
An Algorithm for I/O Partitioning Targeting 3D
Circuits and Its Impact on 3D-Vias

Renato Hentschke
renato@inf.ufrgs.br

Sandro Sawicki
sawicki@inf.ufrgs.br

Marcelo Johann
johann@inf.ufrgs.br

Ricardo Reis
reis@inf.ufrgs.br

Universidade Federal do Rio Grande do Sul – Instituto de Informática
Av. Bento Gonçalves, 9500

CEP 91501-970 - Porto Alegre - RS – Brazil

Abstract— In this paper we discuss the migration of a 2D
netlist with pre-placed I/Os to 3D circuits. For that, we present
an algorithm to perform the partitioning of the I/O pins into
various tiers targeting at I/O balancing and 3D-Vias
minimization. We formulate the netlist migration constrained
with respect to the preservation of the original netlist
properties. The I/O partitioning algorithm is based on the logic
distance between I/Os. Since there is no literature on I/O
partitioning for 3D circuits we compared our algorithm with
two simplistic approaches that targeted balance and min-cut
respectively. Experimental results show that our algorithm can
reduce the number of 3D-Vias compared to both algorithms,
while balance is kept close to optimal. Additionally, we studied
the area impact of the 3D-Vias resulted by the three algorithms
targeting two different technologies for 3D circuits. We
observed that in Bulk based technologies the 3D-Via penalty is
huge, favoring our algorithm that minimizes the number of
3D-Vias. Targeting SOI technologies, the area impact is very
small, leading to the conclusion that there is no need for deep
3D-Via minimization. Our I/O partitioning is still
recommended in such case while the cell partitioning should
consider wire length instead of 3D-Via minimization.

I. INTRODUCTION
In the nanometer VLSI, the technology shrinking

imposes many challenges to the design of circuit
interconnect instead of providing shorter wire lengths. Issues
like delay, variability and manufacturability are highly
valuable research subjects in the present days.

3D circuits appear as a change of design paradigm,
providing higher integration and reducing wire lengths [6].
From the CAD perspective, there is a huge research space for
the development of new algorithms and new methodologies
to take full advantage of the 3D integration.

Among the new problems and algorithms to be migrated
from 2D to 3D, cell placement is a key problem for
interconnect optimization [14]. A block of standard cells can
be partitioned into several tiers to achieve a better wire

length [1, 4, 6, and 12] and delay [2]. Compared to 2D
placement, the problem has other aspects to be considered,
such as:

• The third dimension (Z) disposes the cells into different
tiers. A Standard-Cell block needs to be partitioned in a
set of different sub-blocks. It is reasonable, though, to
constrain the width and height of the whole block by the
largest sub-block. For this reason, the Z coordinate
spreading of the cells should be constrained by a tight
equilibrium requirement in order to minimize the area.

• Thermal issues become critical due to higher integration
and hard heat dissipation [6, 14]. Thermal vias [9] and
thermal driven floorplanning [5] and placement [1, 8]
are possible solutions being used.

• Communication between different tiers is accomplished
by 3D-Vias. There are various possible technologies for
3D-Via fabrication, depending on the disposal of the
various tiers as face-to-face or face-to-back and on the
bulk technology (in contrast with SOI) [6]. The 3D-Vias
imposes challenges such as high consumption of routing
resources, obstacles to placement and large pitch.

Because of the high penalties imposed by 3D-Vias, a
common approach in the placement phase is to minimize
them by using min-cut partitioning. In [1] the min-cut
partitioning algorithm hMetis [13] is used to partition the
cells into different tiers. Force Directed Placement and
Simulated Annealing algorithms follow to improve wire
lengths. In [2], a partitioning based placement algorithm
using hMetis also minimizes the number of 3D Vias. The
work in [7] presents a similar approach using the Capo placer
to place each tier separately (with terminal propagation from
other tiers) proceeded by min-cut partitioning for tier
assignment.

