Towards a Fault-Tolerant Architecture for
Enterprise Application Integration Solutions

Rafael Z. Frantz!, Rafael Corchuelo?, and Carlos Molina-Jimenez®
! UNIJUI, Departamento de Tecnologia - Ijui, RS, Brazil
rzfrantz@unijui.edu.br
2 Universidad de Sevilla, ETSI Informatica - Avda. Reina Mercedes, s/n. Sevilla 41012, Spain
corchu@us.es
3 School of Computing Science, University of Newcastle, UK
carlos.molina@ncl.ac.uk

Abstract. Enterprise Application Integration (EAI) solutions rely on process
support systems to implement exogenous message workflows whereby one can
devise and deploy a process that helps keep a number of applications’ data in
synchrony or develop new functionality on top of them. EAI solutions are prone
to failures due to the fact that they are highly distributed and combine stand-alone
applications with specific-purpose integration processes. The literature provides
two execution models for workflows, namely, synchronous and asynchronous. In
this paper, we report on an architecture that addresses the problem of endowing
the asynchronous model with fault-tolerance capabilities, which is a problem for
which the literature does not provide a conclusion.

Keywords: Enterprise Application Integration, Fault-Tolerance.

1 Introduction

The computer infrastructure of a typical today’s enterprise can be conceived as an het-
erogenous set of applications (termed the software ecosystem [[15]) that includes tens
of applications purchased from different providers or built at home in the last 20 years
or even earlier. Examples of typical applications are payroll and sales systems. A re-
current challenge that appears in these scenarios is to make the existing application
interoperate with each other to keep the data used by them synchronised or to cre-
ate new funcionality[9]. This problem is known as Enterprise Application Integration
(EAI). In either case, the challenge is about devising and deploying a number of wrap-
ping processes responsible for interacting with the individual applications and a number
of integration processes responsible for managing the flow of messages among the ap-
plications. A good alternative to support the design of the integration process is the use
of Process Support Systems (PSS): a piece of middleware which, among other func-
tionalities, provides means for specifying distributed processes (e.g. EAI solutions) and
for monitoring their executions [8]. Good examples of PSSs are conventional workflow
systems [8]. PSSs based on BPEL [18] are discussed in [21]. Examples of PSSs with
focus on EAI solutions are BizTalk [4], Tibco [20], Camel [6]] and Mule [17].

R. Meersman, P. Herrero, and T. Dillon (Eds.): OTM 2009 Workshops, LNCS 5872, pp. 294-303] 2009.
(© Springer-Verlag Berlin Heidelberg 2009

Towards a Fault-Tolerant Architecture for EAI Solutions 295

A typical approach in the design of EAI is the use of a database to store inbound
messages (messages coming from the individual applications to the integration pro-
cess) until all the messages needed to start the integration process arrive. A distinctive
feature of this approach is that it involves only a simple message workflow composed by
several tasks that receive, transform and send outbound messages (messages out of the
integration process to the applications); tasks might also request a wrapping process to
interact with an application, fork the message workflow, and so on. A notorious limita-
tion of this approach is that it uses memory inefficiently in applications where requests
issued by tasks to individual applications take long (hours or days) to fulfil. In these
situations the integration process instance remains blocked until the response arrives.
Though some techniques have been proposed to ease this limitation (notably, dehydra-
tion and rehydration [4/21]]), we consider the synchronous approach unsatisfactory; thus
in this article we explore the suitability of asynchronous integration processes.

The distinctive feature of the asynchronous approach is that it uses a single
multi-threaded process instance per wrapping or integration process to handle all the
messages. Consequently, processes that require multiple inbound messages need to in-
clude tasks to correlate messages internally. The appealing side of this approach is its
efficiency in resource consumption[7/11].

EALI solutions are inherently distributed: they involve several applications that might
fail and communicate over networks that might unexpectedly delay, corrupt or even
loose messages. Thus they are susceptible to a wide variety of failures [8l19]. To be of
practical use, EAI solutions need to include fault—tolerance mechanisms [/1].

Fault—tolerance in the context of PSS is not a new topic; several authors have studied
the problem before but only within the context of the synchronous approach discussed
above and with a single process in mind, i.e., overlooking typical EAI solutions that
involve several wrapping and integration processes. To help cover, this gap in this paper
we propose a solution based on an asynchronous approach with fault-tolerance features.
The only assumption we make is that messages produced by integration processes are
enriched with information about the original messages used to produce them.

