Int. J. Computer Applications in Technology, Vol. x, No. x, xxxx 1

A DSL for Enterprise Application Integration

Rafael Z. Frantz

Universidade Regional do Noroeste do Estado do Rio Grande do Sul,
Sao Francisco, 501. Ijui, RS 98700-000, Brazil
E-mail: rzfrantz@unijui.edu.br

Abstract: Enterprise Application Integration is one of the big challenges for Software
Engineering. According to a recent report published by IBM, for each US dollar spent on
developing an application, companies usually spend from 5 up to 20 times more to integrate
it. In this paper we propose a Domain Specific Language (DSL) for designing application
integration solutions. Contrarily to Apache Camel, our DSL proposal allows to design an
integration solution visually, by working with building blocks at a higher level of abstraction,
to create a reusable, well documented and independent of technology/platform solutions.

Keywords: building blocks; DSL; domain specific language; EAI; enterprise application
integration; EIP; enterprise integration patterns.

Reference to this paper should be made as follows: Frantz, R.Z. (xxxx) ‘A DSL for Enterprise
Application Integration’, Int. J. Computer Applications in Technology, Vol. x, No. x,
PP-XXX—XXX.

Biographical notes: Rafael Z. Frantz got his Degree from Universidade Regional do Noroeste
do Estado do Rio Grande do Sul (UNIJUT) in 2002. During his graduation course he worked at
the same university at the Software Development Department developing internet programs.
Little after he started working for TargetTrust LTDA, where he was an instructor on Java
technology. Currently, he is working on his PhD, which focuses on Enterprise Application

Integration.

1 Introduction

Nowadays, many companies run a large number of
applications in a distributed environment to carry out their
business. These applications are often software packages
purchased from third parties, specially tailored to a specific
problem, or legacy systems. In this environment often
a business process have to be supported by two or
more applications. In our experience, it is common that
these applications are not prepared to interact among
themselves, automatically. This usually happens when at
least one application that is part of the process was not
designed taking into account integration. Thus knowing
the different applications, entering and carrying data
from one to another and executing functionalities in each
separately, is user responsibility. Is also very frequent the
need to add new features to the existing applications,
which in many cases may be prohibitive. So, in this case,
there are two possibilities: to develop a new application
with all the current functions and add the new desired or
develop another only with the new features and integrate
them. The first option is usually very expensive, the second
requires designing an integration solution that should
provides the user with a high level view with which he or
she can interact.

When we speak about integration, we must consider
some restrictions to an integration solution be viable
for companies. The first restriction is that after making
the integration, applications involved should not change.

Copyright © 2008 Inderscience Enterprises Ltd.

Changing one of these applications could seriously affect
or even completely invalidate the integration solution.
According to a recent report by Weiss (2005), for each
dollar spent with the development of an application, the
cost to integrate it is 5-20 times more. The other restriction
is that, after integrated, applications should be kept
decoupled, as they were before. The integration solution
should not change applications generating dependencies
that did not exist before. Finally we can add a third
restriction whereby the activity for integration should not
be made as part of the developing process, but only when
needed.

An integration solution is composed of wrapper(s)
and one integration cloud. A wrapper is responsible for
connecting an application to the integration cloud and
also have a decorator that documents what enterprise
application (and layer) are being integrated, see Figure 1.
The integration cloud contains processes that can execute
one ore more integration tasks and also communicate
with another building block through ports and integration
links. The integration solution may/may not offers an
integration interface that provides a set of ports (entry
and exit ports) and besides a functional Application
Programming Interface (API) through the one with which
other integration solution(s) and/or application(s) can
interact.

The integration solution can integrate either data
or functionality. It is operational when it represents a
functional view, with a data flow and a low-level API

2 R.Z. Frantz

for integration. This view is called Enterprise Application
Integration (EAI). If the view represents a global data
schema providing a high level API to query the integration
solution, it is called Enterprise Information Integration
(EII).