The existing algorithms for 3D placement found in the
literature are natural extensions of their 2D version. Most of
the reviewed works use iterative Force Directed approach

and partitioning based methods. The quadratic placement
algorithm [3] is widely used by the leading industry [15] and
academia [16] because it is very fast and scalable. However,
there seems to be no work with the quadratic placement
algorithm for 3D circuits. Different from other approaches,
this algorithm requires I/O pins in order to compute a
solution. A 3D extension of this algorithm would require I/O
pins to be previously placed in 3D as well.

The I/O pins plays two important roles in the placement
of a block: first, the area boundary is limited by the I/Os;
second, the pins are used as tips for the placement algorithm
to reduce wire lengths. The same facts are needed for 3D
placement. It is known that I/O pins tier-assignment and
placement can be more effective if performed during
floorplanning. On the other hand, an automatic migration
algorithm at the placement level could facilitate the decision
or can be plugged in an automated flow of a front-end
synthesis that targets 2D.

This paper studies the partitioning of I/O pins into
various tiers and the impact of different algorithms in the
number of 3D-Vias and their area requirements. To our
knowledge, we are the first to study this problem and to
propose a reasonable solution. In section II, we present a
brief introduction to the 3D Circuits Placement focusing on
3D-Via constraints, reinforcing the importance to minimize
them. Section III presents our definition of the 3D I/O pin
partitioning. We assume that the I/Os are placed on the
boundary and that can be moved to any tier. We formulate
the problem to evenly distributed whitespace and the gates
area while aspect ratio is preserved. We them propose an
algorithm on section IV with two objectives: first, to balance
the number of pins in each tier in order to shrink down the
area of blocks bounded by the I/Os; second, to provide a
smart starting point partitioning solution of the netlist that
will effectively reduce the number of 3D-Vias. Section V
presents our experimental results with circuits placed in
various tiers while also studying the impact on the
requirements of 3D-Vias. Section VI discusses our
conclusions with respect to the number of 3D-Vias. It is
shown how they are affected by the I/O partitioning
algorithm and how they impact the area and obstacles
constraints on the circuit, leaving room for future work on
3D-Via planning.

II. 3D CIRCUITS PLACEMENT

A. Introduction to 3D Circuits
A 3D circuit is actually the stacking of regular 2D

circuits. The advances on the fabrication and packaging
technologies allows to interconnect different 2D stacked
circuits. Each circuit is named in the literature as a tier. We
refer to 3D-Vias as the piece of wire that connects two
different tiers. According to [6] there are several types of
3D-Vias. The so called thought vias organizes the circuit in
face-to-back tiers while the 3D-Vias dig a hole in the bulk.
The highest possible via density is allowed by SOI
technologies (5 µm pitch) while Bulk-based technologies

present a smaller density compared to SOI (50 µm pitch).
This fact and the circuit organization are illustrated in figure
1.

It is quite clear in figure 1 that 3D Vias can impose
significant obstacles and constraints to the 3D placement
problem. Most of the existing approaches, such as [1, 7, and
8] completely ignore this fact on placement, but they do
optimize the number of vias with min-cut partitioning. The
via minimization and the via impact on the final area seeing
from I/O pins perspective are studied in this paper.

Figure 1. 3D Circuit organization and different types of 3D –Vias

B. Migrating from 2D to 3D Placement
Given a 2D placement netlist with pre-placed I/O pins in

the boundary of the region available for standard cell
placement, the migration to a 3D netlist (ready for 3D
placement) has the following tasks:

• Area allocation: the width and height of the tiers will
be calculated according to the number of tiers.

• I/O partitioning: the I/Os must be partitioned in
different tiers.

• I/O placement: the I/Os must be placed in the
boundary of the block, delimiting the area for standard
cell placement.

We classify the cell partitioning as a placement task.
Figure 2 illustrates the I/O pins migration as well as a
possible cell partitioning.

As formulated in the next section, the netlist migration
preserves some properties of the 2D solution, such as
whitespace, aspect ratio, I/O pins orientation and ordering.
Our objective is to provide a migration algorithm that
facilitates the 3D-Via minimization. From the perspective
of the I/O pin partitioning it is as good starting point for the
cell partitioning. The algorithm should provide good I/O pins
balance and respecting the mentioned properties.