The remainder of this paper is structured as follows: Section 2] discusses related
literature; Section[3] introduces relevant concepts. The architecture that we propose is
presented in Section[d} Section[3] presents a case study; finally, we draw conclusions in
Section

2 Related Work

Our discussion on fault-tolerance in EAI is closely related to the issue of distributed
long-running transactions introduced in[[16]. This seminal work inspired research aimed
at the design of process support systems with fault—tolerance features. The effort
resulted in several proposals that can be roughly categorised into two classes:
algorithm-based where algorithms are used to handle faults automatically and fault—
handling—based where faults are handled by rules defined by the designer. An abstract
model for workflows with fault—tolerance features is discussed in [3[]; this paper also
provides a good survey on fault-tolerance approaches. An algorithm for implementing
transactions in distributed applications where the participating applications co—operate

296 R.Z. Frantz, R. Corchuelo, and C. Molina-Jimenez

to implement a distributed protocol is presented in [1]. An algorithm for the execution
of BPEL processes with relaxed transactions where the all or nothing property is re-
laxed is presented in [12]. In [13] the authors enhance their approach with a rule-based
language for defining specific-purpose recovery rules.

An algorithm for handling faults automatically in applications integrated by means
of workflow management systems and amenable to compensation actions or to the two—
phase commit protocol, is suggested in [8]. Exception handling in applications where
compensation actions are difficult or infeasible to implement is discussed in [14]].

[2] proposed an architecture to implement fault-tolerance based on ad—hoc work-
flows. For instance using a web server as a front-end, an application server, a database
server and a logging system. They assume that a workflow is always activated on ar-
rival of one request message which flows through the components of the workflow; thus,
their recovery mechanism relies on the trace of every message through the system.

An architecture for fault—tolerant workflows, based finite state machines (message
sequence charts) that recognise valid sequence of messages of the workflow is discussed
in [S)]. Recovery actions are triggered when a message is found to be invalid, or the
execution time of the state machine goes beyond the expected time.

An approach to provide fault—tolerance to already implemented Petri net controllers
is presented in [11] and [7]]. The original controller is embedded unaltered into a new
controller with the original functionality but enlarged with additional places, connec-
tions, and tokens, aimed at detecting failures. A discussion on how to provide Petri
net—-modelled discrete event systems is also presented.

From the analysis of the previous proposals, we conclude that they share a number
of common issues. They all deal with a single process, except for [2], which can neither
deal with multiple inbound messages. This is a shortcoming because a typical EAI so-
lution involves several wrapping and integration processes; note, too, that the inability
to deal with multiple inbound messages is problematical insofar an integration process
can be activated by a single application, but there are many applications where an in-
tegration process is started by the occurrence of multiple inbound messages arriving
from different applications. Another common limitation among the works mentioned
above is that, with the exception of [7/11], they support only the synchronous execution
model. In addition, the proposals that deal with the asynchronous model focus on Petri
Net controllers, i.e., they neglect the problems of distributedness, software ecosystems,
and so on.

3 Definitions

3.1 EAI Solutions

As shwon in Fig. [Il a typical EAI solution has several wrapping processes used to
communicate the solution with applications and several integration processes that im-
plement the integration business logic. Processes use ports to communicate with each
other or with applications over communication channels. Ports encapsulate tasks func-
tionalities like receive, request and send; and help abstract away from the details of the
communication mechanism, which may range from an RPC-based protocol over HTTP
to a document-based protocol implemented on a database management system.

Towards a Fault-Tolerant Architecture for EAI Solutions 297

Integration —D 2 —— Port
Layer

Wrapping
Layer
Software %
App 1
Ecosystem PP _O
API

Fig. 1. Layers of a typical EAI solution

Communication
Channel

3.2 Failure Semantics

A dependable system is one on which reliance can be placed on the service that it
delivers. Fault-tolerance is an important means to achieve dependability. Faults, errors
and failures represent impairments to dependability [[10]. A fault may be internal to
the EAI solution or external (within the software ecosystem). In both cases, when they
occur, they are the cause for errors that impact the EAI solution. Errors represent the
point where the EAI solution deviates from its normal processing and if not handled
lead the solution to a failure perceived by the user.