There are a number of companies that provide
software products for designing EAI solutions. Some of
those products may be classified as Integration Hubs,
Enterprise Service Bus (ESB) or Integration Frameworks.
An integration hub usually offers the possibility of
building integration flow(s), by means of translators,
wrappers and routers. The ESB consists of a larger
software infrastructure that allows the companies to
realise their own enterprise integration/service bus. This
kind of product usually offers (apart from translators,
wrappers and routers) an authentication control, a
security mechanism, a message transport technology
(JMS, MSMQ, MQ Series, ...), works with standards
(XML, SOA, ...), etc. Frameworks are a little bit
different because they normally consist of an API that
should be used by programs. Most such programs are
deployed inside a Container, e.g., Spring or as stand-alone
applications.

In this paper we introduce our Domain Specific
Language (DSL) proposal for EAL. A DSL is a language
that can be used to design reusable solutions with a
high level of abstraction. It means that during the design
we do not need to know the technological details for
the solution, latter the DSL model must be ‘enriched’
with the technological details of the platform we chose to
deploy the whole solution. But the description of this latter
activity is not an aim of this paper.

The remainder is organised as follows: Section 2
introduces our DSL model and the core elements of
it; Section 3 presents an example of an integration
solution designed using this DSL; Section 4 makes a
comparison between our proposal and the Apache Camel

Figure 1 Core elements of the DSL model

framework for application integration; Section 5 presents
our conclusions.

2 The DSL model

An integration solution usually contains in its integration
cloud, at least, one flow that integrates one application
with another. We call this flow, ‘integration flow’. It is
basically responsible for transporting messages, but can
also translate, enrich, filter or route them. This flow is
built, essentially, using four elements from the DSL model:
processes, tasks, ports and slots. While a process and a
task are considered as ‘process units’ in the flow, port and
slot are used to connect them. In Figure 1, we present
these core elements of the DSL model, some specialisation
types and their relation. Below, we give an explanation for
all of them and also introduce some task types; most of
them were inspired in the integration patterns collected and
documented by Hohpe and Woolf (2003).

Building block. Thisis one of the most important element
in the model, since that it represents a general construction
block used to design an integration solution. A building
block has, at least, one task, that is a simple integration task
(SimpleTask) or a more complex task (CompositeTask).
It means that a building block acts as a container for
task(s). Besides, it usually has an entry and an exit port to
receive and send messages. There is no limit to the number
of ports.

Wrappers are used to connect an application to an
integration solution. In our DSL model a wrapper is a
building block, with its internal task(s) used to access the
application being integrated, plus a decorator. A decorator
is composed of an icon of an application and a glyph to
represent what layer of the application we are integrating
(database, user interface, gateway, etc.), cf. Figure 2.

/\

reads from

1
Functional API
api

entryPorts

houndTo| EsitPort

1.*

0.*
writes to
I:ENIWJLIM houndTo

sourceSlot 1 1 |targetsiot

| slot |

1,,"1 4" targetSlots
sourceSlots -

< writes to

dreads from

0.* | entryPorts 0. 0.
IntegrationLink -
integrationLinks
BuildingBlock

AN

1.7

exitPorts

{2 L2
Integrationinterface
0

.*/|Ninterfaces
IntegrationCloud
;’ 1

IntegrationSolution

Process

1.+
Wrapper I/
wrappers
SimpleTask | | CompositeTask I decorat >||r Application |

1

A DSL for Enterprise Application Integration

Figure 2 Example of integration solution

HR
Ej_ System

LI call center

The other type of building blocks is processes, which
represent blocks used to process integration task(s) across
a flow(s). A process contains one ore more tasks and may
be connected to another process or wrapper through ports
and integration links, cf. Figure 1.

Task. To integrate one application with another we must
design an integration flow(s) to transport and/or do some
message processing. A task is the element responsible for
the process block’s internal processing, and, as we can see
in Figure 1, every process is composed by one task. A task
reads a message from a slot, processes it (according its
task type) and writes the result to the next slot, making
it available for the next element. This message processing
usually consists of translating, filtering, routing, etc. See
Section 2.1 for more task types and details.

