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Abstract— In this paper we discuss the migration of a 2D 
netlist with pre-placed I/Os to 3D circuits.  For that, we present 
an algorithm to perform the partitioning of the I/O pins into 
various tiers targeting at I/O balancing and 3D-Vias 
minimization. We formulate the netlist migration constrained 
with respect to the preservation of the original netlist 
properties. The I/O partitioning algorithm is based on the logic 
distance between I/Os. Since there is no literature on I/O 
partitioning for 3D circuits we compared our algorithm with 
two simplistic approaches that targeted balance and min-cut 
respectively. Experimental results show that our algorithm can 
reduce the number of 3D-Vias compared to both algorithms, 
while balance is kept close to optimal. Additionally, we studied 
the area impact of the 3D-Vias resulted by the three algorithms 
targeting two different technologies for 3D circuits. We 
observed that in Bulk based technologies the 3D-Via penalty is 
huge, favoring our algorithm that minimizes the number of 
3D-Vias. Targeting SOI technologies, the area impact is very 
small, leading to the conclusion that there is no need for deep 
3D-Via minimization. Our I/O partitioning is still 
recommended in such case while the cell partitioning should 
consider wire length instead of 3D-Via minimization.  

I. INTRODUCTION  
In the nanometer VLSI, the technology shrinking 

imposes many challenges to the design of circuit 
interconnect instead of providing shorter wire lengths. Issues 
like delay, variability and manufacturability are highly 
valuable research subjects in the present days.  

3D circuits appear as a change of design paradigm, 
providing higher integration and reducing wire lengths [6]. 
From the CAD perspective, there is a huge research space for 
the development of new algorithms and new methodologies 
to take full advantage of the 3D integration. 

Among the new problems and algorithms to be migrated 
from 2D to 3D, cell placement is a key problem for 
interconnect optimization [14]. A block of standard cells can 
be partitioned into several tiers to achieve a better wire 

length [1, 4, 6, and 12] and delay [2]. Compared to 2D 
placement, the problem has other aspects to be considered, 
such as: 

• The third dimension (Z) disposes the cells into different 
tiers. A Standard-Cell block needs to be partitioned in a 
set of different sub-blocks. It is reasonable, though, to 
constrain the width and height of the whole block by the 
largest sub-block. For this reason, the Z coordinate 
spreading of the cells should be constrained by a tight 
equilibrium requirement in order to minimize the area. 

• Thermal issues become critical due to higher integration 
and hard heat dissipation [6, 14]. Thermal vias [9] and 
thermal driven floorplanning [5] and placement [1, 8] 
are possible solutions being used. 

• Communication between different tiers is accomplished 
by 3D-Vias. There are various possible technologies for 
3D-Via fabrication, depending on the disposal of the 
various tiers as face-to-face or face-to-back and on the 
bulk technology (in contrast with SOI) [6]. The 3D-Vias 
imposes challenges such as high consumption of routing 
resources, obstacles to placement and large pitch. 

Because of the high penalties imposed by 3D-Vias, a 
common approach in the placement phase is to minimize 
them by using min-cut partitioning. In [1] the min-cut 
partitioning algorithm hMetis [13] is used to partition the 
cells into different tiers. Force Directed Placement and 
Simulated Annealing algorithms follow to improve wire 
lengths. In [2], a partitioning based placement algorithm 
using hMetis also minimizes the number of 3D Vias. The 
work in [7] presents a similar approach using the Capo placer 
to place each tier separately (with terminal propagation from 
other tiers) proceeded by min-cut partitioning for tier 
assignment. 

The existing algorithms for 3D placement found in the 
literature are natural extensions of their 2D version. Most of 
the reviewed works use iterative Force Directed approach 



and partitioning based methods. The quadratic placement 
algorithm [3] is widely used by the leading industry [15] and 
academia [16] because it is very fast and scalable. However, 
there seems to be no work with the quadratic placement 
algorithm for 3D circuits. Different from other approaches, 
this algorithm requires I/O pins in order to compute a 
solution. A 3D extension of this algorithm would require I/O 
pins to be previously placed in 3D as well. 