3D Via pitch

SOI

Bulk

Tier 3 (a)

Bulk

3D Via pitch

(b)

(c)

Tier 2

Tier 1

Once the netlist is migrated (the I/O pins are placed) a
partitioning process can distribute the cells on the tiers. This
methodology aims at 3D-Via minimization since the layer
assignment is done before placement by min-cut partitioning.
In this paper, we propose to study the impact of the 3D-Vias
in the tier area and we will investigate further whether 3D-
Via minimization is in fact a good methodology for 3D
Placement.

Figure 2. Migration (from 2D to 3D) of a netlist with pre-placed I/O Pins

III. 3D I/O PARTITIONING PROBLEM DEFINITION
Before placement, a 2D circuit netlist NL is composed by

a set of gates G = {g1, g2, g3, … , gn}, a set of I/O pins P =
{p1, p2, p3, … , pm} and a set of nets connecting them N = {n1,
n2, n3, … , no}. A hypergraph HG represents the netlist,
where G∪P is the set of nodes and N is the set of
hyperedges. The fixed position of each I/O pin pi is given by
X[i] and Y[i] (i≤m) and its orientation by OR(pi) ∈ {north,
south, east, west}. The area A (height H and width W having
its bottom left corner at coordinate (xini ,yini) position) inside
the I/O pins is assigned for cell placement. Usually, I/O pin
positions covers the entire boundary, leaving no room for
additional connections or area reduction. The whitespace
ratio S on the placement area is achieved by subtracting the
total gate area (GA) from the area available inside the I/Os
normalized by GA. The aspect ratio AR is computed by W
divided by H.

Let Z be the set of tier numbers {1,2,…,z}. netlist
migration is defined as follows: given a 2D placement netlist
NL with fixed I/O pins, find a set of tiers T = {t1, t2, … , tz} (z
is the number of tiers) and their correspondent Ai, ARi, GAi,
Wi, Hi, Pi, Si, ORi, Xi and Yi (i≤zThe following constraints
should be met:

!

P
1
UP

2
U ...UP

t
= P (1)

!

"(a,b# Z)(a $ b% P
a
IP

b
=&) (2)

!

"(i # Z)S
i
$ S (3)

!

"(i # Z)"(j # Z)Wi =W j $Hi = H j
 (4)

!

"(i # Z)"(j # Z)GAi $GAj
 (5)

!

"(i # Z)AR
i
$ AR (6)

!

"(i # Z)("a# P
i
(OR

i
(a) =OR(a))) (7)

!

"(t # Z)("a,b# P
t
(OR(a) =OR(b)$ X

i
[a] < X

i
[b]% X[a] < X[b])) (8)

!

"(t # Z)("a,b# P
t
(OR(a) =OR(b)$Y

i
[a] <Y

i
[b]%Y[a] <Y[b])) (9)

IV. THE ALGORITHM FOR I/O PARTITIONING
Our partitioning algorithm is a heuristic to be combined

with existing min-cut partitioning approaches. We perform
the I/O partition in two steps: first, a complete graph of the
I/O pins is created with costs associated to each edge;
second, a min-cut partitioning is performed considering the
calculated costs. The following steps of the algorithm will
calculate the area of each tier and the consequent I/O
placement.

Let LD(pi,pj) be the length of the shortest path in HG
from pi to pj (i.e. the logic distance between pi and pj). Our
idea is to keep the closer I/Os in the same tier.
Accomplishing that, we intuitively expect that the cell
partitioning will be able to minimize further the number of
vias, while we can control the number of I/Os in each tier.

The algorithm for I/O partitioning is described as
follows:

1) Compute LD(pi,pj) for every pair of pins pi and pj ∈
P. This step is illustrated in figure 3. It can be
accomplished with m BFS searches from every pin pi to
the whole graph, resulting in a O(mn) complexity.

2) Create a complete graph PG such that P is the set of
nodes and LD(pi,pj) (pi and pj ∈ P) is the cost of the
edge connecting nodes i and j. This step is illustrated in
figure 3.