Simple tasks represent atomic action with a message,
otherwise composite task represents a sequence of tasks
that can be used to turn a process block into a more
complex processing unit.

Slot. Slots are used just inside building blocks in order
to allow exchanging messages between ports (entry and
exit) and tasks, and also between tasks. Essentially
slots are buffers in memory to allow a faster/simpler
communication inside a process.

Port. Building blocks have ports through which they can
send /receive message(s) to/from another block. An entry
port writes an inbound message to an internal slot from
which a task can read it. Otherwise an exit port always
reads a message from a slot and make it available to the next
element(s) in the flow. Entry ports and exit ports are always
bound with one another. It happens, for example, when a
process block is linked to another process or a wrapper.
This relation between ports is represented in Figure 1 with
an association called ‘IntegrationLink’.

SMS
Notifier

2.1 Task types

We have chosen five groups of task to describe below,
they are: Message Constructors, Transformers, Routers,
Timing and Interfacing. We also present a pair of a specific
task types in each group.

2.1.1 Message constructors

A message constructor, produces new message(s). It means
that the message that arrives is not the same message(s)
that will continue on the flow. There are two important
tasks in this group: aggregator and splitter.

Aggregator. An aggregator is an stateful task that can
receive two or more inbound messages and combines
their individual content in just one message. Sometimes it
may be interesting when we have different messages with
individual results that may be combined to be processed as
a whole latter.

Splitter. A splitter is the counterpart of an aggregator.
This type of task receives an inbound message and
produces two or more outbound messages that will be
processed individually.

2.1.2 Transformers

Transformers are a group of task that modify the original
content of an inbound message. This can be done in several
ways, like for example, enriching its content with more
information or translating the actual content from one
format to another.

Translator. In an integration solution, a very frequent
task is translating messages from one format to another.
It is necessary because applications that are being
integrated usually work with different message formats.

4 R.Z. Frantz

So the translator will receive an inbound message, translate
it to the new format and send it to the next element.

Content enricher. Sometimes, it may be necessary to
append more information to a message in order to process
it latter on in the flow. A content enricher receives an
inbound message and computes a new one based on the
original message content or data in an external resource.

2.1.3 Routers

Routers are responsible for routing an inbound message to
zero, one or more destinations. In this paper we introduce
two types of routers: filter and replicator.

Filter. Usinga filter we may avoid uninteresting messages
from reaching the next task. So a filter task receives an
inbound message and based on a certain criteria allows
this message to continue or removes it from the flow.
All removed messages may be saved in a special integration
repository/log in order to keep this information.

Replicator. A replicator task makes copies of an inbound
message and sends them to two or more destinations.
It does not change the original content and there is no limit
for message copies. However the number of messages must
be equal to the number of slots that the replicator can write
to. This task type should be used, for example, to duplicate
a message in order to execute a query in another system
and latter aggregate the result of this query with the other
copy to distribute copies of the original message for two
or more applications.

2.1.4 Timing

There are situations in which we need to have a certain
‘control of the time’ in an integration flow. This group
contains tasks that may, for example, start or delay an
execution of a flow.

Timer. Timer is a type of task that we can configure
to run (every now and then) frequently, usually in a
wrapper. This task instead of receiving inbound message,
will produce outbound messages. The message produced
is normally used to activate the next task.

Delayer. An integrated application or a process block
may get overloaded because it receives more messages it
can process, we should add a delayer in front of it to delay
the delivering of messages.

2.1.5 Interfacing

To integrate an application we have to design, at
least, a wrapper for it. This wrapper is responsible
for, among other things, reading information from the
application and sending it to the integration solution
and/or writing information from the integration solution
to the application. Actually, a wrapper interfaces a layer
of the application; in most of the cases, it is the database,

gateway, a messaging channel (of a messaging system
where the application writes messages), or even the user
interface (with a scrapper). Below we describe two types of
interfacing task: DBDataSource and RPCAccess.