The general assumption we make about the reliability of the components involved
in an EAI solution is that they might occasionally fail. Internal faults might occur in
components of the EAI solution, such as processes, ports and communication channels;
furthermore, external faults might occur in the software ecosystem. To provide EAI
solutions with a mechanism to tolerate failures, we first need to identify the failure se-
mantics that its components are likely to exhibit and stipulate what kind of errors the
EAI solution should be able to tolerate: detect at runtime and execute a correspond-
ing error recovery action to handle the specific error. Our architecture accounts for the
following failures: omission, response, timing, and message processing failures.

Omission Failures (OMF): We assume that once a communication operation is started
by a port, it terminates within a strictly defined time interval and reports either success
or failure. OMF model situations where network, application and communication chan-
nel problems prevent ports from sending or receiving a piece of data within the time
interval.

Response Failures (REF): REF are caused by responders (an application or communi-
cation channel) sending incorrect messages. Thus before being acceptable for process-
ing, messages need to satisfy a validation test (e.g., headers and body inspected) that
results in either success of failure.

Timing Failures (TMF): A message has a deadline to reach the end of the flow, which
is verified by ports. Ports report success for timely messages and failure for messages
with overrun deadlines. Both internal and external faults influence TMF.

Message Processing Failures (MPF): Ports and processes signal MPF when they are
unable to complete the process of a message; otherwise success is signalled.

298 R.Z. Frantz, R. Corchuelo, and C. Molina-Jimenez

4 Architectural Proposal

The architecture we propose to provide fault-tolerance for EAI solutions is shown in
Fig.[2las a metamodel. This metamodel introduces the components involved in the con-
struction of rules, exchange patterns, and mechanisms for error detection and recovery.
As depicted in the metamodel, an EAISolution can define multiple ExchangePatterns
(MEPs) and Rules. Events are notifications to the monitor, generated by Sources in-
side the EAI solution, that in conformance with our failure semantics have type Event-
TriggerMessageType to report successes or failures during the workflow execution.
Source can be a Port or a Process. Each MEP defines a set of inbound and outbound
source ports, from which events are reported. A rule is composed of a Condition and an
Action. So, a condition can be SimpleCondition, represented by only a single event, or
CompositeCondition, which contains two conditions connected by a LogicalOpera-
tor. When the condition is true, action executes the corresponding error recovery action
defined by the rule. The Monitor observes one or more EAI solutions to detect potential
failures and triggers mechanisms to handle them. As shown in Fig. 3] the monitor is
composed of a Log, a SessionCorrelator, an ExchangeEngine, a RuleEngine, an
EntryPort, and ExitPorts.

4.1 The Logging System

The logging systems is represented by the Log where all success and failure events re-
ported by sources inside EAI solutions are permanently stored. The monitor receives

<‘WDIKS an==

| MonitoringSystem

<<abstract=>

«analyses”

LogEntry

time :long
date : long

\I%
==ahstract>>

B name : String 1

1 timeout : Iomg Source <

0. name: Smng

ExchangePattern

Rule 1 {dlslmnt complete}

name | String J; outhoundPorts
-
<<abstract>> inboundPorls
Condition Event
] d/twe

negated : boolean]

Action

<=abstracts» type

destination : ExitPort EventTriggerMessageType

disjoint [complete}

CompositeCondition | | SimpleCondition |<)e< {diSiointﬁ}c‘omnlete} ,
<<ahstracts> =<abstracts> SuccessMessageType
LogicalOperator FailureMessageType
{dis, nmncnmp\ete} ‘ {disjoint,[incomplete} | |
| OmissionFailure | | Resy ailure | | geP) ingFailure | | TimingFailure |

Fig. 2. Metamodel of an EAI solution with fault—tolerance

Towards a Fault-Tolerant Architecture for EAI Solutions 299

[>] Error Recovery Action 1 [»]

[>] Error Recovery Action 2 [>]

[>] Error Recovery Action 3 [>]

Fig. 3. Abstract view of the monitor

events through an entry port and stores them in the log from where they are available
to the other components of the monitor. Roughly speaking, the log is composed of sev-
eral LogEntries that record information about events, such as, the fully qualified event
source name, date and time of occurrence, and a copy of the message under process at
the time of occurrence of the event. By qualified, we mean the name of the EAI solution
that originated the event, followed by the unique name of the source inside the solution.
Name uniqueness of sources of events allows the monitor to observe one or more EAI
solutions simultaneously. The log is shared by the session correlator, the exchange en-
gine, and the rule engine. It can also provide information to a MonitoringSystem,
interested in assessing the health state of an EAI solution.