The I/O pins plays two important roles in the placement 
of a block: first, the area boundary is limited by the I/Os; 
second, the pins are used as tips for the placement algorithm 
to reduce wire lengths. The same facts are needed for 3D 
placement. It is known that I/O pins tier-assignment and 
placement can be more effective if performed during 
floorplanning. On the other hand, an automatic migration 
algorithm at the placement level could facilitate the decision 
or can be plugged in an automated flow of a front-end 
synthesis that targets 2D. 

This paper studies the partitioning of I/O pins into 
various tiers and the impact of different algorithms in the 
number of 3D-Vias and their area requirements. To our 
knowledge, we are the first to study this problem and to 
propose a reasonable solution. In section II, we present a 
brief introduction to the 3D Circuits Placement focusing on 
3D-Via constraints, reinforcing the importance to minimize 
them. Section III presents our definition of the 3D I/O pin 
partitioning. We assume that the I/Os are placed on the 
boundary and that can be moved to any tier. We formulate 
the problem to evenly distributed whitespace and the gates 
area while aspect ratio is preserved. We them propose an 
algorithm on section IV with two objectives: first, to balance 
the number of pins in each tier in order to shrink down the 
area of blocks bounded by the I/Os; second, to provide a 
smart starting point partitioning solution of the netlist that 
will effectively reduce the number of 3D-Vias. Section V 
presents our experimental results with circuits placed in 
various tiers while also studying the impact on the 
requirements of 3D-Vias. Section VI discusses our 
conclusions with respect to the number of 3D-Vias. It is 
shown how they are affected by the I/O partitioning 
algorithm and how they impact the area and obstacles 
constraints on the circuit, leaving room for future work on 
3D-Via planning. 

II. 3D CIRCUITS PLACEMENT  

A. Introduction to 3D Circuits 
A 3D circuit is actually the stacking of regular 2D 

circuits. The advances on the fabrication and packaging 
technologies allows to interconnect different 2D stacked 
circuits. Each circuit is named in the literature as a tier. We 
refer to 3D-Vias as the piece of wire that connects two 
different tiers. According to [6] there are several types of 
3D-Vias. The so called thought vias organizes the circuit in 
face-to-back tiers while the 3D-Vias dig a hole in the bulk. 
The highest possible via density is allowed by SOI 
technologies (5 µm pitch) while Bulk-based technologies 

present a smaller density compared to SOI (50 µm pitch). 
This fact and the circuit organization are illustrated in figure 
1. 

It is quite clear in figure 1 that 3D Vias can impose 
significant obstacles and constraints to the 3D placement 
problem. Most of the existing approaches, such as [1, 7, and 
8] completely ignore this fact on placement, but they do 
optimize the number of vias with min-cut partitioning. The 
via minimization and the via impact on the final area seeing 
from I/O pins perspective are studied in this paper. 

Figure 1.  3D Circuit organization and different types of 3D –Vias 

B. Migrating from 2D to 3D Placement 
Given a 2D placement netlist with pre-placed I/O pins in 

the boundary of the region available for standard cell 
placement, the migration to a 3D netlist (ready for 3D 
placement) has the following tasks: 

• Area allocation: the width and height of the tiers will 
be calculated according to the number of tiers. 

• I/O partitioning: the I/Os must be partitioned in 
different tiers. 

• I/O placement: the I/Os must be placed in the 
boundary of the block, delimiting the area for standard 
cell placement. 

We classify the cell partitioning as a placement task. 
Figure 2 illustrates the I/O pins migration as well as a 
possible cell partitioning. 