DBDataSource. A database data source is a task to
provide access to the database layer, in other words a set
of tables. This task, basically, allows reading and writing
to the application’s database.

RPCAccess. There are applications ‘better designed’ for
integration. These applications usually provide a public
gateway that may be used to access its functionalities
and even data. A wrapper should contain a RPC access
task in order to interact with the gateway. As any other
interfacing task, a RPC access will send /receive messages
from the integration solution and send /receive data to the
application.

3 Integration example

Figure 2 shows an integration solution of five applications,
which initially were not designed taking integration into
account; the solution gets inspiration from a real system
used at UNTJUI. They are very different applications and
developed with different technologies. The aim of this
solution is to make that all phone calls registered by the
‘Call Center System’ (CCS) in its database and which
have some cost for the university, also be registered in the
‘Debit System’ (DS). In addition to store these calls on
the DS, some information from the call (e.g., cost, time
of the call, city and number of destination) are sent by
SMS and/or email to the user who made the call. At this
university, employees who have a personal key with which
they can use any phone terminal, in any of the cities where
the university is, and make a call. All calls are registered,
and at the end of the month the employee has to tick which
were work calls and which were private calls. Private phone
calls will have to be paid by the employee.

All applications are connected to an integration
solution through a wrapper (1). A wrapper contains tasks
to interact with the application’s interface layer (database,
gateway, user interface, etc.), send and /or receive messages
from the integration solution. The decorator (22) simply
indicates which application and interfacing layer are being
integrated /accessed.

There are two types of arrow: solid arrows and
dotted arrows. Solid arrow represents integration links
while dotted arrow represents slots. As we have already
explained, an integration link (4) usually connects two
process or a wrapper to a process (and vice versa),
and are used to desynchronise these elements in the
solution, if necessary.

The integration flow for the solution presented in this
example begins in the wrapper of the application CCS, with
a timer task (2). This task creates an activation message
every two minutes and sends it, through a slot to the next
task, a file data source (3). This task is responsible for

A DSL for Enterprise Application Integration

accessing the files where the application CCS writes the
phone calls, creates a message for each call and sends these
messages one-by-one to the next slot. The exit port of this
wrapper reads each message from this slot and then send
them to the integration link (4), making it available for the
entry port of the central process block (5).

The central process (5) contains a composite task that
starts with a filtering task (6). This task filters out messages
that do not have a cost for the university, and allow just
tall calls to remain in the flow. Those messages are written
to the next slot, and will be read by the next task, a
replicator (7). The replicator makes copies of the original
message. In this case one copy is sent to the wrapper
of the application Human Resource System (HRS) and
the other to the next element in the current process.
In this integration solution we need to append missing
information about the employee to the message, like: name,
department, email and mobile phone. These information
is in the HRS, that is why it is also integrating our
solution. The message copy received by the wrapper of
HRS, through the ports (8), will be processed by a custom
task (9). This task produces an outbound message that
represents a database query to be executed by the database
data source (10). After that the content enricher (11)
receives the result from the HRS’s wrapper and enriches
the original message with it. Now the enriched message is
sent to the next slot, the one that connects with the exit
port (12). This port is also connected with three integration
links that allow sending a message copy to DS, SMS and
MS. In this case the port acts like a recipient list described
by Hohpe and Woolf (2003), distributing message copies.

The first integration flow after the exit port (12)
connects the process (5) to the wrapper of the DS
application. This wrapper receives the message through
its entry port and makes it available for the first internal
task of the wrapper, the translator task (14). The translator
is responsible for translating the current message format
into a new format that the DS can understand, and then
immediately writes the message into the slot between the
translator and the database data source (15). This task
accesses the database of the DS and stores the message.