3) Perform the partitioning of PG into z partitions
PARTi (i≤z) aiming at weighted min-cut
optimization. We used hMetis tool [10, 13] as it accepts
weighted graph imposing a tight balance.

4) Perform the min-cut cell partitioning of the graph
HG into the sets PARTi (i≤z) in order to estimate the
minimum number of 3D-Vias between the partitions.
Note that area balance should be respected according to
equation (5).

5) Perform the tier-assignment problem from each
PARTi to P1, P2, …, Pz . This step aims at via
minimization and can be formulated as a single
dimension placement problem, as illustrated in figure 4.
We used a Simulated Annealing optimization to
minimize the total number of 3D-Vias.

6) For each pair of adjacent tiers i and j (i < j), there is a
3D-Via layer Vi containing NVi 3D-Vias and a total area
of VAi. Compute VAi for all i<z by multiplying the NVi
with the 3D-Via minimum pitch according to the target
technology.

7) Compute GAi for all tiers using the cell partitioning
performed at step 4.

Tier 1

Tier n

Tier 2

Migration
…

6) Compute the area Ai of each tier i (i>0) by adding
GAi, VAi-1 and the whitespace Si. For the first tier (i=0)
we do not consider the 3D-Via area. The largest tier area
is taken for all tiers, according to the restriction of
equation (4). At this point, we observe that VAi should
be much smaller than GAi to not unbalance the area of
the tiers. Whitespace could be used to compensate the
unbalance.

7) The width Wi and height Hi of each tier i is calculated
according to equation (10).

8) The x and y coordinates of every pin p are calculated
according to equations (11) and (12).

9) Legalize I/O pin positions.

!

W
i
= A

i
" AR

i

!

H
i
=

A
i

AR
i

 (10)

!

Xi[p] = xini +
(X[p]" xini) #Wi

W

 (11)

!

Yi[p] = yini +
(Y[p]" yini) #Hi

H
 (12)

Figure 3. An ilustration of the steps 1 and 2 of our algorithm

Figure 4. An ilustration of the tier-assignment problem and the
consequent number of 3D-Vias

V. EXPERIMENTAL RESULTS
Our goal is to study the impact of the I/O partitioning in

the number of vias and consequently the area requirements

with respect to the 3D-Vias. Two types of 3D CMOS
technology are considered: regular bulk and SOI, according
to the data presented in [6]. Our experiments are summarized
in three tables: table 1 summarizes our data on I/O pins
balancing; table 2 presents the resultant number of 3D-Vias
comparing with other I/O partitioning algorithms; table 3
presents the area requirements analysis that we made with
respect to the 3D-Vias constraints. All tables are based on
the ISPD 2004 benchmark set [11].

As we cannot find any previous work for I/O
partitioning, we assume that simplistic approaches are being
adopted in the existing 3D placement literature. We
compared our I/O partitioning algorithm with two other
simplistic algorithms that follow the same formulation
described in section III. The first method is called
unlocked_pins. In this method, we allow hMetis to partition
the I/Os as free nodes, replacing the steps 1, 2 and 3 of our
algorithm. The following steps of our algorithm are done for
the unlocked_pins as well. The second algorithm is called
alternate_pins. This method is a pseudo-random partitioning
that goes thought the boundary line of the chip picking nodes
for each partition alternatively. The idea is to preserve the
initial I/O balanced distribution. Just as for unlocked_pins,
the alternate_pins replaces steps 1,2 and 3 our flow, but
steps 5-9 are done. The unlocked_pins cannot control the I/O
balancing, but the heuristic for min-cut partitioning should
reach a good solution in terms of number of 3D-Vias. On the
other hand, the alternate_pins has complete control over-
constrain the balancing, but may constraint the cell
partitioning.