As formulated in the next section, the netlist migration 
preserves some properties of the 2D solution, such as 
whitespace, aspect ratio, I/O pins orientation and ordering. 
Our objective is to provide a migration algorithm that 
facilitates the 3D-Via minimization. From the perspective 
of the I/O pin partitioning it is as good starting point for the 
cell partitioning. The algorithm should provide good I/O pins 
balance and respecting the mentioned properties. 
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Once the netlist is migrated  (the I/O pins are placed) a 
partitioning process can distribute the cells on the tiers. This 
methodology aims at 3D-Via minimization since the layer 
assignment is done before placement by min-cut partitioning. 
In this paper, we propose to study the impact of the 3D-Vias 
in the tier area and we will investigate further whether 3D-
Via minimization is in fact a good methodology for 3D 
Placement. 

 

Figure 2.  Migration (from 2D to 3D) of a netlist with pre-placed I/O Pins 

III. 3D I/O PARTITIONING PROBLEM DEFINITION 
Before placement, a 2D circuit netlist NL is composed by 

a set of gates G = {g1, g2, g3, … , gn}, a set of I/O pins P = 
{p1, p2, p3, … , pm} and a set of nets connecting them N = {n1, 
n2, n3, … , no}. A hypergraph HG represents the netlist, 
where G∪P is the set of nodes and N is the set of 
hyperedges. The fixed position of each I/O pin pi is given by 
X[i] and Y[i] (i≤m) and its orientation by OR(pi) ∈ {north, 
south, east, west}. The area A (height H and width W having 
its bottom left corner at coordinate (xini ,yini) position) inside 
the I/O pins is assigned for cell placement. Usually, I/O pin 
positions covers the entire boundary, leaving no room for 
additional connections or area reduction. The whitespace 
ratio S on the placement area is achieved by subtracting the 
total gate area (GA) from the area available inside the I/Os 
normalized by GA. The aspect ratio AR is computed by W 
divided by H. 

Let Z be the set of tier numbers {1,2,…,z}. netlist 
migration is defined as follows: given a 2D placement netlist 
NL with fixed I/O pins, find a set of tiers T = {t1, t2, … , tz} (z 
is the number of tiers) and their correspondent Ai, ARi, GAi, 
Wi, Hi, Pi, Si, ORi, Xi and Yi (i≤zThe following constraints 
should be met: 

  

! 

P
1
UP

2
U ...UP

t
= P  (1) 

  

! 

"(a,b# Z)(a $ b% P
a
IP

b
=&) (2) 

! 

"(i # Z)S
i
$ S  (3) 

! 

"(i # Z)"( j # Z)Wi =W j $Hi = H j
 (4) 

! 

"(i # Z)"( j # Z)GAi $GAj
 (5) 

! 

"(i # Z)AR
i
$ AR  (6) 

! 

"(i # Z)("a# P
i
(OR

i
(a) =OR(a))) (7) 

! 

"(t # Z)("a,b# P
t
(OR(a) =OR(b)$ X

i
[a] < X

i
[b]% X[a] < X[b])) (8) 

! 

"(t # Z)("a,b# P
t
(OR(a) =OR(b)$Y

i
[a] <Y

i
[b]%Y[a] <Y[b])) (9) 

IV. THE ALGORITHM FOR I/O PARTITIONING 
Our partitioning algorithm is a heuristic to be combined 

with existing min-cut partitioning approaches. We perform 
the I/O partition in two steps: first, a complete graph of the 
I/O pins is created with costs associated to each edge; 
second, a min-cut partitioning is performed considering the 
calculated costs. The following steps of the algorithm will 
calculate the area of each tier and the consequent I/O 
placement. 

Let LD(pi,pj) be the length of the shortest path in HG 
from pi to pj (i.e. the logic distance between pi and pj). Our 
idea is to keep the closer I/Os in the same tier. 
Accomplishing that, we intuitively expect that the cell 
partitioning will be able to minimize further the number of 
vias, while we can control the number of I/Os in each tier. 

The algorithm for I/O partitioning is described as 
follows: 

1)  Compute LD(pi,pj) for every pair of pins pi and pj ∈  
P.  This step is illustrated in figure 3. It can be 
accomplished with m BFS searches from every pin pi to 
the whole graph, resulting in a O(mn) complexity. 

2) Create a complete graph PG such that P is the set of 
nodes and LD(pi,pj) (pi and pj ∈  P) is the cost of the 
edge connecting nodes i and j. This step is illustrated in 
figure 3. 