4.2 The Session Correlator

The session correlator session-correlates messages inside the log. Its output is used by
the exchange engine to determine the state of MEPs instances and to trigger recovery
actions. Since in our architecture a task within a process can take several input messages
and produce several output messages, it is not trivial to determine what messages belong
to different workflow sessions. To solve the problem, we enrich composed messages
with information about the original messages used to compose them; next we establish
a parent—child relationship between messages to session—correlate them: two arbitrary
messages m, and my are session—correlated if m, is the parent of m; or my is the
parent of m,. Likewise, three messages m,, m; and m, are session-correlated if m.. is
an ancestor of both m, and my.

4.3 The Exchange Engine

The exchange engine is responsible for managing MEPs. A MEP represents a sequence
of message exchange among the participating applications. The textual notation we use
to specify MEPs is shown in Fig. 4l An EAI solution can have one or more MEPs, thus
different message workflows can occur inside a given EAI solution.

MEPs deal only with messages of success type from the ports listed in Inbound
and Outbound sets, so there is no need to explicitly specify types. When the exchange
engine finds two or more session-correlated messages in the log which came from dif-
ferent ports in a MEDP, it creates an instance of this MEP and associates to it a max time—
to—live parameter; max time—to-live is global and imposes a deadline on the instance
to successfully complete. The session-correlated messages may fit into more than one

300 R.Z. Frantz, R. Corchuelo, and C. Molina-Jimenez

EAI SOLUTION name
TIMEOUT time

EXCHANGE PATTERN name
INBOUND (inbound_ports)
OUTBOUND (outbound_ports)

RULE name
CONDITION (condition)
ACTION destination

Fig. 4. Syntax of Exchange Patterns and Rules

MEDP, so in this case an instance of each MEP will be created. Inbound contains a set of
fully qualified port names, from where inbound messages come. Similarly, Outbound
contains a set of port names to where outbound messages are reported. The syntax for a
fully qualified name is as follows: eai_solution_name:: process_name::port_name,
where eai_solution_name defaults to EAISolution.

The job of the exchange engine is to detect completed, in-progress and incomplete
MEPs in an EAI solution; also it detects messages that has been in the log for a long
time without participating in any MEPs; we call them odd messages. A completed MEP
instance indicates that several correlated inbound messages were processed successfully
by an EAI solution’s workflow within the max time-to-live deadline; the exchange en-
gine detects them by finding all session-correlated outbound messages for this MEP
instance in the log. An in-progress MEP instance contains two or more correlated mes-
sages (not necessary outbound) in the log, has not overrun its max time-to-live deadline,
and is waiting for more outbound message(s) to arrive. An in-progress MEP instance
is declared incomplete when its deadline expires. MEP instances fail to complete due
to failures detected during their workflow execution, thus they trigger the rule engine
which, if necessary, initiates the execution of error recovery actions (see Fig.[3).

It is possible that an incomplete MEP instance might be completed beyond its dead-
line and after the execution of its error recovery action. Situations like this are detected
and signalled by the monitoring system.

4.4 The Rule Engine

The rule engine is responsible for managing the Event—Condition—Action (ECA) rules
of EAI solutions. When the condition of a rule evaluates to true, i.e., a set of session-
correlated messages that activate it is found, the rule engine creates an error recovery
message and invokes an error recovery action by means of an exit port. The error re-
covery action contains the logic to handle the error. Error recovery actions are external
to the monitor, and, although they are designed specially to be executed against an ap-
plication or communication channel, they can be reused if necessary.

Rules take into account both success and failure events. Additionally, events came
not only from ports but also from processes, and contain source—name and event-type,
cf. Fig. @l The general syntax is: eai_solution_name::source_name:event type. If
the source is a port, then it must also include the name of the process to which the port
belongs, cf. Fig.