TABLE I. COMPARISON OF THE I/O PINS DISTRIBUTION IN THE TIERS
CONSIDERING THE THREE ALGORITHMS

#Tiers Algorithm σ #I/Os

our algorithm 5
unlocked_pins 150 2

alternate_pins 0,44
our algorithm 4
unlocked_pins 141 3

alternate_pins 0,43
our algorithm 3
unlocked_pins 103 4

alternate_pins 0,53
our_algorithm 4
unlocked_pins 112 5

alternate_pins 0,43

Table 1 presents the average results on the standard
deviation of the number of I/O pins. The alternate_pins
algorithm is optimal in this metric and obviously has the best
I/O balance. The method unlocked_pins has a very large
standard deviation; in many cases, several tiers had no pins.
The strong unbalance of the I/Os, especially in the case of

I G

C A

2

3
2

1

1 1

2

1

2

3

A

G

C I

(2)

(3) (2)

(2)
(2)

(3)

0

2

1

(520)

(159)

(492)

3

(453)

(172)

(639)

2

1

3

0
(1117)

(1423)

(851)

Simulated
Annealing

Vias:
3391

2

1

3

0
(492)

(639)

(520)

(453)

(172)
(159)

few tiers, invalidates the unlocked_pins method. Our
algorithm has a close to optimal pin balancing.

Table 2 presents our experimental results looking for a
comparison of the total number of 3D-Vias using the three
partitioning algorithms. The average numbers show that the
alternate_pins algorithm has the worst results leading to the
conclusion that a simplistic I/O pin partitioning method
over-constraints the cell partitioning that follows the I/O
partitioning, resulting in increased cut size. Additionally
table 1 shows that, in average, our algorithm outperforms the
unlocked_pins as well, leading to the conclusion that the two
phase partitioning process with minimum path
information of the I/Os actually improves the min-cut
heuristic quality, while keeping the I/O balance.

Table 3 presents the area impact study of the 3D-Vias
considering the three algorithms (the numbers are averaged
for all benchmarks). The column “Max #3D-Vias” reports
the maximum NVi (i < z) that represents the maximum
number of 3D-Vias connecting two tiers. This number will
impact the area requirements for the 3D-Vias. The table
shows that our algorithm outperforms the others in 3D
vias minimization, except for the four tiers case. The
following columns report the area impact targeting a Bulk-
based 3D technology and finally an SOI technology, based
on the information presented in [6]. However, there is no
information of the actual width and height of the 3D-Vias.
For this reason, we are taking the pitch as the 3D-Vias
dimensions. Note that the 3D-Via area requirements reflects
the circuit area in two manners: in the active layer, the places
for an arising 3D connection are going to be constrained by
the actual width and height of the 3D-Via; on the other hand,
the 3D-Via layer (between two tiers) is going to be
constrained by the pitch of the 3D-Via, as we measured.
Additionally, we observe that the pitch used is a measure for
a 0.35µm technology, according to [6], while we don’t know
the source technology of our benchmarks. Our goal is not to
provide accurate comparison numbers, but to have an idea of
the requirements for the 3D-Vias.

Analyzing the data from table 3 we make the following
considerations:

• The Bulk-based 3D technologies suffer from a very high
penalty for the 3D-Vias. With 2 tiers, there is a penalty
around 85% of the tier area (note that our algorithm
results in less vias and also less tier area than the others).
For the cases with 3 to 5 tiers, the 3D-Via area is bigger
than the tier area! Our algorithm could save up to 10%
of 3D-Via area compared to the tier area. The important
conclusion here is that when targeting a CMOS Bulk
based technology it is mandatory to minimize the
number of 3D-Vias to obtain a feasible solution.

• The SOI based technology suffers around 2% area
penalty related to 3D-Vias, which is actually small,
leaving room for more 3D-Vias if they are helpful.

VI. CONCLUSIONS
In this paper we presented an algorithm for the

partitioning of I/Os targeting 3D circuits. This is a necessary
step for the physical synthesis of 3D circuits for two reasons:
to alleviate the boundary of the block, leaving room for area
reduction; to perform 3D placement with the quadratic
placement algorithm [3].

