWW, pages 187–196, 2003.
[73] M. J. Weal, H. Alani, S. Kim, P. H. Lewis, D. E. Millard, P. A. S.

Sinclair, D. D. Roure, and N. R. Shadbolt. Ontologies as facilitators for
repurposing web documents. Int. J. Hum.-Comput. Stud., 65(6):537–562,
2007.

[74] Y. Zhai and B. Liu. Structured Data Extraction from the Web Based on
Partial Tree Alignment. IEEE Trans. Knowl. Data Eng., 18(12):1614–
1628, 2006.

[75] Z. Zhang, B. He, and K. C.-C. Chang. Understanding Web Query
Interfaces: Best-Effort Parsing with Hidden Syntax. In SIGMOD

Conference, pages 107–118, 2004.
[76] Z. Zhang, B. He, and K. C.-C. Chang. Light-weight Domain-based

Form Assistant: Querying Web Databases On the Fly. In VLDB, pages
97–108, 2005.

[77] H. Zhao, W. Meng, and C. T. Yu. Mining templates from search result
records of search engines. In KDD, pages 884–893, 2007.

636 Int'l Conf. Software Eng. Research and Practice | SERP'11 |