3) Perform the partitioning of PG into z partitions 
PARTi  (i≤z) aiming at weighted min-cut 
optimization. We used hMetis tool [10, 13] as it accepts 
weighted graph imposing a tight balance. 

4) Perform the min-cut cell partitioning of the graph 
HG into the sets PARTi  (i≤z) in order to estimate the 
minimum number of 3D-Vias between the partitions. 
Note that area balance should be respected according to 
equation (5). 

5) Perform the tier-assignment problem from each 
PARTi to P1, P2, …, Pz . This step aims at via 
minimization and can be formulated as a single 
dimension placement problem, as illustrated in figure 4. 
We used a Simulated Annealing optimization to 
minimize the total number of 3D-Vias. 

6) For each pair of adjacent tiers i and j (i < j), there is a 
3D-Via layer Vi containing NVi 3D-Vias and a total area 
of VAi. Compute VAi for all i<z by multiplying the NVi 
with the 3D-Via minimum pitch according to the target 
technology. 

7) Compute GAi for all tiers using the cell partitioning 
performed at step 4. 

Tier 1 

Tier n 

Tier 2  

Migration
… 



6) Compute the area Ai of each tier i (i>0) by adding 
GAi, VAi-1 and the whitespace Si. For the first tier (i=0) 
we do not consider the 3D-Via area. The largest tier area 
is taken for all tiers, according to the restriction of 
equation (4). At this point, we observe that VAi should 
be much smaller than GAi to not unbalance the area of 
the tiers. Whitespace could be used to compensate the 
unbalance. 

7) The width Wi and height Hi of each tier i is calculated 
according to equation (10). 

8) The x and y coordinates of every pin p are calculated 
according to equations (11) and (12). 

9) Legalize I/O pin positions. 
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Figure 3.  An ilustration of the steps 1 and 2 of our algorithm 

Figure 4.  An ilustration of the tier-assignment problem and the 
consequent number of 3D-Vias 

V. EXPERIMENTAL RESULTS 
Our goal is to study the impact of the I/O partitioning in 

the number of vias and consequently the area requirements 

with respect to the 3D-Vias. Two types of 3D CMOS 
technology are considered: regular bulk and SOI, according 
to the data presented in [6]. Our experiments are summarized 
in three tables: table 1 summarizes our data on I/O pins 
balancing; table 2 presents the resultant number of 3D-Vias 
comparing with other I/O partitioning algorithms; table 3 
presents the area requirements analysis that we made with 
respect to the 3D-Vias constraints. All tables are based on 
the ISPD 2004 benchmark set [11]. 

As we cannot find any previous work for I/O 
partitioning, we assume that simplistic approaches are being 
adopted in the existing 3D placement literature. We 
compared our I/O partitioning algorithm with two other 
simplistic algorithms that follow the same formulation 
described in section III. The first method is called 
unlocked_pins. In this method, we allow hMetis to partition 
the I/Os as free nodes, replacing the steps 1, 2 and 3 of our 
algorithm. The following steps of our algorithm are done for 
the unlocked_pins as well. The second algorithm is called 
alternate_pins. This method is a pseudo-random partitioning 
that goes thought the boundary line of the chip picking nodes 
for each partition alternatively. The idea is to preserve the 
initial I/O balanced distribution. Just as for unlocked_pins, 
the alternate_pins replaces steps 1,2 and 3 our flow, but 
steps 5-9 are done. The unlocked_pins cannot control the I/O 
balancing, but the heuristic for min-cut partitioning should 
reach a good solution in terms of number of 3D-Vias. On the 
other hand, the alternate_pins has complete control over-
constrain the balancing, but may constraint the cell 
partitioning. 