Our algorithm has a good balancing on the number of
I/Os per partition while it targets the minimization of the cut
with a shortest-path heuristic. According to our experimental
results, a simplistic I/O pin partitioning method will lead to
larger amount of 3D-Vias. At the same time, by using a
regular min-cut partitioning of the whole netlist (cells + I/O
pins together) we got very unbalanced number of I/Os.

Our partitioning approach is done in two phases: first the
I/O partitioning considering the whole netlist as weights;
second, we fix the I/Os and perform partitioning of the cells.
The experimental results also show that our two phase
partitioning led to a better cut, in average, than the single
phase partitioning. We conclude that the shortest-path
information could actually improve the partitioning
algorithm since it could work with smaller graphs containing
information of the whole circuit.

Finally, we studied the area impact of the 3D-Vias
targeting two types of 3D technologies. First, we considered
the Bulk based technologies in which the 3D-Via area
requirement is very big. We observed that there is a huge
penalty associated with the 3D-Vias, making its
minimization extremely necessary. In such cases, our
algorithm gives acceptable results. For the SOI technologies,
we observe that there is no need for a minimization, as the
area impact is close to only 2%. The partitioning criteria
should be wire length and/or timing, fact that is not being
considered by most of the existing works on 3D placement
available in the literature. Anyway, our algorithm is still
recommended because the optimized I/O partitioning can
facilitate the wire length minimization. This fact is going to
be investigated in future work.

REFERENCES
[1] C. Ababei, Y. Feng, B. Goplen, H. Mogal, T. Zhang, K. Bazargan and

S. Sapatnekar. Placement and Routing in 3D Integrated Circuits.
IEEE Design and Test of Computers – Special Issue on 3D
Integration; pp 520-531, Nov.-Dec. 2005.

[2] C. Ababei; H. Mogal; K. Bazargan; Three-Dimensional Place and
Route for FPGAs. In: Proceedings of the Design Automation
Conference - Asia and South Pacific, ASP-DAC 2005. Volume: 2
 18-21 Jan. 2005. Page(s): 773- 778 Vol. 2.

[3] C. Alpert; T. Chan; D. J. Huang.; I. Markov; K. Yan. Quadratic
Placement Revisited. In: Proc. of the 34th Annual Conference on
Design Automation, DAC 1997, New York, NY, USA. Anais. . .
ACM Press, 1997. p.752–757.

[4] K. Banerjee and S. Souri and P. Kapur and K. Saraswat. 3D-ICs: A
Novel Chip Design for Improving Deep Submicrometer Interconnect
Performance and Systems on-Chip Integration. Proceedings of IEEE,
vol 89, issue 5, 2001.

[5] J. Cong, J. Wei, Y Zhang. A Thermal-Driven Floorplanning
Algorithm for 3D ICs. Proceedings of the International Conference
on Computer-Aided Design, ICCAD 2004.

[6] W. R. Davis, J. Wilson, S. Mick, J. Xu, H. Hua, C. Mineo, A. M.
Sule, M. Steer and P. D. Franzon; Demystifying 3D ICs: The Pros
and Cons of Going Vertical. IEEE Design and Test of Computers –
Special Issue on 3D Integration; pp 498-510, Nov.-Dec. 2005.

[7] Y Deng; W. Maly. Interconnect Characteristics of 2.5-D System
Integration Scheme. In: Proceedings of the International Symposium
on Physical Design, ISPD 2001, New York, NY, USA. Anais. . .
ACM Press, 2001. p.171– 175.

[8] B. Goplen; S. Sapatnekar; Efficient Thermal Placement of Standard
Cells in 3D ICs usisng Forced Directed Approach. In:Proceedings of
the Internation Conference on Computer Aided Design, ICCAD 2003,
November, San Jose, California, USA, 2003.

[9] B. Goplen, S. Sapatnekar. Thermal Via Placement in 3D ICs.
Proceedings of the Iinternational Symposium on Physical Design,
ISPD 2005.

[10] Hypergraph & Circuit Partitioning at hMetis Home Page,
http://glaros.dtc.umn.edu/gkhome/views/metis/hmetis/. Access on
Mar 2006.