The second flow connects the same exit port (12) to
the other process (16) which have a unique internal task,
aslimmer task. A slimmer is responsible for removing some
information from the message in order to make it smaller
before sending it to the SMS. The SMS is an external
application that allows sending messages to mobile phones.
In its wrapper, there is a translator (17) that receives the
inbound message and translates it into a special format that
the SMS can understand. Once the SMS offers a public
gateway the interaction can be done by a RPC access (18),
that forwards the inbound message.

The last copy of the message goes to the flow (19)
that now connects the process (5) with the wrapper of
the MS. This wrapper integrates the application allowing
the solution to send emails with all the details about the
employee’s call. As in the other wrappers it is important to
translate the inbound message into a message format that
the MS can understand. This is done using a translator (20)

5

inside the wrapper, just after the entry port. The translated
message now goes, through a slot, to the next task, the RPC
access (21), and then to the MS.

4 Comparison with Apache Camel

Apache Camel is a Spring based integration framework
for building EAI solutions. This framework, as our DSL
model, supports a number of the Enterprise Integration
Patterns documented by Hohpe and Woolf (2003).
However we do believe there are important differences
between both proposals. Below we describe some of the
differences that we consider more relevant for this paper.

Our DSL model is based on the concept of ‘building
block’, what allows design an integration solution visually
by connecting those blocks through their ports and adding
integration task(s) to do a specific message processing
inside the block. For each element, that is part of our
model, we provide an icon that identifies it. For example,
every type of task has a graphical representation,
also for the process, port, integration link, wrapper,
application being integrated and slot (see Figure 2).
It means you can work at a high level of abstraction
to design the integration solution. Besides applications,
integration flow(s) and tasks are clearly documented and
self-explanatory in a visual way. On the other hand,
Apache Camel’s proposal does not have the concept of
building block and also does not provide a graphical
language for designing an integration solution. In Camel
designing an integration solution imposes working directly
at code-level. In version 1.2.0, they provide a tool to render
‘Camel Routes’ (integration flows) in order to have a
graphical view of the routes, but it is still a poor visual
documentation.

In Camel any application/component that is being
integrated (or used in the integration solution) is
considered an endpoint. For example, Camel allows using
an external application, as for example Velocity, as a
message translator task in a flow (cf. Apache-Foundation,
2008 for more details). Because of it we cannot see which
are really those applications being integrated and which
are those that are just being used to do a special processing
task over a message. Also it is difficult to recognise what an
endpoint is and what a wrapper is. These documentation
must be done externally, whereas in our proposal it is
very clear and well documented in the visual design of
the integration solution as one can see in Figure 2. But in
Camel, since everything is an endpoint, it is easier to add
a new task (that can externally process a message) to the
flow. It is also possible to dynamically configure those
endpoints through an URI, which we have not explored so
far, cf. Apache-Foundation (2008).

As we already know, an integration flow usually
connects one or more applications. It is important to know
(and have documented) in an integration solution where
the flow starts, which are the integration tasks that are
executed across this flow, and where it ends. As we can
see, in Figure 2, in our DSL model the integration flow

6 R.Z. Frantz

Figure 3 Partial model of Camel

RequestMessage

- Exchange RephlMessage
* warks on : FaultMessage
* i 1
MediatorRouter Processor
Component
I
type |1 | creates I
| Filter | | Choice | | Splitter | | Resequencer | | CustomProc | | |

Endpoint |- - --------

Source | boundTo boundTol Target

always starts in a wrapper and also ends in a wrapper.
There is no central element to create the flow. Each process
executes one or more task(s) over a message and forwards
it to the next element. The flow is clearly documented
graphically. On the other hand, in Camel, there is a central
element (Mediator Router) to create the integration flow
(see Figure 3). It connects a source endpoint (where the
flow starts) to a target endpoint (where the flow ends)
through the flow. Across this flow one ore more processors
(filter, choice, splitter, another endpoint that represents an
external application for executing a task over a message,
etc.) may be executed. After executing, the processor is
responsible for calling the next one.