TABLE I.  COMPARISON OF THE  I/O PINS DISTRIBUTION IN THE TIERS 
CONSIDERING THE THREE ALGORITHMS 

#Tiers Algorithm σ  #I/Os 

our algorithm 5 
unlocked_pins 150 2 

alternate_pins 0,44 
our algorithm 4 
unlocked_pins 141 3 

alternate_pins 0,43 
our algorithm 3 
unlocked_pins 103 4 

alternate_pins 0,53 
our_algorithm 4 
unlocked_pins 112 5 

alternate_pins 0,43 
 

Table 1 presents the average results on the standard 
deviation of the number of I/O pins. The alternate_pins 
algorithm is optimal in this metric and obviously has the best 
I/O balance. The method unlocked_pins has a very large 
standard deviation; in many cases, several tiers had no pins. 
The strong unbalance of the I/Os, especially in the case of 
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few tiers, invalidates the unlocked_pins method. Our 
algorithm has a close to optimal pin balancing. 

Table 2 presents our experimental results looking for a 
comparison of the total number of 3D-Vias using the three 
partitioning algorithms. The average numbers show that the 
alternate_pins algorithm has the worst results leading to the 
conclusion that a simplistic I/O pin partitioning method 
over-constraints the cell partitioning that follows the I/O 
partitioning, resulting in increased cut size. Additionally 
table 1 shows that, in average, our algorithm outperforms the 
unlocked_pins as well, leading to the conclusion that the two 
phase partitioning process with minimum path 
information of the I/Os actually improves the min-cut 
heuristic quality, while keeping the I/O balance. 

Table 3 presents the area impact study of the 3D-Vias 
considering the three algorithms (the numbers are averaged 
for all benchmarks). The column “Max #3D-Vias” reports 
the maximum NVi (i < z) that represents the maximum 
number of 3D-Vias connecting two tiers.  This number will 
impact the area requirements for the 3D-Vias. The table 
shows that our algorithm outperforms the others in 3D 
vias minimization, except for the four tiers case. The 
following columns report the area impact targeting a Bulk-
based 3D technology and finally an SOI technology, based 
on the information presented in [6]. However, there is no 
information of the actual width and height of the 3D-Vias. 
For this reason, we are taking the pitch as the 3D-Vias 
dimensions. Note that the 3D-Via area requirements reflects 
the circuit area in two manners: in the active layer, the places 
for an arising 3D connection are going to be constrained by 
the actual width and height of the 3D-Via; on the other hand, 
the 3D-Via layer (between two tiers) is going to be 
constrained by the pitch of the 3D-Via, as we measured. 
Additionally, we observe that the pitch used is a measure for 
a 0.35µm technology, according to [6], while we don’t know 
the source technology of our benchmarks. Our goal is not to 
provide accurate comparison numbers, but to have an idea of 
the requirements for the 3D-Vias. 

Analyzing the data from table 3 we make the following 
considerations: 

• The Bulk-based 3D technologies suffer from a very high 
penalty for the 3D-Vias. With 2 tiers, there is a penalty 
around 85% of the tier area (note that our algorithm 
results in less vias and also less tier area than the others). 
For the cases with 3 to 5 tiers, the 3D-Via area is bigger 
than the tier area! Our algorithm could save up to 10% 
of 3D-Via area compared to the tier area. The important 
conclusion here is that when targeting a CMOS Bulk 
based technology it is mandatory to minimize the 
number of 3D-Vias to obtain a feasible solution. 

• The SOI based technology suffers around 2% area 
penalty related to 3D-Vias, which is actually small, 
leaving room for more 3D-Vias if they are helpful.  

VI. CONCLUSIONS 
In this paper we presented an algorithm for the 

partitioning of I/Os targeting 3D circuits. This is a necessary 
step for the physical synthesis of 3D circuits for two reasons: 
to alleviate the boundary of the block, leaving room for area 
reduction; to perform 3D placement with the quadratic 
placement algorithm [3]. 

Our algorithm has a good balancing on the number of 
I/Os per partition while it targets the minimization of the cut 
with a shortest-path heuristic. According to our experimental 
results, a simplistic I/O pin partitioning method will lead to 
larger amount of 3D-Vias.  At the same time, by using a 
regular min-cut partitioning of the whole netlist (cells + I/O 
pins together) we got very unbalanced number of I/Os. 