[11] ISPD 2004 - IBM Standard Cell Benchmarks with Pads. http://
www.public.iastate.edu/~nataraj/ISPD04_Bench.html#Benchmark_D
escription. Access on Mar 2006.

[12] S. Obenaus, T. Szymanski. Gravity: Fast Placement for 3D VLSI.
ACM Transactions on Design Automation of Electronic Systems,
New York, v.8, p.69–79, March 1999.

[13] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multilevel
hypergraph partitioning: Application in VLSI domain. In Proceedings
of 34th Annual Conference on. Design Automation, DAC 1997, pages
526–529, 1997.

[14] S. Spatnekar and K. Nowka; New Dimensions in 3D Integration; In:
IEEE Design & Test of Computers; – Special Issue on 3D
Integration; pp 496-497, Nov.-Dec. 2005.

[15] P. Villarrubia, “CPLACE: A Standard Cell Placement program” IBM
Tech. Dis. Bull.,vol32 no. 10A, pp. 341-342, Mar. 1990.

[16] N. Viswanathan; C.C.-N Chu. FastPlace: Efficient Analytical
Placement Using Cell Shifting, Iterative Local Refinement,and a
Hybrid Net Model. IEEE Transactions on CAD, Volume 24, Issue 5,
pp 722-733, May 2005.

TABLE II. COMPARISON OF THE TOTAL NUMBER OF 3D VIAS IN UNLOCKED_PINS, ALTERNATE AND OUR ALGORITHM

unlocked_pins #vias alternate_pins #vias Our Algorithm #vias
 2 tiers 3 tiers 4 tiers 5 tiers 2 tiers 3 tiers 4 tiers 5 tiers 2 tiers 3 tiers 4 tiers 5 tiers
ibm01 539 785 1,157 1,327 429 705 1,067 1,517 393 577 945 1,278
ibm02 477 1,009 1,567 1,960 477 858 1,682 2,085 477 851 1,365 2,052
ibm03 1,109 2,698 3,307 5,241 1,117 2,874 3,347 5,844 1,103 2,473 3,391 5,257
ibm04 748 1,598 3,057 3,651 751 1,639 3,067 3,729 733 1,720 2,955 3,046
ibm06 1,062 2,130 4,854 6,211 1,132 2,074 4,518 6,105 1,059 2,100 4,544 6,031
ibm07 1,037 2,093 3,875 5,655 1,065 2,229 4,353 5,771 1,032 2,286 3,960 5,755
ibm08 1,303 3,336 5,394 6,935 1,301 3,413 5,513 6,949 1,297 3,241 5,407 6,849
ibm09 778 1,960 3,228 4,500 787 2,068 3,128 4,702 778 1,853 3,103 4,769

Average 882 1,951 3,305 4,435 882 1,983 3,334 4,588 859 1,888 3,209 4,455

TABLE III. COMPARISON OF THE 3D-VIAS AREA IMPACT CONSIDERING THE THREE ALGORITHMS

#tiers Algorithm Area Tier
max(GAi + Si)

Max
#3D-Vias

Area 3D-Vias
(Bulk)

Area 3D-Vias
(SOI)

2 2,341,829 859 2,147,500 92% 21,475 1%
3 1,757,626 1,045 2,612,500 149% 26,125 2%
4 1,299,808 1,335 3,337,500 257% 33,375 2%
5

OUR ALGORITHM

1,046,700 1,422 3,555,000 340% 35,550 4%
2 2,583,684 882 2,205,000 85% 22,050 1%
3 1,728,396 1,054 2,635,000 152% 26,350 2%
4 1,295,760 1,281 3,202,500 247% 32,025 2%
5

UNLOCKED_PINS

1,047,158 1,449 3,622,500 346% 36,225 3%
2 2,577,030 882 2,205,000 86% 22,050 1%
3 1,741,360 1,106 2,765,000 159% 27,650 2%
4 1,294,344 1,292 3,230,000 250% 32,300 2%
5

ALTERNATE_PINS

1,049,190 1,457 3,642,500 347% 36,425 3%