Concerning the communication between tasks in
Camel, tasks have just one entry/exit, except for the routers
that may have more than one exit. In our DSL model, all
building blocks may have more than one entry/exit port
(see Figure 2, number 5); a task may also read /write to one
or more slots (see Figure 2, numbers 7 and 11). It allows,
for example, having a task that can do a processing with
messages from two or more different sources. Or, for
example, a task to make a copy of the original message,
send one copy to another application that should return
information to latter enrich the other copy (see Figure 2,
numbers 7-11). As we know, this query for information
may take a lot of time, so the thread that is executing
the process (see Figure 2, number 5) can be stopped and
another thread may run while the first process waits it. On
the other hand, in Camel, consulting an external resource
would block the current thread (for all the integration flow)
until it receives the result.

Sometimes, we have to execute part of the integration
flow (one or more task) in different machines on the
network. It means the flow’s execution is distributed and
then its integration tasks needs to communicate with
each other to forward the message. In Camel, all the
integration flow is executed in memory, it means in the
same machine. To distribute this flow in Camel we have to

------- Endpointinteractor

create special ‘small applications’ for each part of the flow
that should be executed in a different machine and then
integrate them as an endpoint. The whole flow is stopped
as long as the external task in executing. We need external
documentation to indicate the endpoint’s intention, in
order to know which endpoints represent the original
applications being integrated and witch represent the
applications specifically created to execute the task(s) of the
flow. In our DSL model, we provide the following elements
to solve this problem: building block and integration
link. Remind that an integration task is executed inside a
building block (see Figure 2, number 4). Building blocks
have, among other properties, deployment properties
(please have in mind we are designing the DSL model, we
do not have to worry about this deployment properties).
Later, this allows choosing where and how the block
should be deployed, for example, as a web service in a
Java Web Container or as a stand-alone application in
a certain machine, always identified by an URI. While
building blocks contain integration task(s) the integration
link (see Figure 2, number 3) is the element that give us
all the flexibility to design the integration solution without
having to concern (at design time) if the building blocks
should or should not be executed in different machines and
how to distribute them. Integration links have properties
that allow us to choose how they should be deployed
and how they will connect the building blocks in an
integration flow. An integration link can be deployed in
memory (like Camel), in a messaging system’s channel, in
a database, or in a file for instance.

5 Conclusion

Application integration is a growing up activity in
companies and, according to the report published by Weiss
(2005), is very expensive, apart from that demands much
more resources than the regular software development

A DSL for Enterprise Application Integration

process. Knowing these, it is very important to have
engineering technologies (languages, tools, frameworks,
etc.) that can support this activity helping to reduce the cost
and resources usually spent in. The DSL model proposal
and the Apache Camel framework presented in this paper
contribute with it once they are both proposals to realise
EAI besides based in the notorious patterns from the
reference book by Hohpe and Woolf (2003).

Our proposal is based in the concept of building block,
what allows to design an integration solution visually by
working at a higher level of abstraction, creating reusable,
well documented and independent of technology/platform
solutions. On the other side Camel’s framework is a low
level option to design integration solution by using the
framework inside applications and coding the solution.
However Camel already provides an implementation of the
framework, which we do not provide yet. We do believe
that defining a DSL model that can be used to design
and latter generate executable solutions is a good way to
minimise the costs, time and the need for extra resources
in the integration activity.

Acknowledgement

Supported by the Evangelischer Entwicklungsdienst
e.V. (EED)

References

Apache-Foundation (2008) Camel Book in One Page,
Freely available at http://activemq.apache.org/camel/
book-in-one-page.html

Hohpe, G. and Woolf, B. (2003) Enterprise Integration
Patterns—Designing, Building, and Deploying Messaging
Solutions, The Addison Wesley Signature Seies,
Addison-Wesley, Boston.

Weiss, J. (2005) Aligning Relationships: Optimizing the Value of
Strategic Outsourcing, Global Service Report, IBM.