Our partitioning approach is done in two phases: first the 
I/O partitioning considering the whole netlist as weights; 
second, we fix the I/Os and perform partitioning of the cells. 
The experimental results also show that our two phase 
partitioning led to a better cut, in average, than the single 
phase partitioning. We conclude that the shortest-path 
information could actually improve the partitioning 
algorithm since it could work with smaller graphs containing 
information of the whole circuit. 

Finally, we studied the area impact of the 3D-Vias 
targeting two types of 3D technologies. First, we considered 
the Bulk based technologies in which the 3D-Via area 
requirement is very big. We observed that there is a huge 
penalty associated with the 3D-Vias, making its 
minimization extremely necessary. In such cases, our 
algorithm gives acceptable results. For the SOI technologies, 
we observe that there is no need for a minimization, as the 
area impact is close to only 2%. The partitioning criteria 
should be wire length and/or timing, fact that is not being 
considered by most of the existing works on 3D placement 
available in the literature. Anyway, our algorithm is still 
recommended because the optimized I/O partitioning can 
facilitate the wire length minimization. This fact is going to 
be investigated in future work. 
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TABLE II.  COMPARISON OF THE  TOTAL NUMBER OF  3D VIAS IN  UNLOCKED_PINS, ALTERNATE AND OUR ALGORITHM 

unlocked_pins #vias alternate_pins #vias Our Algorithm #vias 
  2 tiers 3 tiers 4 tiers 5 tiers 2 tiers 3 tiers 4 tiers 5 tiers 2 tiers 3 tiers 4 tiers 5 tiers 
ibm01 539 785 1,157 1,327 429 705 1,067 1,517 393 577 945 1,278 
ibm02 477 1,009 1,567 1,960 477 858 1,682 2,085 477 851 1,365 2,052 
ibm03 1,109 2,698 3,307 5,241 1,117 2,874 3,347 5,844 1,103 2,473 3,391 5,257 
ibm04 748 1,598 3,057 3,651 751 1,639 3,067 3,729 733 1,720 2,955 3,046 
ibm06 1,062 2,130 4,854 6,211 1,132 2,074 4,518 6,105 1,059 2,100 4,544 6,031 
ibm07 1,037 2,093 3,875 5,655 1,065 2,229 4,353 5,771 1,032 2,286 3,960 5,755 
ibm08 1,303 3,336 5,394 6,935 1,301 3,413 5,513 6,949 1,297 3,241 5,407 6,849 
ibm09 778 1,960 3,228 4,500 787 2,068 3,128 4,702 778 1,853 3,103 4,769 

Average 882 1,951 3,305 4,435 882 1,983 3,334 4,588 859 1,888 3,209 4,455 
 

TABLE III.  COMPARISON OF THE  3D-VIAS AREA IMPACT CONSIDERING THE THREE ALGORITHMS 

#tiers Algorithm Area Tier 
max(GAi + Si)  

Max 
#3D-Vias 

Area 3D-Vias 
(Bulk) 

Area 3D-Vias 
(SOI) 

2 2,341,829 859 2,147,500 92% 21,475 1% 
3 1,757,626 1,045 2,612,500 149% 26,125 2% 
4 1,299,808 1,335 3,337,500 257% 33,375 2% 
5 

OUR ALGORITHM 

1,046,700 1,422 3,555,000 340% 35,550 4% 
2 2,583,684 882 2,205,000 85% 22,050 1% 
3 1,728,396 1,054 2,635,000 152% 26,350 2% 
4 1,295,760 1,281 3,202,500 247% 32,025 2% 
5 

UNLOCKED_PINS 

1,047,158 1,449 3,622,500 346% 36,225 3% 
2 2,577,030 882 2,205,000 86% 22,050 1% 
3 1,741,360 1,106 2,765,000 159% 27,650 2% 
4 1,294,344 1,292 3,230,000 250% 32,300 2% 
5 

ALTERNATE_PINS 

1,049,190 1,457 3,642,500 347% 36,425 3% 
 