Towards a Fault-Tolerant Architecture for EAI Solutions 301

Billing SCRtM Purchase
stem
System WrpBS Y T WrpPS System
Port 3
[\
> C
Port 1 Port 4
Y
Inventory il Notification L
System WrplS WrpNS
[C
i
Port 2 Port 5
EAI SOLUTION MySolution RULE MyRule_ 1
TIMEOUT 2500 CONDITION (!'WrpPS: :Port4:0K & WrpCS::Port3:0K)
ACTION ErrorRecoveryActionForCS
EXCHANGE PATTERN MyMEP_1 RULE MyRule 2
INBOUND (WrpBS: : Portl, WrpIS::Port2) CONDITION (!WrpCS: :Port3:0K & WrpPS::Portd:OK)
OUTBOUND (WrpCS: :Port3, WrpPS::Portd) ACTION ErrorRecoveryActionForPS
EXCHANGE PATTERN MyMEP 2 RULE MyRule 3
INBOUND (WrpBS: :Portl, WrpIS::Port2) CONDITION(_erNS: :Port5: OMF)

OUTBOUND (WrpCS: :Port3, WrpPS::Portd4, WrpNS::Port5) ACTION ErrorRecoveryActionForCs

Fig. 5. Example of EAI solution with fault-tolerance

5 Case Study

To illustrate our approach, an EAI solution for a fictitious company is shown in Fig. 3l It
integrates five applications deployed before the EAI solution which were not designed
with EAI integration in mind and run independently from each other. The EAI solution
has one integration process and five wrapping processes, one for each application. i The
main goal of the solution is to collect bills from the Billing System (BS), merge them
with their corresponding order(s) provided by the Inventory System (IS) and to produce
a single merged message. A copy of the merged message is sent to the CRM System
(CS) while a second copy is sent to the Notification System (NS) which is responsible
for notifying the customer about his or her purchase. Finally, a third copy of the message
is sent to the Purchase System (PS) which stores records of purchases. A bill may be
associated with more than one order; in this case the order number is used to compute
local correlation.

To better illustrate some features of our architecture we assume some constraints
imposed on the EAI solution. First, the merged message must be successfully sent to
the CS and PS by Port 3 and Port 4, respectively. Any failure that prevents one of the
applications from receiving the session-correlated message triggers the execution of
a recovery action against the application that succeeded. Second, inbound message(s)
are successfully processed in two situations: when all target applications (CS, PS and
NS) receive the session-correlated message, or when only the CS and the PS receive
it. Failures in Port 5 do not invalidate the workflow execution, they only trigger the
execution of an error recovery action that stores records stating that the customer could
not be notified. The design of error recovery actions are out of the scope of this paper.
The last constraint to this EAI solution is that orders and bills are delivered within 2 to
5 seconds to the target applications.

302 R.Z. Frantz, R. Corchuelo, and C. Molina-Jimenez

To account for these constraints, the EAI solution has two MEPs and three rules, cf.
Fig.[5l The first MEP defines two inbound ports and two outbound ports. This implies
that a MEP instance is completed when session-correlated messages for all these ports
are found in the log. The second MEP also includes Port 5 in the outbound list; this
represents another alternative for the EAI solution to complete successfully. In cases
when an incomplete MEP is detected by the exchange engine, the rules are evaluated
by the rule engine and the corresponding recovery actions are executed.

6 Conclusion

We have proposed an architecture for EAI solutions enhanced with fault-tolerant fea-
tures, in the context of process support systems. We argued that existing proposals that
deal with fault-tolerance in the context of process support systems are based on syn-
chronous execution models and consequently, are memory consumption inefficient. In
response, we explored an asynchronous execution model. We introduced our architec-
ture proposal from the perspective of its metamodel; it includes a monitor that detects
failures and triggers recovery actions. We discussed and addressed different classes of
failures. MEPs and rules are configured by means of an ECA-based language that is part
of the proposed architecture. Incomplete MEPs cause the activation of rules to execute
error recovery actions. To support our ideas we presented a case study.

Acknowledgements. The first author conducted part of this work at the University of
Newcastle, UK as visiting member of staff. His work is partially funded by the Evan-
gelischer Entwicklungsdienst e.V. (EED). The second and first authors are partially
funded by the Spanish National R&D&I Plan under grant TIN2007-64119, the Andalu-
sian Local Government under grant PO7-TIC-02602 and the research programme of the
University of Seville. The third author is partially funded by UK EPSRC Platform Grant
No. EP/D037743/1.

References

1. Campbell, R.H., Randell, B.: Error recovery in asynchronous systems. IEEE Trans. Soft.
Eng. 12(8), 811-826 (1986)

2. Chen, M.Y., Accardi, A., Kiciman, E., Lloyd, J., Patterson, D., Fox, A., Brewer, E.: Path-
based faliure and evolution management. In: Proc. Int’l Symp. Netw. Syst. Des. and Impl., p.
23 (2004)

3. Chiu, D., Li, Q., Karlapalem, K.: A meta modelng approach to workflow management sys-
tems supporting exception handling. Inf. Syst. 24(2), 159-184 (1999)

4. Dunphy, G., Metwally, A.: Pro BizTalk 2006. Apress (2006)

5. Ermagan, V., Kruger, 1., Menarini, M.: A fault tolerance approach for enterprise applications.
In: Proc. IEEE Int’l Conf. Serv. Comput., vol. 2, pp. 63-72 (2008)

6. Apache Foundation. Apache Camel: Book In One Page (2008)

7. Hadjicostis, C.N., Verghese, G.C.: Monitoring discrete event systems using petri net embed-
dings. In: Proc. 20th Int’l Conf. Appl. and Theory of Petri Nets, pp. 188-207 (1999)

8. Hagen, C., Alonso, G.: Exception handling in workflow management systems. IEEE Trans.
Softw. Eng. 26(10), 943-958 (2000)

10.

11.

12.
13.
14.
15.
16.
17.
18.

19.

20.
21.

Towards a Fault-Tolerant Architecture for EAI Solutions 303

. Hohpe, G., Woolf, B.: Enterprise Integration Patterns - Designing, Building, and Deploying

Messaging Solutions. Addison-Wesley, Reading (2003)

Laprie, J.C.: Dependability - its attributes, impairments and means. In: Predicting Depend-
able Computing Systems, pp. 3-24 (1995)

Li, L., Hadjicostis, C.N., Sreenivas, R.S.: Designs of bisimilar petri net controllers with fault
tolerance capabilities. IEEE Trans. Syst. Man Cybern. Part A: Syst. Humans 38(1), 207-217
(2008)

Liu, A., Huang, L., Li, Q., Xiao, M.: Fault-tolerant orchestration of transactional web ser-
vices. In: Proc. Int’l Conf. Web Inf. Syst. Eng., pp. 90-101 (2006)

Liu, A, Li, Q., Huang, L., Xiao, M.: A declarative approach to enhancing the reliability of
bpel processes. In: Proc. IEEE Int’l Conf. Web Services, pp. 272-279 (2007)

Liu, C., Orlowska, M.E., Lin, X., Zhou, X.: Improving backward recovery in workflow sys-
tems. In: Proc. 7th Int’] Conf. Database Syst. Adv. Appl., p. 276 (2001)

Messerschmitt, D., Szyperski, C.: Software Ecosystem: Understanding an Indispensable
Technology and Industry. MIT Press, Cambridge (2003)

Molina, H.G., Salem, K.: Sagas. SIGMOD Rec. 16(3), 249-259 (1987)

MuleSource. Mule 2.x User Guide (2008)

OASIS. Web Services Business Process Execution Language Version 2.0 Specification
(2007)

Peltz, C.: Web services orchestration: a review of emerging technologies, tools, and stan-
dards. Technical report, Hewlett-Packard Company (2003)

TIBCO. Tibco application integration software (June 2009)

Wright, M., Reynolds, A.: Oracle SOA Suite Developer’s Guide. Packt Publishing (2009)

	Towards a Fault-Tolerant Architecture for Enterprise Application Integration Solutions
	Introduction
	Related Work
	Definitions
	EAI Solutions
	Failure Semantics

	Architectural Proposal
	The Logging System
	The Session Correlator
	The Exchange Engine
	The Rule Engine

	Case Study
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

